
sbt

#sbt

Table of Contents

About 1

Chapter 1: Getting started with sbt 2

Remarks 2

Versions 2

Examples 2

Install SBT on Linux 2

RPM-based Linux Distributions 3

Install SBT on Windows 3

Install 3

Verify Installation 3

Install on Mac OSX 3

MacPorts 4

Homebrew 4

Sources 4

Verification 4

Import SBT Project into Eclipse 5

Chapter 2: Build Overview 6

Remarks 6

Examples 6

Directory Structure 6

Cheat Sheet 7

Compile a project 7

Test a project 7

Enter SBT REPL: 7

Enter Scala Console with Built Project Available 7

Generate Scaladoc 7

Chapter 3: Dependencies 8

Examples 8

Add a Managed Library Dependency 8

Add a Repository 8

Pin Library to Project Version of Scala 9

Pin Library to Specific Version of Scala 9

Chapter 4: Getting started with daily development 10

Examples 10

Daily continuous development example with Scala 10

Chapter 5: Projects 11

Examples 11

Multiple Projects in the same Build (Subprojects) 11

Configure Macros in a Project 11

Display Settings 12

Chapter 6: Tasks 13

Examples 13

Create a Simple Task 13

Credits 14

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: sbt

It is an unofficial and free sbt ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official sbt.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/sbt
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with sbt

Remarks

The Simple Build Tool (SBT for short) can be used to build Scala (or Java) project code. This
includes managing code, dependencies, and resources that must be built, tested, and/or compiled
to a .jar or other artifact. Custom tasks can be created to manage all of these processes.

A note on the name; SBT is sometimes referred to as the 'Scala Build Tool'. While this was not the
original intent, it has come to be commonly used as well. SBT may be used to build any project on
the JVM.

.sbt files, or 'SBT build definitions' are specially interpreted files, written in Scala, that are used by
SBT to define a build. .scala build definitions may also be written and imported into an .sbt file.

Versions prior to 13.6 required that any .sbt file has each statement separated by a blank line.
Without the blank line, the .sbt file will break.

A universal package exists in ZIP and TGZ formats.

Versions

Version State Release Date

0.13.12 Stable 2016-07-17

Examples

Install SBT on Linux

Full instructions can be found here.

Install the JDK.1.

Set the Java Environment variable.

export JAVA_HOME=/usr/local/java/jdk1.8.0_102
echo $JAVA_HOME
/usr/local/java/jdk1.8.0_102
export PATH=$PATH:$JAVA_HOME/bin/
echo $PATH
...:/usr/local/java/jdk1.8.0_102/bin/

2.

Install Scala.

sudo wget http://www.scala-lang.org/files/archive/scala-2.11.8.deb

3.

https://riptutorial.com/ 2

https://dl.bintray.com/sbt/native-packages/sbt/0.13.12/sbt-0.13.12.zip
https://dl.bintray.com/sbt/native-packages/sbt/0.13.12/sbt-0.13.12.tgz
https://github.com/sbt/sbt/releases/tag/v0.13.12
http://www.scala-sbt.org/0.13/docs/Installing-sbt-on-Linux.html
https://docs.oracle.com/javase/8/docs/technotes/guides/install/linux_jdk.html

sudo dpkg -i scala-2.11.8.deb
sudo apt-get update
sudo apt-get install scala

Install SBT.

wget https://bintray.com/artifact/download/sbt/debian/sbt-0.13.9.deb
sudo dpkg -i sbt-0.13.9.deb
sudo apt-get update
sudo apt-get install sbt

4.

RPM-based Linux Distributions

Download SBT repository definitions and add it to YUM:

curl https://bintray.com/sbt/rpm/rpm | sudo tee /etc/yum.repos.d/bintray-sbt-rpm.repo

•

Install SBT according to the definitions previously added to YUM:

sudo yum install sbt

•

Install SBT on Windows

Install

MSI installers can be found here. This is the latest stable version. Download and execute to install.

Verify Installation

Use the WindowsKey + R, type cmd.•

Alternatively, navigate to the .sbt (for example, in C:\Users\Hopper) and type cmd in the
address bar.

•

Type sbt about to get version information, verifying it is installed. You should see something
like this:

Java HotSpot(TM) 64-But Server VM warning: ignoring option MaxPermSize=256m; support was
removed in 8.0
[info] Set current project to root--sbt (in build file:/C:/Users/Hopper/.sbt/)
[info] This is sbt 0.13.8
...

•

Install on Mac OSX

https://riptutorial.com/ 3

https://dl.bintray.com/sbt/native-packages/sbt/
https://dl.bintray.com/sbt/native-packages/sbt/:0.13.12/

Full official instructions can be found here.

MacPorts

Install MacPorts. Then, in the terminal execute:

port install sbt

Homebrew

Install Homebrew. Then, in the terminal execute:

brew install sbt

Sources

Download sbt All platforms (tgz) installation from SBT.

sudo su
cd /opt
mkdir sbt
cd sbt
curl https://dl.bintray.com/sbt/native-packages/sbt/0.13.13/sbt-0.13.13.tgz -o sbt-0.13.13.tgz

Then, execute following

tar zxf sbt-0.13.13.tgz
ln -s sbt-0.13.13 latest

Inside your $HOME make sure to update ~/.profile - by adding following lines

export SBT_HOME=/opt/sbt/latest
export PATH=$PATH:$SBT_HOME/bin

Verification

In the terminal execute:

which sbt

You should expect output similar to:

/opt/local/bin/sbt

https://riptutorial.com/ 4

http://www.scala-sbt.org/0.13/docs/Setup.html
https://www.macports.org/install.php
http://brew.sh/
http://www.scala-sbt.org/download.html

If you get no output sbt is not installed.

Import SBT Project into Eclipse

This assumes you have installed both Eclipse and SBT.

Install the SBT plugin for Eclipse from the Eclipse marketplace.•

In the command line switch directory to the root directory of the project.

$ cd ~/home/sample/project

•

Execute sbt, which will load the project.

$ sbt

•

Compile the project to ensure dependencies are obtainable.

> compile

•

Run the eclipse task:

> eclipse

•

Go into Eclipse and select the menu option:

File > New > Project From Existing Sources

•

In the wizard, navigate to your project directory and select it. Eclipse will handle the rest.•

Read Getting started with sbt online: https://riptutorial.com/sbt/topic/2351/getting-started-with-sbt

https://riptutorial.com/ 5

http://www.riptutorial.com/eclipse/example/3683/installation-and-setup
http://stackoverflow.com/documentation/sbt/drafts/104726
https://riptutorial.com/sbt/topic/2351/getting-started-with-sbt

Chapter 2: Build Overview

Remarks

Official documentation is at www.scala-sbt.org.

Examples

Directory Structure

The standard structure for a project built by SBT is:

projectName/
 build.sbt
 project/
 <SBT sub-build information>
 src/
 main/
 scala/
 <Scala source files>
 java/
 <Java source files>
 resources/
 <Resource files>
 test/
 scala/
 <Scala test files>
 java/
 <Java test files>
 resources/
 <Resource files>

Other directories may exist, but the build deals primarily with these. In the base directory build.sbt
is placed, whose contents at a minimum are:

name := <name of build>: This is the name of the project.•
version := <version number>: This is the version of the project for downstream code to
reference.

•

scalaVersion := <version of Scala>: This is the version of Scala that the project's bytecode is
built against.

•

The project directory is where the meta-build (as opposed to the proper-build) files are placed.
This directory can have it's own build.sbt file that executes in exactly the same manner, creating
an environment for the proper-build SBT build to execute. This is recursive, so the project
directory can have it's own project directory where a meta-meta-build occurs, and so on.

Upon building, SBT will create a target directory in which class files and other components are
placed.

https://riptutorial.com/ 6

http://www.scala-sbt.org/documentation.html

Cheat Sheet

This sheet assumes that you are in the root directory of the project, containing the build.sbt. $
indicates a command prompt and > indicates commands run inside the SBT console.

Compile a project

$ sbt compile

Test a project

$ sbt test

Enter SBT REPL:

$ sbt

Enter Scala Console with Built Project
Available

$ sbt
> console

Generate Scaladoc

This is an example of executing an SBT 'Task'. The SBT site has more information on generating
Scaladoc documentation.

$ sbt doc

or:

$ sbt
> doc

Read Build Overview online: https://riptutorial.com/sbt/topic/6761/build-overview

https://riptutorial.com/ 7

http://www.scala-sbt.org/0.13/docs/Tasks.html
http://www.scala-sbt.org/1.0/docs/Howto-Scaladoc.html
http://www.scala-sbt.org/1.0/docs/Howto-Scaladoc.html
https://riptutorial.com/sbt/topic/6761/build-overview

Chapter 3: Dependencies

Examples

Add a Managed Library Dependency

libraryDependency is the SettingKey that handles 'managed' library dependencies, which are
dependencies that are automatically downloaded, matching the supplied versions. To add a single
dependency:

libraryDependencies += "com.typesafe.slick" %% "slick" % "3.2.0-M1"

The first part, "com.typesafe.slick", indicates the library package. The second part, "slick", is the
library in question. The final part, "3.2.0-M1", is the version. Because the library is joined by %% the
version of Scala supplied by the scalaVersion setting key will be utilized.

You can add multiple libraries at once using ++=:

libraryDependencies ++= Seq(
 "com.typesafe.slick" %% "slick" % "3.2.0-M1" % "compile",
 "com.typesafe.slick" %% "slick-hikaricp" % "3.2.0-M1",
 "mysql" % "mysql-connector-java" % "latest.release"
)

Remember Scala's functional nature, allowing you to compute dependencies. Just remember to
return a Seq:

libraryDependencies ++= {
 lazy val liftVersion = "3.0-RC3" //Version of a library being used
 lazy val liftEdition = liftVersion.substring(0,3) //Compute a value
 Seq(
 "net.liftweb" %% "lift-webkit" % liftVersion % "compile", // Use var in Seq
 "net.liftmodules" %% ("ng_" + liftEdition) % "0.9.2" % "compile", // Use computed var in
Seq
) // Because this is the last statement, the Seq is returned and appended to
libraryDependencies
}

Add a Repository

A repository is a place that SBT looks for libraryDependencies. If the build complains about not
finding a dependency, it can be lacking the correct repository. Within SBT, the repositories are
listed in the resolvers SettingKey:

resolvers += "Flyway" at "https://flywaydb.org/repo"

This follows the syntax of 'Repository name' at 'url location'.

https://riptutorial.com/ 8

Pin Library to Project Version of Scala

If your project has this:

scalaVersion := 2.11 // Replace '2.11' with the version of Scala your project is running on

Then you can use %% to automatically get the version of the library compiled against the version of
Scala the project is using:

libraryDependencies += "com.typesafe.slick" %% "slick" % "3.2.0-M1"

Note that having the above two lines is equivalent to having this one line:

libraryDependencies += "com.typesafe.slick" % "slick_2.11" % "3.2.0-M1"

Pin Library to Specific Version of Scala

A library can be 'pinned' to a specific version of Scala using the % operator between the groupId
and the artifactId (the first two strings in a library dependency). In this example, we pin the library
with the artifactId of slick to Scala version 2.10:

 libraryDependencies += "com.typesafe.slick" % "slick_2.10" % "3.2.0-M1"

Read Dependencies online: https://riptutorial.com/sbt/topic/6760/dependencies

https://riptutorial.com/ 9

https://riptutorial.com/sbt/topic/6760/dependencies

Chapter 4: Getting started with daily
development

Examples

Daily continuous development example with Scala

install sbt with homebrew (if you didn't)
brew install sbt

- create a new scala project
- name your project name when asked like: hello-world
sbt new sbt/scala-seed.g8

go to the new project directory that you named
cd hello-world

run sbt to open the sbt shell
sbt

run your project in continuous running mode
~ run

to continuously see the test outputs
open up a new terminal tab, run sbt, type:
~ test

to continuously compile
open up a new terminal tab, run sbt, type:
~ compile

~ used for continuous operations in sbt as seen above.

Read Getting started with daily development online: https://riptutorial.com/sbt/topic/9842/getting-
started-with-daily-development

https://riptutorial.com/ 10

https://riptutorial.com/sbt/topic/9842/getting-started-with-daily-development
https://riptutorial.com/sbt/topic/9842/getting-started-with-daily-development

Chapter 5: Projects

Examples

Multiple Projects in the same Build (Subprojects)

Sometimes a build combines multiple source directories, each of which is their own 'project'. For
instance, you might have a build structure like this:

projectName/ build.sbt project/ src/ main/ ... test/ ... core/ src/ main/ ... test/ ... webapp/ src/ main/
... test/ ...

In the above project, the code in projectName/src is considered the root project. There are two
other modules, or 'subprojects', core and webapp.

Configuring a subproject is similar to configuring the root project, except that the subdirectory is
specified in the project. This example shows a root project that aggregates a core and webapp
project.

lazy val root = (project in file(".")).aggregate(core,webapp).dependsOn(core, webapp)

lazy val core = (project in file("core"))

lazy val webapp = (project in file("webapp")).dependsOn(core)

The values passed to file() are the directories relative to the project root.

The webapp project depends on the core project, which is indicated by the dependsOn clause, which
takes the core value specified on the line above. dependsOn and lazy evaluation ensure that
dependencies are available before projects utilize them. In this case, webapp depends on core, so
core will be compiled before the build attempts to compile webapp.

aggregate makes tasks defined in one project available to the project that aggregates it. For
instance, executing compile in the root project will also execute compile in core and webapp.

Configure Macros in a Project

In the build.sbt file (or where the project is defined if it is in another location), add the following
setting:

scalacOptions += "-language:experimental.macros"

For instance, a project might be defined like this:

lazy val main = project.in(file(".")) // root project
 .settings(scalacOptions += "-language:experimental.macros",
 addCompilerPlugin("org.scalamacros" % "paradise" % "2.1.0" cross

https://riptutorial.com/ 11

CrossVersion.full))

In the above example, the paradise plugin is included in order to provide complete support of Scala
2.10.x.

Display Settings

When in the SBT console, to list all definable settings for a project:

settings

Or, to get a subproject's (for example, named webapp) settings:

project webapp
settings

The first line above navigates into the specific subproject.

To show the value of a specific setting (for instance, organization):

show organization

This will display the value of that setting.

Read Projects online: https://riptutorial.com/sbt/topic/6790/projects

https://riptutorial.com/ 12

http://docs.scala-lang.org/overviews/macros/paradise.html
https://riptutorial.com/sbt/topic/6790/projects

Chapter 6: Tasks

Examples

Create a Simple Task

All that is needed to define a task is a declaration of it's type and a description:

lazy val exampleTask = taskKey[Unit]("An example task that will return no value.")

Because Unit is the type, this task is composed entirely of side-effects. Once defined, to
implement actions:

exampleTask := {
 val s: TaskStreams = streams.value
 s.log.info("The example task was executed.")
}

If these are defined in build.sbt, you can load the project and execute it:

> exampleTask
[info] The example task was executed.

Read Tasks online: https://riptutorial.com/sbt/topic/7542/tasks

https://riptutorial.com/ 13

https://riptutorial.com/sbt/topic/7542/tasks

Credits

S.
No

Chapters Contributors

1
Getting started with
sbt

Altius, andriosr, Ani Menon, Community, Eugene Yokota, James
, karel, kn_pavan, mko, Nathaniel Ford

2 Build Overview Nathaniel Ford

3 Dependencies Nathaniel Ford

4
Getting started with
daily development

Inanc Gumus

5 Projects Nathaniel Ford

6 Tasks Nathaniel Ford

https://riptutorial.com/ 14

https://riptutorial.com/contributor/2498938/altius
https://riptutorial.com/contributor/3657087/andriosr
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3827/eugene-yokota
https://riptutorial.com/contributor/359034/james
https://riptutorial.com/contributor/1940850/karel
https://riptutorial.com/contributor/639107/kn-pavan
https://riptutorial.com/contributor/5295429/mko
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/115363/inanc-gumus
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/442945/nathaniel-ford

	About
	Chapter 1: Getting started with sbt
	Remarks
	Versions
	Examples
	Install SBT on Linux

	RPM-based Linux Distributions
	Install SBT on Windows

	Install
	Verify Installation
	Install on Mac OSX

	MacPorts
	Homebrew
	Sources
	Verification
	Import SBT Project into Eclipse

	Chapter 2: Build Overview
	Remarks
	Examples
	Directory Structure
	Cheat Sheet

	Compile a project
	Test a project
	Enter SBT REPL:
	Enter Scala Console with Built Project Available
	Generate Scaladoc
	Chapter 3: Dependencies
	Examples
	Add a Managed Library Dependency
	Add a Repository
	Pin Library to Project Version of Scala
	Pin Library to Specific Version of Scala

	Chapter 4: Getting started with daily development
	Examples
	Daily continuous development example with Scala

	Chapter 5: Projects
	Examples
	Multiple Projects in the same Build (Subprojects)
	Configure Macros in a Project
	Display Settings

	Chapter 6: Tasks
	Examples
	Create a Simple Task

	Credits

