
sass

#sass

Table of Contents

About 1

Chapter 1: Getting started with sass 2

Remarks 2

Versions 2

Examples 2

Setup 2

Command Line Tools 2

GUI Applications 3

Variables 3

Importing 3

Nesting 4

Comments 4

Chapter 2: Compass CSS3 Mixins 6

Introduction 6

Examples 6

Set up environment 6

Installation using Ruby 6

Create a Project 6

Use compass 6

Using CSS3 with compass 7

Border-radius 7

Flexbox Example 7

Conclusion 7

Chapter 3: Convert units 9

Examples 9

Convert px to (r)em 9

Chapter 4: Extend / Inheritance 10

Syntax 10

Parameters 10

Remarks 10

Examples 10

Extend a Class 10

Extend from Multiple Classes 10

Chaining Extends 11

Optional Extends 12

Placeholders 12

Extending the parent 13

Chapter 5: Functions 14

Syntax 14

Examples 14

Basic Functions 14

Chapter 6: Installation 15

Remarks 15

Examples 15

Mac 15

Linux 15

Windows 15

Chapter 7: Loops and Conditons 16

Examples 16

While loop 16

for loop 16

Conditional directive (if) 17

Each loop 18

Multiple Assignment 18

Each Loop with maps/ list values 19

Chapter 8: Mixins 20

Syntax 20

Examples 20

Create and use a mixin 20

Mixin with variable argument 20

Sensible defaults 21

Optional arguments 22

@content directive 23

Chapter 9: Nesting 24

Examples 24

Basic nesting 24

Nesting depth 24

Problems 25

Specificity 25

Reusability 25

How deep should you nest? 26

Nesting with @at-root 26

The parent selector (&) 27

States and pseudo-elements 28

Nesting properties 29

Chapter 10: Operators 31

Examples 31

Assignment Operator 31

Arithmetic Operators 31

Comparison Operators 32

Chapter 11: Partials and Import 33

Examples 33

Importing 33

Example 33

Main benefits 34

Partials 34

Example 34

Chapter 12: Scss useful mixins 35

Examples 35

Pure css3 pointer arrows with outline border 35

Tooltip pointer example 36

Chapter 13: SCSS vs Sass 37

Examples 37

Main Differences 37

Syntax 37

SCSS: 37

SASS: 37

Mixins 38

Defining a mixin 38

Including a mixin 38

Maps 38

Comments 39

Single-Line Comment 39

Multi-Line Comment 39

Comparision between SCSS & SASS 40

for loop syntax 41

Chapter 14: Update Sass version 43

Introduction 43

Examples 43

Windows 43

Linux 43

Chapter 15: Variables 44

Syntax 44

Examples 44

Sass 44

SCSS 44

Variable Scope 45

Localize Variables with @at-root directive 45

Interpolation 46

Variables in SCSS 46

Credits 48

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: sass

It is an unofficial and free sass ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official sass.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/sass
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with sass

Remarks

This section provides an overview of what sass is, and why a developer might want to use it.

It should also mention any large subjects within sass, and link out to the related topics. Since the
Documentation for sass is new, you may need to create initial versions of those related topics.

Why SASS?

Inheritance feature•
We can use conditional statements•
More functional than traditional CSS•
Efficient and clear way to write CSS•

Versions

Version Release Date

3.4.22 (Current) 2016-03-28

3.4.0 2014-08-18

3.3.0 2014-03-07

3.2.0 2012-08-10

Examples

Setup

When it comes to using SASS, there are multiple ways of setting up your workspace. Some
people prefer to use command line tools (probably Linux people) and others prefer to use GUI
applications. I'll cover both.

Command Line Tools

The 'Install SASS' page at sass-lang.com covers this quite well. You can use SASS with Ruby
(which can be installed from a Linux package manager or you can download the installer on
Windows). macOS comes with Ruby pre-installed.

Once you've installed Ruby, you need to install SASS (in some cases, sudo may not be needed):

https://riptutorial.com/ 2

http://rubyinstaller.org/

sudo gem install sass

Finally, you can check you've installed SASS with sass -v.

GUI Applications

Whilst there are a number of GUI Applications that you can use, I recommend Scout-App. It auto-
builds and compresses your CSS files for you, on file save and supports macOS, Windows and
Linux.

Variables

If you have a value that you use often, you can store it in a variable. You could use this to define
color schemes, for example. You would only have to define your scheme once and then you could
use it throughout your stylesheets.

To define a variable, you must prefix its name with the $ symbol. (Like you would in PHP.)

You can store any valid CSS property value inside a variable. Such as colors, fonts or URLs.

Example #1:

$foreground: #FAFAFA;
$background: rgb(0, 0, 0);

body {
 color: $foreground;
 background-color: $background;
}

p {
 color: rgb(25, 25, 20);
 background-color: $background;
}

Importing

Let's assume the following scenario: You have two stylesheets: _variables.scss and layout.scss.
Logically, you keep all your variables inside your variable stylesheet but want to access them from
your layout stylesheet.

NOTE: You may notice that the variables stylesheet has an underscore ('_') before it's
name. This is because it's a partial - meaning it's going to be imported.

sass-lang.com says the following about partials: You can create partial Sass files that
contain little snippets of CSS that you can include in other Sass files. This is a great
way to modularize your CSS and help keep things easier to maintain. [...] The
underscore lets Sass know that the file is only a partial file and that it should not be
generated into a CSS file. Sass partials are used with the @import directive.

https://riptutorial.com/ 3

http://scout-app.io/

SCSS variables are great for this scenario. Let's assume that your _variables.scss looks like this:

$primary-color: #333;

You can import it with @import and then the stylesheet's name in quotes. Your layout stylesheet
may now look like this (take note of there not being an underscore or file extension in the import):

@import 'variables';
body {
 color: $primary-color;
}

This would output something like the following:

body {
 color: #333;
}

Nesting

layout.scss

nav {
 ul {
 margin: 0;
 padding: 0;
 list-style: none;
 li {
 margin: 0 5px;
 }
 }
}

output

nav ul {
 margin: 0;
 padding: 0;
 list-style: none;
}
nav ul li {
 margin: 0 5px;
}

Comments

SASS supports two types of comments:

Inline comments - These only span one line and are usually used to describe a variable or
block. The syntax is as follows: // Your comment here (you prepend it with a double slash (//)
and the rest of the line is ignored by the parser.

•

https://riptutorial.com/ 4

Multiline comments - These span multiple lines and are usually used to display a copyright or
license at the top of a document. You can open a multiline comment block with /* and you
can close a multiline comment block with */. Here's an example:

•

/*
 This is a comment
 It's a multiline comment
 Also a hiaku
*/

Read Getting started with sass online: https://riptutorial.com/sass/topic/2045/getting-started-with-
sass

https://riptutorial.com/ 5

https://riptutorial.com/sass/topic/2045/getting-started-with-sass
https://riptutorial.com/sass/topic/2045/getting-started-with-sass

Chapter 2: Compass CSS3 Mixins

Introduction

Getting started guide using Sass exentsion Compass. Compass is very useful when dealing with
CSS3 as it provides mixins to write 1 line in order to support every browser using CSS3 features. It
is also great to include sprite images.

Examples

Set up environment

Open your command line

Installation using Ruby

gem update --system

gem install compass

Create a Project

compass create <myproject>

This will initialize a compass project. It will add a folder called . The folder will look like have the
following structure:

File/Folder description

sass/ Put you sass/scss files in this folder

stylesheets/ In this folder your compiled css will be stored

config.rb Configure compass - e.g. folder path, sass compilation

Use compass

compass watch

This will compile your sass files every time you change them. The sass folder path can be
changed inside of the config.rb

https://riptutorial.com/ 6

Using CSS3 with compass

You can find a complete reference which CSS3 components are supported on this page

In order to use CSS3 in your project Compass provides mixins to support CSS3 features in every
browser. On top of your Sass/Scss file you have to specify that you want to use compass

@import "compass/css3";

Border-radius

Include border-radius with compass in your sass file:

div {
 @include border-radius(4px);
}

CSS output

div {
 -moz-border-radius: 4px;
 -webkit-border-radius: 4px;
 border-radius: 4px;
}

As you can see you can use the normal CSS name. Just put @include in front of it and use () to
set your value.

Flexbox Example

.row {
 @include display-flex;
 @include flex-direction(row);
}

CSS Output

.row {
 display: -webkit-flex;
 display: flex;
 -webkit-flex-direction: row;
 flex-direction: row;
}

Conclusion

https://riptutorial.com/ 7

http://compass-style.org/reference/compass/css3/

This are only two examples. Compass provides much more CSS3 mixins. It is very handy to use
Compass and you don't have to worry that you have forgot defining a CSS3 component for a
specified browser. If the browser supports the CSS3 feature, compass will define it for you.

Read Compass CSS3 Mixins online: https://riptutorial.com/sass/topic/10600/compass-css3-mixins

https://riptutorial.com/ 8

https://riptutorial.com/sass/topic/10600/compass-css3-mixins

Chapter 3: Convert units

Examples

Convert px to (r)em

To convert px to em or rem you can use the following function:

@function rem-calc($size, $font-size : $font-size) {
 $font-size: $font-size + 0px;
 $remSize: $size / $font-size;
 @return #{$remSize}rem;
}

@function em-calc($size, $font-size : $font-size) {
 $font-size: $font-size + 0px;
 $remSize: $size / $font-size;
 @return #{$remSize}em;
}

The $font-size is the original font size.

For example:

$font-size: 14;

body {
 font-size: #{$font-size}px;
 font-size: rem-calc(14px); // returns 1rem
 // font-size: rem-calc(28); // returns 2rem
}

Read Convert units online: https://riptutorial.com/sass/topic/6661/convert-units

https://riptutorial.com/ 9

https://riptutorial.com/sass/topic/6661/convert-units

Chapter 4: Extend / Inheritance

Syntax

@extend .<className>•
@extend .<className>, .<className>•
@extend .<className> !optional•
@extend .<className>, .<className> !optional•

Parameters

Parameter Details

className The class that you want to extend.

Remarks

Sass' @extend rule allows you to share CSS properties across multiple classes, keeping code DRY
and easier to read.

Examples

Extend a Class

.message
 color: white

.message-important
 @extend .message
 background-color: red

This will take all of the styles from .message and add them to .message-important. It generates the
following CSS:

.message, .message-important {
 color: white;
}

.message-important {
 background-color: red;
}

Extend from Multiple Classes

.message
 color: white

https://riptutorial.com/ 10

.important
 background-color: red

.message-important
 @extend .message, .important

In the above code @extend is used in one line to add multiple classes' code to .message-important,
however, it is possible to use one extend per line like this:

.message-important
 @extend .message
 @extend .important

Either one of these methods will generate the following CSS:

.message, .message-important {
 color: white;
}

.important, .message-important {
 background-color: red;
}

Chaining Extends

.message
 color: white
 background: black

.message-important
 @extend .message
 font-weight: bold

.message-error
 @extend .message-important
 font-style: italic

This code causes .message-error to extend from .message-important, which means that it will
contain code from both .message-important and .message, since .method-important extends from
.message. This results in the following CSS:

.message, .message-important, .message-error {
 color: white;
 background: black;
}

.message-important, .message-error {
 font-weight: bold;
}

.message-error {
 font-style: italic;
}

https://riptutorial.com/ 11

Disclaimer: Make sure that the class(es) you are extending from occur only once in the
code, otherwise Sass may generate some messy, convoluted CSS.

Optional Extends

Sometimes, you may want an @extend to be optional, and not require the specified class to exist in
your code.

.message-important
 @extend .message !optional
 background: red

This will result in the following CSS:

.message-important {
 background: red;
}

Disclaimer: This is useful during development when you may not have all of your code
written yet and don't want errors, but it should probably be removed in production because
it could lead to unexpected results.

Placeholders

Sometimes you will create classes that won't be used in their own right, rather only be extended
inside other rule sets. This means that the compiled CSS file will be larger than it needs to be.
Placeholder selectors solve this problem.

Placeholder selectors are similar to class selectors, but they use the percent character (%) instead
of the (.) used for classes. They will not show up in the compiled CSS.

%button {
 border: 5px solid black;
 border-radius: 5px;
 margin: 0;
}

.error-button {
 @extend %button;
 background-color: #FF0000;
}

.success-button {
 @extend %button;
 background-color: #00FF00;
}

This will compile to the following CSS:

.error-button, .success-button {
 border: 5px solid black;
 border-radius: 5px;

https://riptutorial.com/ 12

 margin: 0;
}

.error-button {
 background-color: #FF0000;
}

.success-button {
 background-color: #00FF00;
}

Extending the parent

Typically trying to extend the parent like so:

.parent {
 style: value;

 @extend &;
}

Will result in an error, stating that the parent cannot be extended. This makes sense, but there's a
workaround. Simply store the parent selector in a variable.

.parent {
 $parent: &;
 style: value;
 @extend #{&};
}

There's no benefit to doing this in the above example, however this gives you the power to wrap
parent styles from within an included mixin.

Read Extend / Inheritance online: https://riptutorial.com/sass/topic/2894/extend---inheritance

https://riptutorial.com/ 13

https://riptutorial.com/sass/topic/2894/extend---inheritance

Chapter 5: Functions

Syntax

@function function-name(parameter) { /* Function body */ }•

Examples

Basic Functions

A function is similar in look to a mixin but it doesn't add any styles, it only returns a value.
Functions should be used to prevent repeated logic in your styles.

Sass has some built-in functions that are called using the standard CSS function syntax.

h1 {
 background: hsl(0, 25%, 50%);
}

Functions are declared using the below syntax,

@function multiply(x, y) {
 @return x * y;
}

// example use below
h1 {
 margin-top: multiply(10px, 2);
}

In the code above, @function declares a function, and @return signifies the return value.

Read Functions online: https://riptutorial.com/sass/topic/4782/functions

https://riptutorial.com/ 14

https://riptutorial.com/sass/topic/4782/functions

Chapter 6: Installation

Remarks

This covers Ruby only, which is the main SASS compiler for many systems but other options exist.
A very common one for any node developer would be node-sass which could be easier, and
orders of magnitude faster, for many users.

Examples

Mac

Ruby comes pre-installed on a Mac computer.

Follow the instructions below to install Sass:

Open CMD1.
Run gem install sass2.
If you get an error message, try sudo gem install sass3.
Check it works using sass -v4.

Linux

Ruby will need to be installed first before setup. You can install Ruby through the apt package
manager, rbenv, or rvm.

Then Run

sudo su -c "gem install sass"

Windows

The fastest way to get Ruby on your Windows computer is to use Ruby Installer. It's a single-click
installer that will get everything set up for you super fast. After installing Ruby, follow the
instructions below to install Sass:

Open CMD1.
Run gem install sass2.
If you get an error message, try sudo gem install sass3.
Check it works using sass -v4.

Read Installation online: https://riptutorial.com/sass/topic/2052/installation

https://riptutorial.com/ 15

https://github.com/sass/node-sass
http://rubyinstaller.org/
https://riptutorial.com/sass/topic/2052/installation

Chapter 7: Loops and Conditons

Examples

While loop

The @while directive will loop over a block of code until the condition specified becomes false. In
the following example, this loop will run until $font-size <= 18 while incrementing the value for
$font-size by 2.

$font-size: 12;

@while $font-size <= 18 {
 .font-size-#{$font-size} {
 font-size: ($font-size * 1px);
 }

 $font-size: $font-size + 2;
}

Output of above code

.font-size-12 {
 font-size: 12px;
}

.font-size-14 {
 font-size: 14px;
}

.font-size-16 {
 font-size: 16px;
}

.font-size-18 {
 font-size: 18px;
}

for loop

The @for directive allows you to loop through some code for a set amount of iterations and has two
forms:

@for <var> from <start> through <end> {}•
@for <var> from <start> to <end> {}•

The difference in the two forms is the through and the to; the through keyword will include the
<end> in the loop where to will not; using through is the equivalent of using >= or <= in other
languages, such as C++, JavaScript, or PHP.

Notes

https://riptutorial.com/ 16

Both <start> and <end> must be integers or functions that return integers.•
When <start> is greater than <end> the counter will decrement instead of increment.•

SCSS Example

@for $i from 1 through 3 {
 .foo-#{$i} { width: 10px * $i; }
}

// CSS output
.foo-1 { width: 10px; }
.foo-2 { width: 20px; }
.foo-3 { width: 30px; }

Conditional directive (if)

The @if control directive evaluates a given expression and if it returns anything other than false, it
processes its block of styles.

Sass Example

$test-variable: true !default

=test-mixin
 @if $test-variable
 display: block
 @else
 display: none

.test-selector
 +test-mixin

SCSS Example

$test-variable: true !default

@mixin test-mixin() {
 @if $test-variable {
 display: block;
 } @else {
 display: none;
 }
}

.test-selector {
 @include test-mixin();
}

The above examples produces the following CSS:

.test-selector {
 display: block;
}

https://riptutorial.com/ 17

Each loop

The @each directive allows you to iterate through any list or map. It takes the form of @each $var
or <list or map> {} where $var can be any variable name and <list or map> can be anything that
returns a list or map.

In the following example, the loop will iterate through the $authors list assigning each item to
$author, process its block of styles using that value of $author, and proceed to the next item in the
list.

SCSS Example

$authors: "adam", "steve", "john";
@each $author in $authors {
 .photo-#{$author} {
 background: image-url("avatars/#{$author}.png") no-repeat
 }
}

CSS Output

.photo-adam {
 background: image-url("avatars/adam.png") no-repeat;
}
.photo-steve {
 background: image-url("avatars/steve.png") no-repeat;
}
.photo-john {
 background: image-url("avatars/john.png") no-repeat;
}

Multiple Assignment

Multiple assignment allows you to gain easy access to all of the variables by declaring multiple
variables in the @each directive.

Nested Lists

To have easy access to all the nested elements, you may declare separate variables to match
each nested element. Be sure you have the correct amount of variables and nested elements. In
the following example, an each loop is iterating through a list of three elements each of which
contains three elements nested. Having the wrong amount of declared variables will result in a
compiler error.

@each $animal, $color, $cursor in (puma, black, default),
 (sea-slug, blue, pointer),
 (egret, white, move) {
 .#{$animal}-icon {
 background-image: url('/images/#{$animal}.png');
 border: 2px solid $color;
 cursor: $cursor;

https://riptutorial.com/ 18

 }
}

Maps

Multiple assignment works for Maps as well but is limited to only two variables, a variable to
access the key and a variable to access the value. The names $key and $value are arbitary in the
following example:

@each $key, $value in ('first': 1, 'second': 2, 'third': 3) {
 .order-#{$key} {
 order: $value;
 }
}

Each Loop with maps/ list values

In the below example value in map $color-array is treated as list of pairs.

SCSS Input

$color-array:(
 black: #4e4e4e,
 blue: #0099cc,
 green: #2ebc78
);
@each $color-name, $color-value in $color-array {
 .bg-#{$color-name} {
 background: $color-value;
 }
}

CSS Output

.bg-black {
 background: #4e4e4e;
}

.bg-blue {
 background: #0099cc;
}

.bg-green {
 background: #2ebc78;
}

Read Loops and Conditons online: https://riptutorial.com/sass/topic/2671/loops-and-conditons

https://riptutorial.com/ 19

https://riptutorial.com/sass/topic/2671/loops-and-conditons

Chapter 8: Mixins

Syntax

@mixin mixin-name ($argument1, $argument, ...){ ... }•

Examples

Create and use a mixin

To create a mixin use the @mixin directive.

@mixin default-box ($color, $borderColor) {
 color: $color;
 border: 1px solid $borderColor;
 clear: both;
 display: block;
 margin: 5px 0;
 padding: 5px 10px;
}

You can specify a list of arguments inside a parenthesis following the mixin's name. Remember to
start your variables with $ and separate them with commas.

To use the mixin in another selector, use the @include directive.

footer, header{ @include default-box (#ddd, #ccc); }

The styles from the mixin will now be used in the footer and header, with the value #ccc for the
$color variable and #ddd for the $borderColor variable.

Mixin with variable argument

There are some cases in mixins where there can be single or multiple arguments while using it.
Let's take a case of border-radius where there can be single argument like border-radius:4px; or
multiple arguments like border-radius:4px 3px 2px 1px;.

Traditional with Keyword Arguments mixing will be like below:-

@mixin radius($rad1, $rad2, $rad3, $rad4){
 -webkit-border-radius: $rad1 $rad2 $rad3 $rad4;
 -moz-border-radius: $rad1 $rad2 $rad3 $rad4;
 -ms-border-radius: $rad1 $rad2 $rad3 $rad4;
 -o-border-radius: $rad1 $rad2 $rad3 $rad4;
 border-radius: $rad1 $rad2 $rad3 $rad4;
}

And used as

https://riptutorial.com/ 20

.foo{
 @include radius(2px, 3px, 5px, 6px)
}

The above example is complex (to code, read and maintain) and if you can't pass only one value
or two values, it will throw an error, and to use one, two or there values you have to define three
other mixins.

By using variable Argument you don't have to worry about how many arguments can you pass.
Variable arguments can be declared by defining a variable name followed by three dots(...).
Following is an example of a variable argument.

@mixin radius($radius...)
{
 -webkit-border-radius: $radius;
 -moz-border-radius: $radius;
 -ms-border-radius: $radius;
 -o-border-radius: $radius;
 border-radius: $radius;
}

And used as

.foo{
 @include radius(2px 3px 5px 6px)
}
.foo2{
 @include radius(2px 3px)
}
.foo3{
 @include radius(2px)
}

The above example is much simpler (to code, maintain and read), you need not worry about how
many arguments are about to come - is it one or more than one.

If there is more than one argument and in any case you want to access the second argument, you
can do it by writing propertyname : nth(variable_name, 2).

Sensible defaults

SASS gives you the ability to omit any parameter except the ones you want to overwrite of course.
Let's take again the default-box example:

@mixin default-box ($color: red, $borderColor: blue) {
 color: $color;
 border: 1px solid $borderColor;
 clear: both;
 display: block;
 margin: 5px 0;
 padding: 5px 10px;
}

https://riptutorial.com/ 21

Here we'll now call the mixin having overwritten the second parameter

footer, header{ @include default-box ($borderColor: #ccc); }

the value of $borderColor is #ccc, while $color stays red

Optional arguments

SASS's optional arguments let you use a parameter only if you specify its value; otherwise, it will
be ignored. Let's take an example of the following mixin:

@mixin galerie-thumbnail ($img-height:14em, $img-width: null) {
 width: $img-width;
 height: $img-height;
 outline: 1px solid lightgray;
 outline-offset: 5px;
}

So a call to

.default {
 @include galerie-thumbnail;
}
.with-width {
 @include galerie-thumbnail($img-width: 12em);
}
.without-height {
 @include galerie-thumbnail($img-height: null);
}

will simply output the following in the CSS file:

.default {
 height: 14em;
 outline: 1px solid lightgray;
 outline-offset: 5px;
}

.with-width {
 width: 12em;
 height: 14em;
 outline: 1px solid lightgray;
 outline-offset: 5px;
}

.without-height {
 outline: 1px solid lightgray;
 outline-offset: 5px;
}

SASS doesn't output properties with null as their value, which is very helpful when we need to
include an optional argument in our call or not.

https://riptutorial.com/ 22

@content directive

Mixins can be passed a block of SASS compliant code, which then becomes available within the
mixin as the @content directive.

@mixin small-screen {
 @media screen and (min-width: 800px;) {
 @content;
 }
}

@include small-screen {
 .container {
 width: 600px;
 }
}

And this would output:

 @media screen and (min-width: 800px;) {
 .container {
 width: 600px;
 }
 }

Mixins can use the @content directive and still accept parameters.

@mixin small-screen($offset) {...

Read Mixins online: https://riptutorial.com/sass/topic/2131/mixins

https://riptutorial.com/ 23

https://riptutorial.com/sass/topic/2131/mixins

Chapter 9: Nesting

Examples

Basic nesting

Whenever you declare a new rule inside another rule it is called nesting. With basic nesting, as
shown below, the nested selector will be compiled as a new CSS selector with all its parents
prepended, separated by a space.

// SCSS
.parent {
 margin: 1rem;

 .child {
 float: left;
 }
}

// CSS output
.parent {
 margin: 1rem;
}

.parent .child {
 float: left;
}

Nesting depth

Nesting is a very powerful feature, but should be used with caution. It can happen quite easily and
quickly, that you start nesting and carry on including all children in a nest, of a nest, of a nest. Let
me demonstrate:

// SCSS
header {
 // [css-rules]

 .holder {
 // [css-rules]

 .dropdown-list {
 // [css-rules]

 ul {
 // [css-rules]

 li {
 margin: 1rem 0 0 1rem;
 }
 }
 }
 }

https://riptutorial.com/ 24

}

// CSS output of the last rule
header .holder .dropdown-list ul li {
 margin: 1rem 0 0 1rem;
}

Problems

Specificity

The li from the example above has a margin set. Let's say we want to override this in a media-
query later on.

@media (max-width: 480) {

 // will not work
 .dropdown-list ul li {
 margin: 0;
 }

 // will work
 header .holder .dropdown-list ul li {
 margin: 0;
 }
}

So by nesting too deep consequently you'll have to nest deep again whenever you want to
overwrite a certain value. Even worse, this is often where the rule !important comes to use.

@media (max-width: 480) {

 // BIG NO-NO, don't do this
 .dropdown-list ul li {
 margin: 0 !important;
 }

Why is the !important-rule is a bad idea

You should write your SCSS in a good fashion that these workarounds aren't even necessary in
the first place. Using !important on such a minor issue already will lead you down a rabbit hole!

Reusability

This is fairly similar to the specificity problem, but worth pointing out separately. If you style
something like a button or even a dropdown, you might want to reuse those styles somewhere
else on your page.

By nesting too deeply your styles are only bound to the elements sitting inside the most outer
parent (the element at the top of your SCSS). This leads you to copy styles and paste them
somewhere else again. Possibly in an other nested rule.

https://riptutorial.com/ 25

Your stylesheets will become larger and larger and more difficult to maintain.

How deep should you nest?

Most styleguides set the maximum depth to 2. This is good advice in general, as there are only
very few occasions where you'd want to nest deeper. Most of the time, 2 is enough.

Nesting with @at-root

Nesting is probably most often used to create more specific selectors, but it can also be used
simply for code organization. Using the @at-root directive, you can ‘jump out’ of where you nest it
in your Sass, bringing you back at the top level. Doing this allows you to keep styles grouped
without creating more specificity than you need.

For example, you could to something like this :

.item {
 color: #333;

 @at-root {
 .item-wrapper {
 color: #666;

 img {
 width: 100%;
 }
 }
 }

 .item-child {
 background-color: #555;
 }
}

That would compile to this :

.item {
 color: #333;
}
.item-wrapper {
 color: #666;
}
.item-wrapper img {
 width: 100%;
}
.item .item-child {
 background-color: #555;
}

By doing this, all of our styles related to the .item class are together in the SCSS, but we don't
necessarily need that class in every selector.

https://riptutorial.com/ 26

Excluding contexts

By default declarations inside @at-root will appear in any context. This means that rules inside a
@media block for instance will remain there.

@media print {
 .item-wrapper {
 @at-root {
 .item {
 background: white;
 }
 }
 }
}

// Will compile to
@media print {
 .item {
 background: white;
 }
}

This is not always desired behavior, so you can exclude the media context, by passing media to the
the without option of the @at-root directive.

@at-root (without: media) {..

For more information, see the official documentation

The parent selector (&)

Nesting is great for keeping related selectors together to make it easier for future developers to
understand your code. The parent selector, represented by an ampersand ("&") can help do that in
more complex situations. There are several ways its can be used.

Create a new selector that requires both the parent selector and another on the same element by
placing the new selector directly after a parent selector.

// SCSS
.parent {

 &.skin {
 background: pink;
 }
}

// CSS output
.parent.skin {
 background: pink;
}

Have the parent appear after a nested selector in the compiled CSS by placing the parent selector
after the nested selector.

https://riptutorial.com/ 27

http://sass-lang.com/documentation/file.SASS_REFERENCE.html#at-root

// SCSS
.parent {

 .wrapper & {
 border: 1px solid black;
 }
}

// CSS output
.wrapper .parent {
 border: 1px solid black;
}

States and pseudo-elements

Besides using nesting for classes and children, nesting with the parent selector is also commonly
used to combine the states of :active, :hover and :focus for links.

// SCSS
a {
 color: blue;

 &:active,
 &:focus {
 color: red;
 }

 &:visited {
 color: purple;
 }
}

// CSS output
a {
 color: blue;
}

a:active,
a:focus {
 color: red;
}

a:visited {
 color: purple;
}

Similarly, you can style pseudo-elements by nesting with the parent selector.

// SCSS
.parent {

 &::after {
 display: table;
 clear: both;
 content: '';

https://riptutorial.com/ 28

 }

 &::only-child {
 font-weight: bold;
 }
}

// CSS output
.parent::after {
 display: table;
 clear: both;
 content: '';
}

.parent::only-child {
 font-weight: bold;
}

Nesting properties

Some CSS properties belong to a namespace, for instance border-right belongs to the border
namespace. To write less, we can utilize property nesting, and skip these prefixes, even on
multiple levels.

If we needed to create a border on the right and left of a class named .borders we could write this:

 //SCSS
 .borders {
 border: 2px dashed blue;
 border: {
 left: 1px solid black;
 right: 1px solid red;
 }
 }

 // CSS output
 .borders {
 border: 2px dashed blue;
 border-left: 1px solid black;
 border-right: 1px solid red;
 }

This saves us having to write border-right and border-left, however we are still writing repetitive
code with the lines 1px solid black and 1px solid red. We can write still less repetitive CSS with
the folowing:

// SCSS
.borders {
 border: 2px dashed blue {
 left: 1px solid black;
 right: {
 color: red;
 }
 }

https://riptutorial.com/ 29

}

// CSS output
.borders {
 border: 2px dashed blue;
 border-left: 1px solid black;
 border-right-color: red;
}

Read Nesting online: https://riptutorial.com/sass/topic/2178/nesting

https://riptutorial.com/ 30

https://riptutorial.com/sass/topic/2178/nesting

Chapter 10: Operators

Examples

Assignment Operator

Sass uses the colon (:) operator to assign values to variables.

Example

$foreColor: red;

p {
 color: $foreColor;
}

Arithmetic Operators

Sass supports the following standard arithmetic operators:

Operator Description

+ Addition

– Subtraction

* Multiplication

/ Division

% Remainder

Examples

p {
 font-size: 16px + 4px; // 20px
}

h3 {
 width: 2px * 5 + 12px; // 22px
}

h2 {
 width: 8px + (12px / 2) * 3; // 26px
}

Normal order of operations applies as usual.

https://riptutorial.com/ 31

Comparison Operators

Sass supports all the usual comparison operators: <,>,==,!=,<=,>=.

Examples

(10px == 10) // Returns true

("3" == 3) // Returns false

$padding: 10px;
$padding <= 8px; // Returns false

Read Operators online: https://riptutorial.com/sass/topic/3047/operators

https://riptutorial.com/ 32

https://riptutorial.com/sass/topic/3047/operators

Chapter 11: Partials and Import

Examples

Importing

Using @import allows you to split up your files into multiple smaller files. This makes sense, as you
are able to keep better structure for your stylesheets and avoid very large files.

Example

Let's say you have a few files.

- application.scss
- header.scss
- content
 |-- article.scss
 '-- list.scss
- footer.scss

Your main stylesheet application.scss can import all files as well as define its own styles.

// application.scss
// Import files:
@import 'header.scss';
@import 'content/article.scss';
@import 'content/list.scss';
@import 'footer.scss';

// other styles in application.scss
body {
 margin: 0;
}

Note that you can also omit the .scss extension so you could write @import 'header'; instead of
@import 'header.scss'.

This leads to application.scss having all imported .scss included in the compiled file you serve to
the client (browser). In this case your compiled file would be application.css which you include in
your html.

<html>
 <head>
 <link rel="stylesheet" type="text/css" href="/application.css?v=18c9ed25ea60">
 </head>
 <body>
 ...
 </body>
</html>

https://riptutorial.com/ 33

Although you are working with multiple files you only serve one file, eliminating the need for
multiple requests (one for each file) and speeding up the load time for your visitors.

Main benefits

Better structure for development using folder and multiple files•
Serving only one file to the client (browser)•

Partials

You can create partial files that contain smaller snippets of your stylesheets. This allows you to
modularize your CSS and allows for better structure of your stylesheets. A partial is a Sass file
named with a leading underscore, i.e: _partial.scss. The underscore lets Sass know that the
specific file is a partial and it will not be generated into a CSS file.

Sass partials are meant to be used with the @import directive. When using @import, you can omit
the leading underscore.

Example

Supposing you have a file structure with partials like this

- main.scss
- _variables.scss
- content
 |-- _buttons.scss
 '-- _otherelements.scss

You can include those partials in your main.scss file as follows (leading underscores and file
extensions are omitted in this example):

// main.scss - Imports:
@import 'variables';
@import 'content/buttons';
@import 'content/otherelements';

Read Partials and Import online: https://riptutorial.com/sass/topic/2893/partials-and-import

https://riptutorial.com/ 34

https://riptutorial.com/sass/topic/2893/partials-and-import

Chapter 12: Scss useful mixins

Examples

Pure css3 pointer arrows with outline border

!!! Container should be positioned relatively or absolutely

$direction - top, bottom, left, right

$margin - margin by the edge in $direction. For top and bottom direction - it's from left to right.
For left and right - it's from top to bottom.

$colors - first is a border color, second - is a background color (maybe it's better to inherit
background color from a parent)

$arrowSide - is a relative size of an arrow

$isInset - arrow is inside (true) or outside of it's container

Here is a working Plunker https://plnkr.co/edit/PRF9eLwmOg8OcUoGb22Y?p=preview

%pointer-core {
 content: " ";
 position: absolute;
 border: solid transparent;
 z-index: 9999;
}

@mixin pointer($direction, $margin: 10px, $colors: (#999, $gray), $arrowSide: 8px, $isInset:
false){

 $opposites: (
 top: bottom,
 bottom: top,
 left: right,
 right: left
);

 $margin-direction: (
 top: left,
 bottom: left,
 left: top,
 right: top
);

 &:before {
 @extend %pointer-core;
 border-width: $arrowSide;

 @if $isInset {
 border-#{$direction}-color: nth($colors, 1);
 #{$direction}: -1px;
 }

https://riptutorial.com/ 35

https://plnkr.co/edit/PRF9eLwmOg8OcUoGb22Y?p=preview

 @else
 {
 border-#{map-get($opposites, $direction)}-color: nth($colors, 1);
 #{map-get($opposites, $direction)}: 100%;
 }

 #{map-get($margin-direction, $direction)}: 0;

 margin-#{map-get($margin-direction, $direction)}: $margin - 1;
 }

 &:after {
 @extend %pointer-core;
 border-width: $arrowSide - 1;

 @if $isInset {
 border-#{$direction}-color: nth($colors, 2);
 #{$direction}: -1px;
 }
 @else
 {
 border-#{map-get($opposites, $direction)}-color: nth($colors, 2);
 #{map-get($opposites, $direction)}: 100%;
 }

 #{map-get($margin-direction, $direction)}: 0;

 margin-#{map-get($margin-direction, $direction)}: $margin;
 }
}

Tooltip pointer example

$color-purple-bg: #AF6EC4;
$color-purple-border: #5D0C66;

$color-yellow-bg: #E8CB48;
$color-yellow-border: #757526;

.tooltip {
 position: relative;

 &--arrow-down {
 @include pointer('bottom', 30px, ($color-purple-border, $color-purple-bg), 15px);
 }

 &--arrow-right {
 @include pointer('right', 60px, ($color-yellow-border, $color-yellow-bg), 15px);
 }
}

Read Scss useful mixins online: https://riptutorial.com/sass/topic/6605/scss-useful-mixins

https://riptutorial.com/ 36

https://riptutorial.com/sass/topic/6605/scss-useful-mixins

Chapter 13: SCSS vs Sass

Examples

Main Differences

Although people often say Sass as the name of this CSS-preprocessor, they often mean the SCSS-
syntax. Sass uses the .sass file extension, while SCSS-Sass uses the .scss extension. They are both
referred to as "Sass".

Speaking generally, the SCSS-syntax is more commonly used. SCSS looks like regular CSS with
more capabilities, whereas Sass looks quite different to regular CSS. Both syntaxes have the same
abilities.

Syntax

The main differences are that Sass doesn't use curly brackets or semicolons, where SCSS does. Sass
is also whitespace-sensitive, meaning you have to indent correctly. In SCSS, you can format and
indent your rules as you please.

SCSS:

// nesting in SCSS
.parent {
 margin-top: 1rem;

 .child {
 float: left;
 background: blue;
 }
}

SASS:

// nesting in Sass
.parent
 margin-top: 1rem

 .child
 float: left
 background: blue

After compilation, both will produce the same following CSS:

https://riptutorial.com/ 37

.parent {
 margin-top: 1rem;
}
.parent .child {
 float: left;
 background: blue;
}

Mixins

Sass tends to be the more "lazy" syntax. Nothing illustrates this nicer than how you define and
include mixins.

Defining a mixin

= is how you define a mixin in Sass, @mixin in SCSS.

// SCSS
@mixin size($x: 10rem, $y: 20rem) {
 width: $x;
 height: $y;
}

// Sass
=size($x: 10rem, $y: 20rem)
 width: $x
 height: $y

Including a mixin

+ is how you include in Sass, @include in SCSS.

// SCSS
.element {
 @include size(20rem);
}

// Sass
.element
 +size(20rem)

Maps

When it comes to maps, usually SCSS is the easier syntax. Because Sass is indent-based, your
maps have to be saved in one line.

// in Sass maps are "unreadable"
$white: (white-50: rgba(255, 255, 255, .1), white-100: rgba(255, 255, 255, .2), white-200:
rgba(255, 255, 255, .3), white-300: rgba(255, 255, 255, .4), white-400: rgba(255, 255, 255,
.5), white-500: rgba(255, 255, 255, .6), white-600: rgba(255, 255, 255, .7), white-700:

https://riptutorial.com/ 38

rgba(255, 255, 255, .8), white-800: rgba(255, 255, 255, .9), white-900: rgba(255, 255, 255, 1
)

Because you can format your code on multiple lines with SCSS, you can format your maps to be
more readable.

// in SCSS maps are more readable
$white: (
 white-50: rgba(255, 255, 255, .1),
 white-100: rgba(255, 255, 255, .2),
 white-200: rgba(255, 255, 255, .3),
 white-300: rgba(255, 255, 255, .4),
 white-400: rgba(255, 255, 255, .5),
 white-500: rgba(255, 255, 255, .6),
 white-600: rgba(255, 255, 255, .7),
 white-700: rgba(255, 255, 255, .8),
 white-800: rgba(255, 255, 255, .9),
 white-900: rgba(255, 255, 255, 1)
);

Comments

Comments in Sass vs. Scss are largely similar, except when multi-lines are concerned. SASS multi-
lines are indentation-sensitive, while SCSS relies on comment terminators.

Single-Line Comment

style.scss

// Just this line will be commented!
h1 { color: red; }

style.sass

// Exactly the same as the SCSS Syntax!
h1
 color: red

Multi-Line Comment

style.scss

Initiator: /*

Terminator: */

/* This comment takes up

https://riptutorial.com/ 39

 * two lines.
 */
h1 {
 color: red;
}

This will style h1 elements with the color red.

style.sass

Now, SASS has two initiators, but no respective terminators. Multiline comments in SASS are
sensitive to indentation levels.

Initiators: // and /*

// This is starts a comment,
 and will persist until you
 return to the original indentaton level.
h1
 color: red

This will style h1 elements with the color red.

The same can be done with the /* Initiator:

/* This is starts a comment,
 and will persist until you
 return to the original indentaton level.
h1
 color: red

So there you have it! The main differences between comments in SCSS and SASS!

Comparision between SCSS & SASS

SCSS syntax resembles more like a CSS syntax but SASS syntax is little bit different from SCSS but
both produces exactly the same CSS code.

•

In SASS we are not ending the style properties with semicolon(;) but in SCSS we are ending
the style properties with (;).

•

In SCSS we used paranthesis {} to close the style properties but in SASS we don't use
paranthesis.

•

Indentation is very important in SASS. It will define the nested properties in the class or id of
the element.

•

In scss we can define multiple variables in single line but in SASS we can't do.•

https://riptutorial.com/ 40

for loop syntax

With the release of sass 3.3 and plus version the @if and else conditions syntax got same. we can
now use expressions with not only scss but also sass.

sass syntax

@for $i from 1 through 3 {
 .item-#{$i} { width: 2em * $i; }
}

Compiled to

.item-1 {
 width: 2em;
}
.item-2 {
 width: 4em;
}
.item-3 {
 width: 6em;
}

scss syntax

https://riptutorial.com/ 41

https://i.stack.imgur.com/jPxTn.png

@for $i from 1 through 3 {
 .item-#{$i} { width: 2em * $i; }
}

compiled to

.item-1 {
 width: 2em;
}
.item-2 {
 width: 4em;
}
.item-3 {
 width: 6em;
}

Read SCSS vs Sass online: https://riptutorial.com/sass/topic/2428/scss-vs-sass

https://riptutorial.com/ 42

https://riptutorial.com/sass/topic/2428/scss-vs-sass

Chapter 14: Update Sass version

Introduction

Update your Sass version using gem / ruby

Examples

Windows

You can check the version of Sass using sass -v

Update all ruby gems gem update

Update only Sass gem update sass

Linux

You can check the version of Sass using sass -v

Update all ruby gems sudo gem update

Update only Sass sudo gem update sass

Read Update Sass version online: https://riptutorial.com/sass/topic/10599/update-sass-version

https://riptutorial.com/ 43

https://riptutorial.com/sass/topic/10599/update-sass-version

Chapter 15: Variables

Syntax

$variable_name: value;•

Examples

Sass

Variables are used to store a value once which will be used multiple times throughout a Sass
document.

They are mostly used for controlling things such as fonts and colors but can be used for any value
of any property.

Sass uses the $ symbol to make something a variable.

$font-stack: Helvetica, sans-serif
$primary-color: #000000

body
 font-family: $font-stack
 color: $primary-color

SCSS

Just as in Sass, SCSS variables are used to store a value which will be used multiple times
throughout a SCSS document.

Variables are mostly used to store frequently-used property values (such as fonts and colors), but
can be used for any value of any property.

SCSS uses the $ symbol to declare a variable.

$font-stack: Helvetica, sans-serif;
$primary-color: #000000;

body {
 font-family: $font-stack;
 color: $primary-color;
}

You can use !default when declaring a variable if you want to assign a new value to this variable
only if it hasn't been assigned yet:

$primary-color: blue;
$primary-color: red !default; // $primary-color is still "blue"

https://riptutorial.com/ 44

$primary-color: green; // And now it's green.

Variable Scope

Variables exist within a specific scope, much like in in JavaScript.

If you declare a variable outside of a block, it can be used throughout the sheet.

$blue: dodgerblue;

.main {
 background: $blue;

 p {
 background: #ffffff;
 color: $blue;
 }
}

.header {
 color: $blue;
}

If you declare a variable within a block, it can only be used in that block.

.main {
 $blue: dodgerblue;

 background: $blue;

 p {
 background: #ffffff;
 color: $blue;
 }
}

.header {
 color: $blue; // throws a variable not defined error in SASS compiler
}

Variables declared at the sheet level (outside of a block) can also be used in other sheets if they
are imported.

Localize Variables with @at-root directive

@at-root directive can be used to localize variables.

$color: blue;

@at-root {
 $color: red;

 .a {
 color: $color;

https://riptutorial.com/ 45

http://www.riptutorial.com/sass/example/9803/importing
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#at-root

 }
 .b {
 color: $color;
 }
}

.c {
 color: $color;
}

is compiled to:

.a {
 color: red;
}

.b {
 color: red;
}

.c {
 color: blue;
}

Interpolation

Variables can be used in string interpolation. This allows you to dynamically generate selectors,
properties and values. And the syntax for doing so a variable is #{$variable}.

$className: widget;
$content: 'a widget';
$prop: content;

.#{$className}-class {
 #{content}: 'This is #{$content}';
}
// Compiles to

.widget-class {
 content: "This is a widget";
}

You cannot, however use it to dynamically generate names of mixins or functions.

Variables in SCSS

In SCSS variables begin with $ sign, and are set like CSS properties.

$label-color: #eee;

They are only available within nested selectors where they’re defined.

#menu {
 $basic-color: #eee;
 color: $basic-color;

https://riptutorial.com/ 46

}

If they’re defined outside of any nested selectors, then they can be used everywhere.

$width: 5em;

#menu {
 width: $width;
}

#sidebar {
 width: $width;
}

They can also be defined with the !global flag, in which case they’re also available everywhere.

#menu {
 $width: 5em !global;
 width: $width;
}

#sidebar {
 width: $width;
}

It is important to note that variable names can use hyphens and underscores interchangeably. For
example, if you define a variable called $label-width, you can access it as $label_width, and vice
versa.

Read Variables online: https://riptutorial.com/sass/topic/2180/variables

https://riptutorial.com/ 47

https://riptutorial.com/sass/topic/2180/variables

Credits

S.
No

Chapters Contributors

1
Getting started with
sass

Angelos Chalaris, Benolot, Christopher, Community, Kartik
Prasad, Rohit Jindal, SamJakob, Stewartside

2
Compass CSS3
Mixins

Schlumpf

3 Convert units SuperDJ

4 Extend / Inheritance Euan Williams, GMchris, user2367593

5 Functions Euan Williams, GMchris, Hudson Taylor, Pyloid

6 Installation Angelos Chalaris, Pyloid, Stewartside

7 Loops and Conditons
Akash Kodesia, allejo, Angelos Chalaris, GMchris,
MMachinegun, ScottL

8 Mixins
Akash Kodesia, Angelos Chalaris, GMchris, Hudson Taylor,
Ninda, Roxy Walsh

9 Nesting
aisflat439, alexbea, Amy, Christopher, Devid Farinelli, GMchris,
Hudson Taylor, John Slegers, MMachinegun

10 Operators Angelos Chalaris, Hudson Taylor, Pyloid

11 Partials and Import Angelos Chalaris, Hudson Taylor, MMachinegun

12 Scss useful mixins Kindzoku

13 SCSS vs Sass
75th Trombone, Everettss, Jared Hooper, MMachinegun,
Muzamil301, Pyloid, Robotnicka, Rohit Jindal

14 Update Sass version Schlumpf

15 Variables
Daniyal Basit Khan, evuez, GMchris, Hudson Taylor, jaredsk,
Pyloid, Stewartside, yassh

https://riptutorial.com/ 48

https://riptutorial.com/contributor/1650200/angelos-chalaris
https://riptutorial.com/contributor/6625936/benolot
https://riptutorial.com/contributor/371040/christopher
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2506213/kartik-prasad
https://riptutorial.com/contributor/2506213/kartik-prasad
https://riptutorial.com/contributor/4116300/rohit-jindal
https://riptutorial.com/contributor/2872279/samjakob
https://riptutorial.com/contributor/2889988/stewartside
https://riptutorial.com/contributor/8174765/schlumpf
https://riptutorial.com/contributor/3390200/superdj
https://riptutorial.com/contributor/4912942/euan-williams
https://riptutorial.com/contributor/3138955/gmchris
https://riptutorial.com/contributor/2367593/user2367593
https://riptutorial.com/contributor/4912942/euan-williams
https://riptutorial.com/contributor/3138955/gmchris
https://riptutorial.com/contributor/6158687/hudson-taylor
https://riptutorial.com/contributor/1760315/pyloid
https://riptutorial.com/contributor/1650200/angelos-chalaris
https://riptutorial.com/contributor/1760315/pyloid
https://riptutorial.com/contributor/2889988/stewartside
https://riptutorial.com/contributor/2028800/akash-kodesia
https://riptutorial.com/contributor/1239484/allejo
https://riptutorial.com/contributor/1650200/angelos-chalaris
https://riptutorial.com/contributor/3138955/gmchris
https://riptutorial.com/contributor/2102463/mmachinegun
https://riptutorial.com/contributor/6443274/scottl
https://riptutorial.com/contributor/2028800/akash-kodesia
https://riptutorial.com/contributor/1650200/angelos-chalaris
https://riptutorial.com/contributor/3138955/gmchris
https://riptutorial.com/contributor/6158687/hudson-taylor
https://riptutorial.com/contributor/4916251/ninda
https://riptutorial.com/contributor/5151398/roxy-walsh
https://riptutorial.com/contributor/2049247/aisflat439
https://riptutorial.com/contributor/888550/alexbea
https://riptutorial.com/contributor/2584167/amy
https://riptutorial.com/contributor/371040/christopher
https://riptutorial.com/contributor/4695325/devid-farinelli
https://riptutorial.com/contributor/3138955/gmchris
https://riptutorial.com/contributor/6158687/hudson-taylor
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/2102463/mmachinegun
https://riptutorial.com/contributor/1650200/angelos-chalaris
https://riptutorial.com/contributor/6158687/hudson-taylor
https://riptutorial.com/contributor/1760315/pyloid
https://riptutorial.com/contributor/1650200/angelos-chalaris
https://riptutorial.com/contributor/6158687/hudson-taylor
https://riptutorial.com/contributor/2102463/mmachinegun
https://riptutorial.com/contributor/5453843/kindzoku
https://riptutorial.com/contributor/291022/75th-trombone
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/3872894/jared-hooper
https://riptutorial.com/contributor/2102463/mmachinegun
https://riptutorial.com/contributor/5448891/muzamil301
https://riptutorial.com/contributor/1760315/pyloid
https://riptutorial.com/contributor/4534949/robotnicka
https://riptutorial.com/contributor/4116300/rohit-jindal
https://riptutorial.com/contributor/8174765/schlumpf
https://riptutorial.com/contributor/7338180/daniyal-basit-khan
https://riptutorial.com/contributor/653378/evuez
https://riptutorial.com/contributor/3138955/gmchris
https://riptutorial.com/contributor/6158687/hudson-taylor
https://riptutorial.com/contributor/2378918/jaredsk
https://riptutorial.com/contributor/1760315/pyloid
https://riptutorial.com/contributor/2889988/stewartside
https://riptutorial.com/contributor/6860237/yassh

	About
	Chapter 1: Getting started with sass
	Remarks
	Versions
	Examples
	Setup

	Command Line Tools
	GUI Applications
	Variables
	Importing
	Nesting
	Comments

	Chapter 2: Compass CSS3 Mixins
	Introduction
	Examples
	Set up environment

	Installation using Ruby
	Create a Project
	Use compass
	Using CSS3 with compass

	Border-radius
	Flexbox Example
	Conclusion

	Chapter 3: Convert units
	Examples
	Convert px to (r)em

	Chapter 4: Extend / Inheritance
	Syntax
	Parameters
	Remarks
	Examples
	Extend a Class
	Extend from Multiple Classes
	Chaining Extends
	Optional Extends
	Placeholders
	Extending the parent

	Chapter 5: Functions
	Syntax
	Examples
	Basic Functions

	Chapter 6: Installation
	Remarks
	Examples
	Mac
	Linux
	Windows

	Chapter 7: Loops and Conditons
	Examples
	While loop
	for loop
	Conditional directive (if)
	Each loop

	Multiple Assignment
	Each Loop with maps/ list values

	Chapter 8: Mixins
	Syntax
	Examples
	Create and use a mixin
	Mixin with variable argument
	Sensible defaults
	Optional arguments
	@content directive

	Chapter 9: Nesting
	Examples
	Basic nesting
	Nesting depth

	Problems
	Specificity
	Reusability

	How deep should you nest?
	Nesting with @at-root
	The parent selector (&)
	States and pseudo-elements
	Nesting properties

	Chapter 10: Operators
	Examples
	Assignment Operator
	Arithmetic Operators
	Comparison Operators

	Chapter 11: Partials and Import
	Examples
	Importing
	Example

	Main benefits
	Partials
	Example

	Chapter 12: Scss useful mixins
	Examples
	Pure css3 pointer arrows with outline border
	Tooltip pointer example

	Chapter 13: SCSS vs Sass
	Examples
	Main Differences

	Syntax
	SCSS:
	SASS:
	Mixins

	Defining a mixin
	Including a mixin
	Maps
	Comments

	Single-Line Comment
	Multi-Line Comment
	Comparision between SCSS & SASS
	for loop syntax

	Chapter 14: Update Sass version
	Introduction
	Examples
	Windows
	Linux

	Chapter 15: Variables
	Syntax
	Examples
	Sass
	SCSS
	Variable Scope
	Localize Variables with @at-root directive
	Interpolation
	Variables in SCSS

	Credits

