
Scala Language

#scala

Table of Contents

About 1

Chapter 1: Getting started with Scala Language 2

Remarks 2

Versions 2

Examples 3

Hello World by Defining a 'main' Method 3

Hello World by extending App 4

Delayed Initialization 4

Delayed Initialization 4

Hello World as a script 5

Using the Scala REPL 5

Scala Quicksheet 6

Chapter 2: Annotations 8

Syntax 8

Parameters 8

Remarks 8

Examples 8

Using an Annotation 8

Annotating the main constructor 8

Creating Your Own Annotations 9

Chapter 3: Best Practices 11

Remarks 11

Examples 11

Keep it simple 11

Don't pack too much in one expression. 11

Prefer a Functional Style, Reasonably 12

Chapter 4: Case Classes 13

Syntax 13

Examples 13

Case Class Equality 13

Generated Code Artifacts 13

Case Class Basics 15

Case Classes and Immutabilty 15

Create a Copy of an Object with Certain Changes 16

Single Element Case Classes for Type Safety 16

Chapter 5: Classes and Objects 18

Syntax 18

Examples 18

Instantiate Class Instances 18

Instantiating class with no parameter: {} vs () 19

Singleton & Companion Objects 20

Singleton Objects 20

Companion Objects 20

Objects 21

Instance type checking 21

Constructors 23

Primary Constructor 23

Auxiliary Constructors 24

Chapter 6: Collections 25

Examples 25

Sort A List 25

Create a List containing n copies of x 26

List and Vector Cheatsheet 26

Map Collection Cheatsheet 27

Map and Filter Over A Collection 28

Map 28

Multiplying integer numbers by two 28

Filter 28

Checking pair numbers 28

More Map and Filter examples 29

Introduction to Scala Collections 29

Traversable types 30

Fold 31

Foreach 32

Reduce 32

Chapter 7: Continuations Library 34

Introduction 34

Syntax 34

Remarks 34

Examples 34

Callbacks are Continutations 34

Creating Functions That Take Continuations 35

Chapter 8: Currying 37

Syntax 37

Examples 37

A configurable multiplier as a curried function 37

Multiple parameter groups of different types, currying parameters of arbitrary positions 37

Currying a function with a single parameter group 37

Currying 38

Currying 38

When to use Currying 39

A real world use of Currying. 40

Chapter 9: Dependency Injection 42

Examples 42

Cake Pattern with inner implementation class. 42

Chapter 10: Dynamic Invocation 43

Introduction 43

Syntax 43

Remarks 43

Examples 43

Field Accesses 43

Method Calls 44

Interaction Between Field Access and Update Method 44

Chapter 11: Enumerations 46

Remarks 46

Examples 46

Days of the week using Scala Enumeration 46

Using sealed trait and case objects 47

Using sealed trait and case objects and allValues-macro 48

Chapter 12: Error Handling 50

Examples 50

Try 50

Either 50

Option 51

Pattern Matching 51

Using map and getOrElse 51

Using fold 51

Converting to Java 51

Handling Errors Originating in Futures 52

Using try-catch clauses 52

Convert Exceptions into Either or Option Types 53

Chapter 13: Extractors 54

Syntax 54

Examples 54

Tuple Extractors 54

Case Class Extractors 55

Unapply - Custom Extractors 55

Extractor Infix notation 56

Regex Extractors 57

Transformative extractors 57

Chapter 14: For Expressions 59

Syntax 59

Parameters 59

Examples 59

Basic For Loop 59

Basic For Comprehension 59

Nested For Loop 60

Monadic for comprehensions 60

Iterate Through Collections Using a For Loop 61

Desugaring For Comprehensions 61

Chapter 15: Functions 63

Remarks 63

Difference between functions and methods: 63

Examples 63

Anonymous Functions 63

Underscores shorthand 64

Anonymous Functions with No Parameters 64

Composition 64

Relationship to PartialFunctions 65

Chapter 16: Futures 66

Examples 66

Creating a Future 66

Consuming a Successful Future 66

Consuming a Failed Future 66

Putting the Future Together 67

Sequencing and traversing Futures 67

Combine Multiple Futures – For Comprehension 68

Chapter 17: Handling units (measures) 70

Syntax 70

Remarks 70

Examples 70

Type aliases 70

Value classes 70

Chapter 18: Higher Order Function 72

Remarks 72

Examples 72

Using methods as function values 72

High Order Functions(Function as Parameter) 73

Arguments lazy evaluation 73

Chapter 19: If Expressions 75

Examples 75

Basic If Expressions 75

Chapter 20: Implicits 76

Syntax 76

Remarks 76

Examples 76

Implicit Conversion 76

Implicit Parameters 77

Implicit Classes 78

Resolving Implicit Parameters Using 'implicitly' 79

Implicits in the REPL 79

Chapter 21: Java Interoperability 80

Examples 80

Converting Scala Collections to Java Collections and vice versa 80

Arrays 80

Scala and Java type conversions 81

Functional Interfaces for Scala functions - scala-java8-compat 81

Chapter 22: JSON 83

Examples 83

JSON with spray-json 83

Make the Library Available with SBT 83

Import the Library 83

Read JSON 83

Write JSON 83

DSL 83

Read-Write to Case Classes 84

Custom Format 84

JSON with Circe 85

JSON with play-json 85

JSON with json4s 88

Chapter 23: Macros 91

Introduction 91

Syntax 91

Remarks 91

Examples 91

Macro Annotation 91

Method Macros 92

Errors in Macros 93

Chapter 24: Monads 95

Examples 95

Monad Definition 95

Chapter 25: Operator Overloading 97

Examples 97

Defining Custom Infix Operators 97

Defining Custom Unary Operators 97

Chapter 26: Operators in Scala 99

Examples 99

Built-in Operators 99

Operator Overloading 99

Operator Precedence 100

Chapter 27: Option Class 102

Syntax 102

Examples 102

Options as Collections 102

Using Option Instead of Null 102

Basics 103

Example with Map 104

Options in for comprehensions 104

Chapter 28: Packages 106

Introduction 106

Examples 106

Package structure 106

Packages and files 106

Package naming convension 107

Chapter 29: Parallel Collections 108

Remarks 108

Examples 108

Creating and Using Parallel Collections 108

Pitfalls 108

Chapter 30: Parser Combinators 110

Remarks 110

Examples 110

Basic Example 110

Chapter 31: Partial Functions 111

Examples 111

Composition 111

Usage with `collect` 111

Basic syntax 112

Usage as a total function 112

Usage to extract tuples in a map function 113

Chapter 32: Pattern Matching 115

Syntax 115

Parameters 115

Examples 115

Simple Pattern Match 115

Pattern Matching With Stable Identifier 116

Pattern Matching on a Seq 117

Guards (if expressions) 118

Pattern Matching with Case Classes 118

Matching on an Option 119

Pattern Matching Sealed Traits 119

Pattern Matching with Regex 120

Pattern binder (@) 120

Pattern Matching Types 121

Pattern Matching compiled as tableswitch or lookupswitch 121

Matching Multiple Patterns At Once 122

Pattern Matching on tuples 123

Chapter 33: Quasiquotes 125

Examples 125

Create a syntax tree with quasiquotes 125

Chapter 34: Recursion 126

Examples 126

Tail Recursion 126

Regular Recursion 126

Tail Recursion 126

Stackless recursion with trampoline(scala.util.control.TailCalls) 127

Chapter 35: Reflection 129

Examples 129

Loading a class using reflection 129

Chapter 36: Regular Expressions 130

Syntax 130

Examples 130

Declaring regular expressions 130

Repeating matching of a pattern in a string 131

Chapter 37: Scala.js 132

Introduction 132

Examples 132

console.log in Scala.js 132

Fat arrow functions 132

Simple Class 132

Collections 132

Manipulating DOM 132

Using with SBT 133

Sbt dependency 133

Running 133

Running with continous compilation: 133

Compile to a single JavaScript file: 133

Chapter 38: Scaladoc 134

Syntax 134

Parameters 134

Examples 135

Simple Scaladoc to method 135

Chapter 39: scalaz 136

Introduction 136

Examples 136

ApplyUsage 136

FunctorUsage 136

ArrowUsage 137

Chapter 40: Scope 138

Introduction 138

Syntax 138

Examples 138

Public (default) scope 138

A private scope 138

A private package-specific scope 139

Object private scope 139

Protected scope 139

Package protected scope 139

Chapter 41: Self types 141

Syntax 141

Remarks 141

Examples 141

Simple self type example 141

Chapter 42: Setting up Scala 142

Examples 142

On Linux via dpkg 142

Ubuntu Installation via Manual Download and Configuration 142

Mac OSX via Macports 143

Chapter 43: Single Abstract Method Types (SAM Types) 144

Remarks 144

Examples 144

Lambda Syntax 144

Chapter 44: Streams 145

Remarks 145

Examples 145

Using a Stream to Generate a Random Sequence 145

Infinite Streams via Recursion 145

Infinite self-referent stream 146

Chapter 45: String Interpolation 147

Remarks 147

Examples 147

Hello String Interpolation 147

Formatted String Interpolation Using the f Interpolator 147

Using expression in string literals 147

Custom string interpolators 148

String interpolators as extractors 149

Raw String Interpolation 149

Chapter 46: Symbol Literals 151

Remarks 151

Examples 151

Replacing strings in case clauses 151

Chapter 47: synchronized 153

Syntax 153

Examples 153

synchronize on an object 153

synchronize implicitly on this 153

Chapter 48: Testing with ScalaCheck 154

Introduction 154

Examples 154

Scalacheck with scalatest and error messages 154

Chapter 49: Testing with ScalaTest 157

Examples 157

Hello World Spec Test 157

Spec Test Cheatsheet 157

Include the ScalaTest Library with SBT 158

Chapter 50: Traits 159

Syntax 159

Examples 159

Stackable Modification with Traits 159

Trait Basics 160

Solving the Diamond Problem 160

Linearization 161

Chapter 51: Tuples 164

Remarks 164

Examples 164

Creating a new Tuple 164

Tuples within Collections 164

Chapter 52: Type Classes 166

Remarks 166

Examples 166

Simple Type Class 166

Extending a Type Class 167

Add type class functions to types 168

Chapter 53: Type Inference 170

Examples 170

Local Type Inference 170

Type Inference And Generics 170

Limitations to Inference 170

Preventing inferring Nothing 171

Chapter 54: Type Parameterization (Generics) 173

Examples 173

The Option type 173

Parameterized Methods 173

Generic collection 173

Defining the list of Ints 174

Defining generic list 174

Chapter 55: Type Variance 175

Examples 175

Covariance 175

Invariance 175

Contravariance 175

Covariance of a collection 176

Covariance on an invariant trait 177

Chapter 56: Type-level Programming 178

Examples 178

Introduction to type-level programming 178

Chapter 57: User Defined Functions for Hive 180

Examples 180

A simple Hive UDF within Apache Spark 180

Chapter 58: Var, Val, and Def 181

Remarks 181

Examples 181

Var, Val, and Def 181

var 181

val 182

def 182

Functions 183

Lazy val 183

When To Use 'lazy' 184

Overloading Def 185

Named Parameters 185

Chapter 59: While Loops 187

Syntax 187

Parameters 187

Remarks 187

Examples 187

While Loops 187

Do-While Loops 187

Chapter 60: Working with data in immutable style 189

Remarks 189

Value and variable names should be in lower camel case 189

Examples 189

It is not just val vs. var 189

val and var 189

Immutable and Mutable collections 190

But I can't use immutability in this case! 190

"Why we have to mutate?" 191

Creating and filling the result map 191

Mutable implementation 191

Folding to the rescue 191

Intermediate result 192

Easier reasonability 192

Chapter 61: Working With Gradle 193

Examples 193

Basic Setup 193

Create your own Gradle Scala plugin 193

Writing the plugin 194

Using the plugin 197

Chapter 62: XML Handling 199

Examples 199

Beautify or Pretty-Print XML 199

Credits 200

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: scala-language

It is an unofficial and free Scala Language ebook created for educational purposes. All the content
is extracted from Stack Overflow Documentation, which is written by many hardworking individuals
at Stack Overflow. It is neither affiliated with Stack Overflow nor official Scala Language.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/scala-language
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Scala
Language

Remarks

Scala is a modern multi-paradigm programming language designed to express common
programming patterns in a concise, elegant, and type-safe way. It smoothly integrates features of
object-oriented and functional languages.

Most given examples require a working Scala installation. This is the Scala installation page, and
this is the 'How to setup Scala' example. scalafiddle.net is a good resource for executing small
code examples over the web.

Versions

Version Release Date

2.10.1 2013-03-13

2.10.2 2013-06-06

2.10.3 2013-10-01

2.10.4 2014-03-24

2.10.5 2015-03-05

2.10.6 2015-09-18

2.11.0 2014-04-21

2.11.1 2014-05-21

2.11.2 2014-07-24

2.11.4 2014-10-30

2.11.5 2014-01-14

2.11.6 2015-03-05

2.11.7 2015-06-23

2.11.8 2016-03-08

2.11.11 2017-04-19

https://riptutorial.com/ 2

http://www.webopedia.com/TERM/O/object_oriented_programming_OOP.html
https://stackoverflow.com/questions/36504/why-functional-languages
http://www.scala-lang.org/download/install.html
http://www.riptutorial.com/scala/topic/2921/setting-up-scala
http://scalafiddle.net
http://www.scala-lang.org/download/2.10.1.html
http://www.scala-lang.org/download/2.10.2.html
http://www.scala-lang.org/download/2.10.3.html
http://www.scala-lang.org/download/2.10.4.html
http://www.scala-lang.org/download/2.10.5.html
http://www.scala-lang.org/download/2.10.6.html
http://www.scala-lang.org/download/2.11.0.html
http://www.scala-lang.org/download/2.11.1.html
http://www.scala-lang.org/download/2.11.2.html
http://www.scala-lang.org/download/2.11.4.html
http://www.scala-lang.org/download/2.11.5.html
http://www.scala-lang.org/download/2.11.6.html
http://www.scala-lang.org/download/2.11.7.html
http://www.scala-lang.org/download/2.11.8.html
http://www.scala-lang.org/download/2.11.11.html

Version Release Date

2.12.0 2016-11-03

2.12.1 2016-12-06

2.12.2 2017-04-19

Examples

Hello World by Defining a 'main' Method

Place this code in a file named HelloWorld.scala:

object Hello {
 def main(args: Array[String]): Unit = {
 println("Hello World!")
 }
}

Live demo

To compile it to bytecode that is executable by the JVM:

$ scalac HelloWorld.scala

To run it:

$ scala Hello

When the Scala runtime loads the program, it looks for an object named Hello with a main method.
The main method is the program entry point and is executed.

Note that, unlike Java, Scala has no requirement of naming objects or classes after the file they're
in. Instead, the parameter Hello passed in the command scala Hello refers to the object to look for
that contains the main method to be executed. It is perfectly possible to have multiple objects with
main methods in the same .scala file.

The args array will contain the command-line arguments given to the program, if any. For instance,
we can modify the program like this:

object HelloWorld {
 def main(args: Array[String]): Unit = {
 println("Hello World!")
 for {
 arg <- args
 } println(s"Arg=$arg")
 }
}

https://riptutorial.com/ 3

http://www.scala-lang.org/download/2.12.0.html
http://www.scala-lang.org/download/2.12.1.html
http://www.scala-lang.org/download/2.12.2.html
http://ideone.com/7HYlEB

Compile it:

$ scalac HelloWorld.scala

And then execute it:

$ scala HelloWorld 1 2 3
Hello World!
Arg=1
Arg=2
Arg=3

Hello World by extending App

object HelloWorld extends App {
 println("Hello, world!")
}

Live demo

By extending the App trait, you can avoid defining an explicit main method. The entire body of the
HelloWorld object is treated as "the main method".

2.11.0

Delayed Initialization

Per the official documentation, App makes use of a feature called Delayed Initialization.
This means that the object fields are initialized after the main method is called.

2.11.0

Delayed Initialization

Per the official documentation, App makes use of a feature called Delayed Initialization.
This means that the object fields are initialized after the main method is called.

DelayedInit is now deprecated for general use, but is still supported for App as a
special case. Support will continue until a replacement feature is decided upon and
implemented.

To access command-line arguments when extending App, use this.args:

object HelloWorld extends App {
 println("Hello World!")
 for {
 arg <- this.args
 } println(s"Arg=$arg")
}

https://riptutorial.com/ 4

http://ideone.com/UgmX9y
http://www.scala-lang.org/api/2.11.8/scala/App.html
http://docs.scala-lang.org/tutorials/tour/traits.html
http://www.scala-lang.org/api/2.11.8/index.html#scala.App
http://www.scala-lang.org/api/2.11.8/index.html#scala.App
http://www.scala-lang.org/api/current/#scala.DelayedInit

When using App, the body of the object will be executed as the main method, there is no need to
override main.

Hello World as a script

Scala can be used as a scripting language. To demonstrate, create HelloWorld.scala with the
following content:

println("Hello")

Execute it with the command-line interpreter (the $ is the command line prompt):

$ scala HelloWorld.scala
Hello

If you omit .scala (such as if you simply typed scala HelloWorld) the runner will look for a compiled
.class file with bytecode instead of compiling and then executing the script.

Note: If scala is used as a scripting language no package can be defined.

In operating systems utilizing bash or similar shell terminals, Scala scripts can be executed using a
'shell preamble'. Create a file named HelloWorld.sh and place the following as its content:

#!/bin/sh
exec scala "$0" "$@"
!#
println("Hello")

The parts between #! and !# is the 'shell preamble', and is interpreted as a bash script. The rest is
Scala.

Once you have saved the above file, you must grant it 'executable' permissions. In the shell you
can do this:

$ chmod a+x HelloWorld.sh

(Note that this gives permission to everyone: read about chmod to learn how to set it for more
specific sets of users.)

Now you can execute the script like this:

$./HelloWorld.sh

Using the Scala REPL

When you execute scala in a terminal without additional parameters it opens up a REPL (Read-
Eval-Print Loop) interpreter:

https://riptutorial.com/ 5

https://en.wikipedia.org/wiki/Chmod
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

nford:~ $ scala
Welcome to Scala 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_66).
Type in expressions for evaluation. Or try :help.

scala>

The REPL allows you to execute Scala in a worksheet fashion: the execution context is preserved
and you can manually try out commands without having to build a whole program. For instance, by
typing val poem = "As halcyons we shall be" would look like this:

scala> val poem = "As halcyons we shall be"
poem: String = As halcyons we shall be

Now we can print our val:

scala> print(poem)
As halcyons we shall be

Note that val is immutable and cannot be overwritten:

scala> poem = "Brooding on the open sea"
<console>:12: error: reassignment to val
 poem = "Brooding on the open sea"

But in the REPL you can redefine a val (which would cause an error in a normal Scala program, if
it was done in the same scope):

scala> val poem = "Brooding on the open sea"
poem: String = Brooding on the open sea

For the remainder of your REPL session this newly defined variable will shadow the previously
defined variable. REPLs are useful for quickly seeing how objects or other code works. All of
Scala's features are available: you can define functions, classes, methods, etc.

Scala Quicksheet

Description Code

Assign immutable int value val x = 3

Assign mutable int value var x = 3

Assign immutable value with explicit type val x: Int = 27

Assign lazily evaluated value lazy val y = print("Sleeping in.")

Bind a function to a name val f = (x: Int) => x * x

Bind a function to a name with explicit type val f: Int => Int = (x: Int) => x * x

https://riptutorial.com/ 6

http://www.riptutorial.com/scala/example/10754/var--val--and-def
http://www.riptutorial.com/scala/example/10754/var--val--and-def
http://www.riptutorial.com/scala/example/10754/var--val--and-def
http://www.riptutorial.com/scala/example/10876/lazy-val
http://www.riptutorial.com/scala/example/10754/var--val--and-def
http://www.riptutorial.com/scala/example/10754/var--val--and-def

Description Code

Define a method def f(x: Int) = x * x

Define a method with explicit typing def f(x: Int): Int = x * x

Define a class class Hopper(someParam: Int) { ... }

Define an object object Hopper(someParam: Int) { ... }

Define a trait trait Grace { ... }

Get first element of sequence Seq(1,2,3).head

If switch val result = if(x > 0) "Positive!"

Get all elements of sequence except first Seq(1,2,3).tail

Loop through a list for { x <- Seq(1,2,3) } print(x)

Nested Looping

for {
 x <- Seq(1,2,3)
 y <- Seq(4,5,6)
} print(x + ":" + y)

For each list element execute function List(1,2,3).foreach { println }

Print to standard out print("Ada Lovelace")

Sort a list alphanumerically List('b','c','a').sorted

Read Getting started with Scala Language online: https://riptutorial.com/scala/topic/216/getting-
started-with-scala-language

https://riptutorial.com/ 7

http://www.riptutorial.com/scala/example/10754/var--val--and-def
http://www.riptutorial.com/scala/example/10754/var--val--and-def
http://www.riptutorial.com/scala/example/7859/singleton---companion-objects
http://www.riptutorial.com/scala/example/7859/singleton---companion-objects
http://www.riptutorial.com/scala/topic/1056/traits
http://www.riptutorial.com/scala/topic/686/collections
http://www.riptutorial.com/scala/example/14606/basic-if-expressions
http://www.riptutorial.com/scala/topic/686/collections
http://www.riptutorial.com/scala/topic/669/for-expressions
http://www.riptutorial.com/scala/example/2182/nested-for-loop
http://www.riptutorial.com/scala/example/17932/foreach
http://www.riptutorial.com/scala/example/2262/sort-a-list
https://riptutorial.com/scala/topic/216/getting-started-with-scala-language
https://riptutorial.com/scala/topic/216/getting-started-with-scala-language

Chapter 2: Annotations

Syntax

@AnAnnotation def someMethod = {...}•
@AnAnnotation class someClass {...}•
@AnnotatioWithArgs(annotation_args) def someMethod = {...}•

Parameters

Parameter Details

@ Indicates that the token following is an annotation.

SomeAnnotation The name of the annotation

constructor_args
(optional) The arguments passed to the annotation. If none, the
parentheses are unneeded.

Remarks

Scala-lang provides a list of standard annotations and their Java equivalents.

Examples

Using an Annotation

This sample annotation indicates that the following method is deprecated.

@deprecated
def anUnusedLegacyMethod(someArg: Any) = {
 ...
}

This can also be equivalently written as:

@deprecated def anUnusedLegacyMethod(someArg: Any) = {
 ...
}

Annotating the main constructor

/**
 * @param num Numerator

https://riptutorial.com/ 8

http://docs.scala-lang.org/tutorials/tour/annotations.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Deprecated.html

 * @param denom Denominator
 * @throws ArithmeticException in case `denom` is `0`
 */
class Division @throws[ArithmeticException](/*no annotation parameters*/) protected (num: Int,
denom: Int) {
 private[this] val wrongValue = num / denom

 /** Integer number
 * @param num Value */
 protected[Division] def this(num: Int) {
 this(num, 1)
 }
}
object Division {
 def apply(num: Int) = new Division(num)
 def apply(num: Int, denom: Int) = new Division(num, denom)
}

The visibility modifier (in this case protected) should come after the annotations in the same line. In
case the annotation accepts optional parameters (as in this case @throws accepts an optional
cause), you have to specify an empty parameter list for the annotation: () before the constructor
parameters.

Note: Multiple annotations can be specified, even from the same type (repeating annotations).

Similarly with a case class without auxiliary factory method (and cause specified for the
annotation):

case class Division @throws[ArithmeticException]("denom is 0") (num: Int, denom: Int) {
 private[this] val wrongValue = num / denom
}

Creating Your Own Annotations

You can create you own Scala annotations by creating classes derived from
scala.annotation.StaticAnnotation or scala.annotation.ClassfileAnnotation

package animals
// Create Annotation `Mammal`
class Mammal(indigenous:String) extends scala.annotation.StaticAnnotation

// Annotate class Platypus as a `Mammal`
@Mammal(indigenous = "North America")
class Platypus{}

Annotations can then be interrogated using the reflection API.

scala>import scala.reflect.runtime.{universe ⇒ u}

scala>val platypusType = u.typeOf[Platypus]
platypusType: reflect.runtime.universe.Type = animals.reflection.Platypus

scala>val platypusSymbol = platypusType.typeSymbol.asClass
platypusSymbol: reflect.runtime.universe.ClassSymbol = class Platypus

https://riptutorial.com/ 9

https://docs.oracle.com/javase/tutorial/java/annotations/repeating.html

scala>platypusSymbol.annotations
List[reflect.runtime.universe.Annotation] = List(animals.reflection.Mammal("North America"))

Read Annotations online: https://riptutorial.com/scala/topic/3783/annotations

https://riptutorial.com/ 10

https://riptutorial.com/scala/topic/3783/annotations

Chapter 3: Best Practices

Remarks

Prefer vals, immutable objects, and methods without side effects. Reach for them first.
Use vars, mutable objects, and methods with side effects when you have a specific
need and justification for them.

-- Programming in Scala, by Odersky, Spoon, and Venners

There are more example and guideline in this presentation by Odersky.

Examples

Keep it simple

Do not overcomplicate simple tasks. Most of the time you will need only:

algebraic datatypes•
structural recursion•
monad-like api (map, flatMap, fold)•

There is plenty of complicated stuff in Scala, such as:

Cake pattern or Reader Monad for Dependency Injection.•
Passing arbitrary values as implicit arguments.•

These things are not clear for newcomers: avoid using them before you understand them. Using
advanced concepts without a real need obfuscates the code, making it less maintainable.

Don't pack too much in one expression.

Find meaningful names for computation units.•
Use for comprehensions or map to combine computations together.•

Let's say you have something like this:

if (userAuthorized.nonEmtpy) {
 makeRequest().map {
 case Success(respone) =>
 someProcessing(..)
 if (resendToUser) {
 sendToUser(...)
 }
 ...
 }
}

https://riptutorial.com/ 11

http://www.slideshare.net/Typesafe/scaladays-keynote

If all your functions return Either or another Validation-like type, you can write:

for {
 user <- authorizeUser
 response <- requestToThirdParty(user)
 _ <- someProcessing(...)
} {
 sendToUser
}

Prefer a Functional Style, Reasonably

By default:

Use val, not var, wherever possible. This allows you to take seamless advantage of a
number of functional utilities, including work distribution.

•

Use recursion and comprehensionss, not loops.•
Use immutable collections. This is a corrolary to using val whenever possible.•
Focus on data transformations, CQRS-style logic, and not CRUD.•

There are good reasons to choose non-functional style:

var can be used for local state (for example, inside an actor).•
mutable gives better performance in certain situations.•

Read Best Practices online: https://riptutorial.com/scala/topic/4376/best-practices

https://riptutorial.com/ 12

http://www.riptutorial.com/scala/topic/3889/recursion
http://www.riptutorial.com/scala/topic/669/for-expressions
https://riptutorial.com/scala/topic/4376/best-practices

Chapter 4: Case Classes

Syntax

case class Foo() // Case classes with no parameters must have an empty list•
case class Foo(a1: A1, ..., aN: AN) // Create a case class with fields a1 ... aN•
case object Bar // Create a singleton case class•

Examples

Case Class Equality

One feature provided for free by case classes is an auto-generated equals method that checks the
value equality of all individual member fields instead of just checking the reference equality of the
objects.

With ordinary classes:

class Foo(val i: Int)
val a = new Foo(3)
val b = new Foo(3)
println(a == b)// "false" because they are different objects

With case classes:

case class Foo(i: Int)
val a = Foo(3)
val b = Foo(3)
println(a == b)// "true" because their members have the same value

Generated Code Artifacts

The case modifier causes the Scala compiler to automatically generate common boilerplate code
for the class. Implementing this code manually is tedious and a source of errors. The following
case class definition:

case class Person(name: String, age: Int)

... will have the following code automatically generated:

class Person(val name: String, val age: Int)
 extends Product with Serializable
{
 def copy(name: String = this.name, age: Int = this.age): Person =
 new Person(name, age)

 def productArity: Int = 2

https://riptutorial.com/ 13

 def productElement(i: Int): Any = i match {
 case 0 => name
 case 1 => age
 case _ => throw new IndexOutOfBoundsException(i.toString)
 }

 def productIterator: Iterator[Any] =
 scala.runtime.ScalaRunTime.typedProductIterator(this)

 def productPrefix: String = "Person"

 def canEqual(obj: Any): Boolean = obj.isInstanceOf[Person]

 override def hashCode(): Int = scala.runtime.ScalaRunTime._hashCode(this)

 override def equals(obj: Any): Boolean = this.eq(obj) || obj match {
 case that: Person => this.name == that.name && this.age == that.age
 case _ => false
 }

 override def toString: String =
 scala.runtime.ScalaRunTime._toString(this)
}

The case modifier also generates a companion object:

object Person extends AbstractFunction2[String, Int, Person] with Serializable {
 def apply(name: String, age: Int): Person = new Person(name, age)

 def unapply(p: Person): Option[(String, Int)] =
 if(p == null) None else Some((p.name, p.age))
}

When applied to an object, the case modifier has similar (albeit less dramatic) effects. Here the
primary gains are a toString implementation and a hashCode value that is consistent across
processes. Note that case objects (correctly) use reference equality:

object Foo extends Product with Serializable {
 def productArity: Int = 0

 def productIterator: Iterator[Any] =
 scala.runtime.ScalaRunTime.typedProductIterator(this)

 def productElement(i: Int): Any =
 throw new IndexOutOfBoundsException(i.toString)

 def productPrefix: String = "Foo"

 def canEqual(obj: Any): Boolean = obj.isInstanceOf[this.type]

 override def hashCode(): Int = 70822 // "Foo".hashCode()

 override def toString: String = "Foo"
}

It is still possible to manually implement methods that would otherwise be provided by the case

https://riptutorial.com/ 14

modifier in both the class itself and its companion object.

Case Class Basics

In comparison to regular classes – case classes notation provides several benefits:

All constructor arguments are public and can be accessed on initialized objects (normally
this is not the case, as demonstrated here):

case class Dog1(age: Int)
val x = Dog1(18)
println(x.age) // 18 (success!)

class Dog2(age: Int)
val x = new Dog2(18)
println(x.age) // Error: "value age is not a member of Dog2"

•

It provides an implementation for the following methods: toString, equals, hashCode (based on
properties), copy, apply and unapply:

case class Dog(age: Int)
val d1 = Dog(10)
val d2 = d1.copy(age = 15)

•

It provides a convenient mechanism for pattern matching:

sealed trait Animal // `sealed` modifier allows inheritance within current build-unit
only
case class Dog(age: Int) extends Animal
case class Cat(owner: String) extends Animal
val x: Animal = Dog(18)
x match {
 case Dog(x) => println(s"It's a $x years old dog.")
 case Cat(x) => println(s"This cat belongs to $x.")
}

•

Case Classes and Immutabilty

The Scala compiler prefixes every argument in the parameter list by default with val. This means
that, by default, case classes are immutable. Each parameter is given an accessor method, but
there are no mutator methods. For example:

case class Foo(i: Int)

val fooInstance = Foo(1)
val j = fooInstance.i // get
fooInstance.i = 2 // compile-time exception (mutation: reassignment to val)

Declaring a parameter in a case class as var overrides the default behavior and makes the case
class mutable:

https://riptutorial.com/ 15

case class Bar(var i: Int)

val barInstance = Bar(1)
val j = barInstance.i // get
barInstance.i = 2 // set

Another instance when a case class is 'mutable' is when the value in the case class is mutable:

import scala.collection._

case class Bar(m: mutable.Map[Int, Int])

val barInstance = Bar(mutable.Map(1 -> 2))
barInstance.m.update(1, 3) // mutate m
barInstance // Bar(Map(1 -> 3)

Note that the 'mutation' that is occurring here is in the map that m points to, not to m itself. Thus, if
some other object had m as a member, it would see the change as well. Note how in the following
example changing instanceA also changes instanceB:

import scala.collection.mutable

case class Bar(m: mutable.Map[Int, Int])

val m = mutable.Map(1 ->2)
val barInstanceA = Bar(m)
val barInstanceB = Bar(m)
barInstanceA.m.update(1,3)
barInstanceA // Bar = Bar(Map(1 -> 3))
barInstanceB // Bar = Bar(Map(1 -> 3))
m // scala.collection.mutable.Map[Int,Int] = Map(1 -> 3)

Create a Copy of an Object with Certain Changes

Case classes provide a copy method that creates a new object that shares the same fields as the
old one, with certain changes.

We can use this feature to create a new object from a previous one that has some of the same
characteristics. This simple case class to demonstrates this feature:

case class Person(firstName: String, lastName: String, grade: String, subject: String)
val putu = Person("Putu", "Kevin", "A1", "Math")
val mark = putu.copy(firstName = "Ketut", lastName = "Mark")
// mark: People = People(Ketut,Mark,A1,Math)

In this example we can see that the two objects share similar characteristics (grade = A1, subject =
Math), except where they have been specified in the copy (firstName and lastName).

Single Element Case Classes for Type Safety

In order to achieve type safety sometimes we want to avoid the use of primitive types on our
domain. For instance, imagine a Person with a name. Typically, we would encode the name as a

https://riptutorial.com/ 16

String. However, it would not be hard to mix a String representing a Person's name with a String
representing an error message:

def logError(message: ErrorMessage): Unit = ???
case class Person(name: String)
val maybeName: Either[String, String] = ??? // Left is error, Right is name
maybeName.foreach(logError) // But that won't stop me from logging the name as an error!

To avoid such pitfalls you can encode the data like this:

case class PersonName(value: String)
case class ErrorMessage(value: String)
case class Person(name: PersonName)

and now our code will not compile if we mix PersonName with ErrorMessage, or even an ordinary
String.

val maybeName: Either[ErrorMessage, PersonName] = ???
maybeName.foreach(reportError) // ERROR: tried to pass PersonName; ErrorMessage expected
maybeName.swap.foreach(reportError) // OK

But this incurs a small runtime overhead as we now have to box/unbox Strings to/from their
PersonName containers. In order to avoid this, one can make PersonName and ErrorMessage value
classes:

case class PersonName(val value: String) extends AnyVal
case class ErrorMessage(val value: String) extends AnyVal

Read Case Classes online: https://riptutorial.com/scala/topic/1022/case-classes

https://riptutorial.com/ 17

https://riptutorial.com/scala/topic/1022/case-classes

Chapter 5: Classes and Objects

Syntax

class MyClass{} // curly braces are optional here as class body is empty•
class MyClassWithMethod {def method: MyClass = ???}•
new MyClass() //Instantiate•
object MyObject // Singleton object•
class MyClassWithGenericParameters[V1, V2](vl: V1, i: Int, v2: V2)•
class MyClassWithImplicitFieldCreation[V1](val v1: V1, val i: Int)•
new MyClassWithGenericParameters(2.3, 4, 5) or with a different type: new
MyClassWithGenericParameters[Double, Any](2.3, 4, 5)

•

class MyClassWithProtectedConstructor protected[my.pack.age](s: String)•

Examples

Instantiate Class Instances

A class in Scala is a 'blueprint' of a class instance. An instance contains the state and behavior as
defined by that class. To declare a class:

class MyClass{} // curly braces are optional here as class body is empty

An instance can be instantiated using new keyword:

var instance = new MyClass()

or:

var instance = new MyClass

Parentheses are optional in Scala for creating objects from a class that has a no-argument
constructor. If a class constructor takes arguments:

class MyClass(arg : Int) // Class definition
var instance = new MyClass(2) // Instance instantiation
instance.arg // not allowed

Here MyClass requires one Int argument, which can only be used internally to the class. arg cannot
be accessed outside MyClass unless it is declared as a field:

class MyClass(arg : Int){
 val prop = arg // Class field declaration
}

var obj = new MyClass(2)
obj.prop // legal statement

https://riptutorial.com/ 18

Alternatively it can be declared public in the constructor:

class MyClass(val arg : Int) // Class definition with arg declared public
var instance = new MyClass(2) // Instance instantiation
instance.arg //arg is now visible to clients

Instantiating class with no parameter: {} vs ()

Let's say we have a class MyClass with no constructor argument:

class MyClass

In Scala we can instantiate it using below syntax:

val obj = new MyClass()

Or we can simply write:

val obj = new MyClass

But, if not paid attention, in some cases optional parenthesis may produce some unexpected
behavior. Suppose we want to create a task that should run in a separate thread. Below is the
sample code:

val newThread = new Thread { new Runnable {
 override def run(): Unit = {
 // perform task
 println("Performing task.")
 }
 }
 }

newThread.start // prints no output

We may think that this sample code if executed will print Performing task., but to our surprise, it
won't print anything. Let's see what's happening here. If you pay a closer look, we have used curly
braces {}, right after new Thread. It created an annonymous class which extends Thread:

val newThread = new Thread {
 //creating anonymous class extending Thread
}

And then in the body of this annonymous class, we defined our task (again creating an
annonymous class implementing Runnable interface). So we might have thought that we used
public Thread(Runnable target) constructor but in fact (by ignoring optional ()) we used public
Thread() constructor with nothing defined in the body of run() method. To rectify the problem, we
need to use parenthesis instead of curly braces.

val newThread = new Thread (new Runnable {

https://riptutorial.com/ 19

 override def run(): Unit = {
 // perform task
 println("Performing task.")
 }
 }
)

In other words, here {} and () are not interchangeable.

Singleton & Companion Objects

Singleton Objects

Scala supports static members, but not in the same manner as Java. Scala provides an alternative
to this called Singleton Objects. Singleton objects are similar to a normal class, except they can
not be instantiated using the new keyword. Below is a sample singleton class:

object Factorial {
 private val cache = Map[Int, Int]()
 def getCache = cache
}

Note that we have used object keyword to define singleton object (instead of 'class' or 'trait').
Since singleton objects can not be instantiated they can not have parameters. Accessing a
singleton object looks like this:

Factorial.getCache() //returns the cache

Note that this looks exactly like accessing a static method in a Java class.

Companion Objects

In Scala singleton objects may share the name of a corresponding class. In such a scenario the
singleton object is referred to as a Companion Object. For instance, below the class Factorial is
defined, and a companion object (also named Factorial) is defined below it. By convention
companion objects are defined in the same file as their companion class.

class Factorial(num : Int) {

 def fact(num : Int) : Int = if (num <= 1) 1 else (num * fact(num - 1))

 def calculate() : Int = {
 if (!Factorial.cache.contains(num)) { // num does not exists in cache
 val output = fact(num) // calculate factorial
 Factorial.cache += (num -> output) // add new value in cache
 }

 Factorial.cache(num)
 }
}

https://riptutorial.com/ 20

object Factorial {
 private val cache = scala.collection.mutable.Map[Int, Int]()
}

val factfive = new Factorial(5)
factfive.calculate // Calculates the factorial of 5 and stores it
factfive.calculate // uses cache this time
val factfiveagain = new Factorial(5)
factfiveagain.calculate // Also uses cache

In this example we are using a private cache to store factorial of a number to save calculation time
for repeated numbers.

Here object Factorial is a companion object and class Factorial is its corresponding companion
class. Companion objects and classes can access each other's private members. In the example
above Factorial class is accessing the private cache member of it's companion object.

Note that a new instantiation of the class will still utilize the same companion object, so any
modification to member variables of that object will carry over.

Objects

Whereas Classes are more like blueprints, Objects are static (i.e. already instantiated):

object Dog {
 def bark: String = "Raf"
}

Dog.bark() // yields "Raf"

They are often used as a companion to a class, they allow you to write:

class Dog(val name: String) {

}

object Dog {
 def apply(name: String): Dog = new Dog(name)
}

val dog = Dog("Barky") // Object
val dog = new Dog("Barky") // Class

Instance type checking

Type check: variable.isInstanceOf[Type]

With pattern matching (not so useful in this form):

variable match {
 case _: Type => true
 case _ => false
}

https://riptutorial.com/ 21

http://www.riptutorial.com/scala/topic/661/pattern-matching

Both isInstanceOf and pattern matching are checking only the object's type, not its generic
parameter (no type reification), except for arrays:

val list: List[Any] = List(1, 2, 3) //> list : List[Any] = List(1, 2, 3)

val upcasting = list.isInstanceOf[Seq[Int]] //> upcasting : Boolean = true

val shouldBeFalse = list.isInstanceOf[List[String]]
 //> shouldBeFalse : Boolean = true

But

val chSeqArray: Array[CharSequence] = Array("a") //> chSeqArray : Array[CharSequence] =
Array(a)
val correctlyReified = chSeqArray.isInstanceOf[Array[String]]
 //> correctlyReified : Boolean = false

val stringIsACharSequence: CharSequence = "" //> stringIsACharSequence : CharSequence = ""

val sArray = Array("a") //> sArray : Array[String] = Array(a)
val correctlyReified = sArray.isInstanceOf[Array[String]]
 //> correctlyReified : Boolean = true

//val arraysAreInvariantInScala: Array[CharSequence] = sArray
//Error: type mismatch; found : Array[String] required: Array[CharSequence]
//Note: String <: CharSequence, but class Array is invariant in type T.
//You may wish to investigate a wildcard type such as `_ <: CharSequence`. (SLS 3.2.10)
//Workaround:
val arraysAreInvariantInScala: Array[_ <: CharSequence] = sArray
 //> arraysAreInvariantInScala : Array[_ <:
CharSequence] = Array(a)

val arraysAreCovariantOnJVM = sArray.isInstanceOf[Array[CharSequence]]
 //> arraysAreCovariantOnJVM : Boolean = true

Type casting: variable.asInstanceOf[Type]

With pattern matching:

variable match {
 case _: Type => true
}

Examples:

 val x = 3 //> x : Int = 3
 x match {
 case _: Int => true//better: do something
 case _ => false
 } //> res0: Boolean = true

 x match {
 case _: java.lang.Integer => true//better: do something
 case _ => false

https://riptutorial.com/ 22

http://www.riptutorial.com/scala/topic/661/pattern-matching

 } //> res1: Boolean = true

 x.isInstanceOf[Int] //> res2: Boolean = true

 //x.isInstanceOf[java.lang.Integer]//fruitless type test: a value of type Int cannot also be
a Integer

 trait Valuable { def value: Int}
 case class V(val value: Int) extends Valuable

 val y: Valuable = V(3) //> y : Valuable = V(3)
 y.isInstanceOf[V] //> res3: Boolean = true
 y.asInstanceOf[V] //> res4: V = V(3)

Remark: This is only about the behaviour on the JVM, on other platforms (JS, native) type
casting/checking might behave differently.

Constructors

Primary Constructor

In Scala the primary constructor is the body of the class. The class name is followed by a
parameter list, which are the constructor arguments. (As with any function, an empty parameter list
may be omitted.)

class Foo(x: Int, y: String) {
 val xy: String = y * x
 /* now xy is a public member of the class */
}

class Bar {
 ...
}

The construction parameters of an instance are not accessible outside its constructor body unless
marked as an instance member by the val keyword:

class Baz(val z: String)
// Baz has no other members or methods, so the body may be omitted

val foo = new Foo(4, "ab")
val baz = new Baz("I am a baz")
foo.x // will not compile: x is not a member of Foo
foo.xy // returns "abababab": xy is a member of Foo
baz.z // returns "I am a baz": z is a member of Baz
val bar0 = new Bar
val bar1 = new Bar() // Constructor parentheses are optional here

Any operations that should be performed when an instance of an object is instantiated are written
directly in the body of the class:

class DatabaseConnection
 (host: String, port: Int, username: String, password: String) {

https://riptutorial.com/ 23

 /* first connect to the DB, or throw an exception */
 private val driver = new AwesomeDB.Driver()
 driver.connect(host, port, username, password)
 def isConnected: Boolean = driver.isConnected
 ...
}

Note that it is considered good practice to put as few side effects into the constructor as possible;
instead of the above code, one should consider having connect and disconnect methods so that
consumer code is responsible for scheduling IO.

Auxiliary Constructors

A class may have additional constructors called 'auxiliary constructers'. These are defined by
constructor definitions in the form def this(...) = e, where e must invoke another constructor:

class Person(val fullName: String) {
 def this(firstName: String, lastName: String) = this(s"$firstName $lastName")
}

// usage:
new Person("Grace Hopper").fullName // returns Grace Hopper
new Person("Grace", "Hopper").fullName // returns Grace Hopper

This implies each constructor can have a different modifier: only some may be available publicly:

class Person private(val fullName: String) {
 def this(firstName: String, lastName: String) = this(s"$firstName $lastName")
}

new Person("Ada Lovelace") // won't compile
new Person("Ada", "Lovelace") // compiles

In this way you can control how consumer code may instantiate the class.

Read Classes and Objects online: https://riptutorial.com/scala/topic/2047/classes-and-objects

https://riptutorial.com/ 24

https://riptutorial.com/scala/topic/2047/classes-and-objects

Chapter 6: Collections

Examples

Sort A List

Supposing the following list we can sort a variety of ways.

val names = List("Kathryn", "Allie", "Beth", "Serin", "Alana")

The default behavior of sorted() is to use math.Ordering, which for strings results in a lexographic
sort:

names.sorted
// results in: List(Alana, Allie, Beth, Kathryn, Serin)

sortWith allows you to provide your own ordering utilizing a comparison function:

names.sortWith(_.length < _.length)
// results in: List(Beth, Allie, Serin, Alana, Kathryn)

sortBy allows you to provide a transformation function:

//A set of vowels to use
val vowels = Set('a', 'e', 'i', 'o', 'u')

//A function that counts the vowels in a name
def countVowels(name: String) = name.count(l => vowels.contains(l.toLower))

//Sorts by the number of vowels
names.sortBy(countVowels)
//result is: List(Kathryn, Beth, Serin, Allie, Alana)

You can always reverse a list, or a sorted list, using `reverse:

names.sorted.reverse
//results in: List(Serin, Kathryn, Beth, Allie, Alana)

Lists can also be sorted using Java method java.util.Arrays.sort and its Scala wrapper
scala.util.Sorting.quickSort

java.util.Arrays.sort(data)
scala.util.Sorting.quickSort(data)

These methods can improve performance when sorting larger collections if the collection
conversions and unboxing/boxing can be avoided. For a more detailed discussion on the
performance differences, read about Scala Collection sorted, sortWith and sortBy Performance.

https://riptutorial.com/ 25

http://www.scala-lang.org/api/2.11.8/#scala.collection.immutable.List
http://www.scala-lang.org/api/2.11.8/index.html#scala.math.Ordering
https://en.wikipedia.org/wiki/Lexicographical_order
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html
http://www.scala-lang.org/api/2.12.0-M4/scala/util/Sorting$.html
http://stackoverflow.com/questions/23588615/scala-collection-sorted-sortwith-and-sortby-performance

Create a List containing n copies of x

To create a collection of n copies of some object x, use the fill method. This example creates a
List, but this can work with other collections for which fill makes sense:

// List.fill(n)(x)
scala > List.fill(3)("Hello World")
res0: List[String] = List(Hello World, Hello World, Hello World)

List and Vector Cheatsheet

It is now a best-practice to use Vector instead of List because the implementations
have better performance Performance characteristics can be found here. Vector can be
used wherever List is used.

List creation

List[Int]() // Declares an empty list of type Int
List.empty[Int] // Uses `empty` method to declare empty list of type Int
Nil // A list of type Nothing that explicitly has nothing in it

List(1, 2, 3) // Declare a list with some elements
1 :: 2 :: 3 :: Nil // Chaining element prepending to an empty list, in a LISP-style

Take element

List(1, 2, 3).headOption // Some(1)
List(1, 2, 3).head // 1

List(1, 2, 3).lastOption // Some(3)
List(1, 2, 3).last // 3, complexity is O(n)

List(1, 2, 3)(1) // 2, complexity is O(n)
List(1, 2, 3)(3) // java.lang.IndexOutOfBoundsException: 4

Prepend Elements

0 :: List(1, 2, 3) // List(0, 1, 2, 3)

Append Elements

List(1, 2, 3) :+ 4 // List(1, 2, 3, 4), complexity is O(n)

Join (Concatenate) Lists

List(1, 2) ::: List(3, 4) // List(1, 2, 3, 4)
List.concat(List(1,2), List(3, 4)) // List(1, 2, 3, 4)
List(1, 2) ++ List(3, 4) // List(1, 2, 3, 4)

Common operations

https://riptutorial.com/ 26

http://www.scala-lang.org/docu/files/collections-api/collections_45.html
http://docs.scala-lang.org/overviews/collections/performance-characteristics.html

List(1, 2, 3).find(_ == 3) // Some(3)
List(1, 2, 3).map(_ * 2) // List(2, 4, 6)
List(1, 2, 3).filter(_ % 2 == 1) // List(1, 3)
List(1, 2, 3).fold(0)((acc, i) => acc + i * i) // 1 * 1 + 2 * 2 + 3 * 3 = 14
List(1, 2, 3).foldLeft("Foo")(_ + _.toString) // "Foo123"
List(1, 2, 3).foldRight("Foo")(_ + _.toString) // "123Foo"

Map Collection Cheatsheet

Note that this deals with the creation of a collection of type Map, which is distinct from
the map method.

Map Creation

Map[String, Int]()
val m1: Map[String, Int] = Map()
val m2: String Map Int = Map()

A map can be considered a collection of tuples for most operations, where the first element is the
key and the second is the value.

val l = List(("a", 1), ("b", 2), ("c", 3))
val m = l.toMap // Map(a -> 1, b -> 2, c -> 3)

Get element

val m = Map("a" -> 1, "b" -> 2, "c" -> 3)

m.get("a") // Some(1)
m.get("d") // None
m("a") // 1
m("d") // java.util.NoSuchElementException: key not found: d

m.keys // Set(a, b, c)
m.values // MapLike(1, 2, 3)

Add element(s)

Map("a" -> 1, "b" -> 2) + ("c" -> 3) // Map(a -> 1, b -> 2, c -> 3)
Map("a" -> 1, "b" -> 2) + ("a" -> 3) // Map(a -> 3, b -> 2)
Map("a" -> 1, "b" -> 2) ++ Map("b" -> 3, "c" -> 4) // Map(a -> 1, b -> 3, c -> 4)

Common operations

In operations where an iteration over a map occurs (map, find, forEach, etc), the elements of the
collection are tuples. The function parameter can either use the tuple accessors (_1, _2), or a
partial function with a case block:

m.find(_._1 == "a") // Some((a,1))
m.map {
 case (key, value) => (value, key)
} // Map(1 -> a, 2 -> b, 3 -> c)

https://riptutorial.com/ 27

m.filter(_._2 == 2) // Map(b -> 2)
m.foldLeft(0){
 case (acc, (key, value: Int)) => acc + value
} // 6

Map and Filter Over A Collection

Map

'Mapping' across a collection uses the map function to transform each element of that collection in a
similar way. The general syntax is:

val someFunction: (A) => (B) = ???
collection.map(someFunction)

You can provide an anonymous function:

collection.map((x: T) => /*Do something with x*/)

Multiplying integer numbers by two

// Initialize
val list = List(1,2,3)
// list: List[Int] = List(1, 2, 3)

// Apply map
list.map((item: Int) => item*2)
// res0: List[Int] = List(2, 4, 6)

// Or in a more concise way
list.map(_*2)
// res1: List[Int] = List(2, 4, 6)

Filter

filter is used when you want to exclude or 'filter out' certain elements of a collection. As with map,
the general syntax takes a function, but that function must return a Boolean:

val someFunction: (a) => Boolean = ???
collection.filter(someFunction)

You can provide an anonymous function directly:

collection.filter((x: T) => /*Do something that returns a Boolean*/)

Checking pair numbers

https://riptutorial.com/ 28

val list = 1 to 10 toList
// list: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

// Filter out all elements that aren't evenly divisible by 2
list.filter((item: Int) => item % 2==0)
// res0: List[Int] = List(2, 4, 6, 8, 10)

More Map and Filter examples

case class Person(firstName: String,
 lastName: String,
 title: String)

// Make a sequence of people
val people = Seq(
 Person("Millie", "Fletcher", "Mrs"),
 Person("Jim", "White", "Mr"),
 Person("Jenny", "Ball", "Miss"))

// Make labels using map
val labels = people.map(person =>
 s"${person.title}. ${person.lastName}"
)

// Filter the elements beginning with J
val beginningWithJ = people.filter(_.firstName.startsWith("J"))

// Extract first names and concatenate to a string
val firstNames = people.map(_.firstName).reduce((a, b) => a + "," + b)

Introduction to Scala Collections

The Scala Collections framework, according to its authors, is designed to be easy to use, concise,
safe, fast, and universal.

The framework is made up of Scala traits that are designed to be building blocks for creating
collections. For more information on these building blocks, read the official Scala collections
overview.

These built-in collections are separated into the immutable and mutable packages. By default, the
immutable versions are used. Constructing a List() (without importing anything) will construct an
immutable list.

One of the most powerful features of the framework is the consistent and easy-to-use interface
across like-minded collections. For example, summing all elements in a collection is the same for
Lists, Sets, Vectors, Seqs and Arrays:

val numList = List[Int](1, 2, 3, 4, 5)
numList.reduce((n1, n2) => n1 + n2) // 15

val numSet = Set[Int](1, 2, 3, 4, 5)

https://riptutorial.com/ 29

http://docs.scala-lang.org/overviews/collections/introduction.html
http://docs.scala-lang.org/tutorials/tour/traits.html
http://docs.scala-lang.org/overviews/collections/overview
http://docs.scala-lang.org/overviews/collections/overview

numSet.reduce((n1, n2) => n1 + n2) // 15

val numArray = Array[Int](1, 2, 3, 4, 5)
numArray.reduce((n1, n2) => n1 + n2) // 15

These like-minded types inherit from the Traversable trait.

It is now a best-practice to use Vector instead of List because the implementations
have better performance Performance characteristics can be found here. Vector can be
used wherever List is used.

Traversable types

Collection classes that have the Traversable trait implement foreach and inherit many methods for
performing common operations to collections, which all function identically. The most common
operations are listed here:

Map - map, flatMap, and collect produce new collections by applying a function to each
element in the original collection.

•

List(1, 2, 3).map(num => num * 2) // double every number = List(2, 4, 6)

// split list of letters into individual strings and put them into the same list
List("a b c", "d e").flatMap(letters => letters.split(" ")) // = List("a", "b", "c", "d", "e")

Conversions - toList, toArray, and many other conversion operations change the current
collection into a more specific kind of collection. These are usually methods prepended with
'to' and the more specific type (i.e. 'toList' converts to a List).

•

val array: Array[Int] = List[Int](1, 2, 3).toArray // convert list of ints to array of ints

Size info - isEmpty, nonEmpty, size, and hasDefiniteSize are all metadata about the set. This
allows conditional operations on the collection, or for code to determine the size of the
collection, including whether it's infinite or discrete.

•

List().isEmpty // true
List(1).nonEmpty // true

Element retrieval - head, last, find, and their Option variants are used to retrieve the first or
last element, or find a specific element in the collection.

•

val list = List(1, 2, 3)
list.head // = 1
list.last // = 3

Sub-collection retrieval operations - filter, tail, slice, drop, and other operations allow for
choosing parts of the collection to operate on further.

•

https://riptutorial.com/ 30

http://docs.scala-lang.org/overviews/collections/performance-characteristics.html
http://docs.scala-lang.org/overviews/collections/trait-traversable
http://www.scala-lang.org/api/current/index.html#scala.collection.Traversable@map%5BB%5D(f:A=%3EB):Traversable%5BB%5D
http://www.scala-lang.org/api/current/index.html#scala.collection.Traversable@toList:List%5BA%5D
http://www.scala-lang.org/api/current/index.html#scala.collection.Traversable@isEmpty:Boolean
http://www.scala-lang.org/api/current/index.html#scala.collection.Traversable@head:A
http://www.riptutorial.com/scala/topic/2293/option-class
http://www.scala-lang.org/api/current/index.html#scala.collection.Traversable@filter(p:A=%3EBoolean):Repr

List(-2, -1, 0, 1, 2).filter(num => num > 0) // = List(1, 2)

Subdivision operations - partition, splitAt, span, and groupBy split the current collection into
different parts.

•

// split numbers into < 0 and >= 0
List(-2, -1, 0, 1, 2).partition(num => num < 0) // = (List(-2, -1), List(0, 1, 2))

Element tests - exists, forall, and count are operations used to check this collection to see if
it satisfies a predicate.

•

List(1, 2, 3, 4).forall(num => num > 0) // = true, all numbers are positive
List(-3, -2, -1, 1).forall(num => num < 0) // = false, not all numbers are negative

Folds - foldLeft (/:), foldRight (:\), reduceLeft, and reduceRight are used to apply binary
functions to successive elements in the collection. Go here for fold examples and go here for
reduce examples.

•

Fold

The fold method iterates over a collection, using an initial accumulator value and applying a
function that uses each element to update the accumulator successfully:

val nums = List(1,2,3,4,5)
var initialValue:Int = 0;
var sum = nums.fold(initialValue){
 (accumulator,currentElementBeingIterated) => accumulator + currentElementBeingIterated
}
println(sum) //prints 15 because 0+1+2+3+4+5 = 15

In the above example, an anonymous function was supplied to fold(). You can also use a named
function that takes two arguments. Bearing this in my, the above example can be re-written thus:

def sum(x: Int, y: Int) = x+ y
val nums = List(1, 2, 3, 4, 5)
var initialValue: Int = 0
val sum = nums.fold(initialValue)(sum)
println(sum) // prints 15 because 0 + 1 + 2 + 3 + 4 + 5 = 15

Changing the initial value will affect the result:

initialValue = 2;
sum = nums.fold(initialValue){
 (accumulator,currentElementBeingIterated) => accumulator + currentElementBeingIterated
}
println(sum) //prints 17 because 2+1+2+3+4+5 = 17

The fold method has two variants - foldLeft and foldRight.

foldLeft() iterates from left to right (from the first element of the collection to the last in that order).
foldRight()

https://riptutorial.com/ 31

http://www.scala-lang.org/api/current/index.html#scala.collection.Traversable@partition(p:A=%3EBoolean):(Repr,Repr)
http://www.scala-lang.org/api/current/index.html#scala.collection.Traversable@exists(p:A=%3EBoolean):Boolean
http://www.scala-lang.org/api/current/index.html#scala.collection.Traversable@foldLeft
http://www.riptutorial.com/scala/example/17369/fold
http://www.riptutorial.com/scala/example/22959/reduce
http://www.riptutorial.com/scala/example/22959/reduce

iterates from right to left (from the last element to the first element). fold() iterates from left to right
like foldLeft(). In fact, fold() actually calls foldLeft() internally.

def fold[A1 >: A](z: A1)(op: (A1, A1) => A1): A1 = foldLeft(z)(op)

fold(), foldLeft() and foldRight() will return a value that has the same type with the initial value it
takes. However, unlike foldLeft() and foldRight(), the initial value given to fold() can only be of
the same type or a supertype of the type of the collection.

In this example the order is not relevant, so you can change fold() to foldLeft() or foldRight()
and the result will remain the same. Using a function that is sensitive to order will alter results.

If in doubt, prefer foldLeft() over foldRight(). foldRight() is less performant.

Foreach

foreach is unusual among the collections iterators in that it does not return a result. Instead it
applies a function to each element that has only side effects. For example:

scala> val x = List(1,2,3)
x: List[Int] = List(1, 2, 3)

scala> x.foreach { println }
1
2
3

The function supplied to foreach can have any return type, but the result will be discarded.
Typically foreach is used when side effects are desirable. If you want to transform data consider
using map, filter, a for comprehension, or another option.

Example of discarding results

def myFunc(a: Int) : Int = a * 2
List(1,2,3).foreach(myFunc) // Returns nothing

Reduce

The reduce(), reduceLeft() and reduceRight methods are similar to folds. The function passed to
reduce takes two values and yields a third. When operating on a list, the first two values are the
first two values in the list. The result of the function and the next value in the list are then re-
applied to the function, yielding a new result. This new result is applied with the next value of the
list and so on until there are no more elements. The final result is returned.

val nums = List(1,2,3,4,5)
sum = nums.reduce({ (a, b) => a + b })
println(sum) //prints 15

val names = List("John","Koby", "Josh", "Matilda", "Zac", "Mary Poppins")

https://riptutorial.com/ 32

http://scala-lang.org/api/2.11.2/index.html#scala.collection.SeqLike@foreach(f:A=%3EUnit):Unit

def findLongest(nameA:String, nameB:String):String = {
 if (nameA.length > nameB.length) nameA else nameB
}

def findLastAlphabetically(nameA:String, nameB:String):String = {
 if (nameA > nameB) nameA else nameB
}

val longestName:String = names.reduce(findLongest(_,_))
println(longestName) //prints Mary Poppins

//You can also omit the arguments if you want
val lastAlphabetically:String = names.reduce(findLastAlphabetically)
println(lastAlphabetically) //prints Zac

There are some differences in how the reduce functions work as compared to the fold functions.
They are:

The reduce functions have no initial accumulator value.1.
Reduce functions cannot be called on empty lists.2.
Reduce functions can only return the type or supertype of the list.3.

Read Collections online: https://riptutorial.com/scala/topic/686/collections

https://riptutorial.com/ 33

https://riptutorial.com/scala/topic/686/collections

Chapter 7: Continuations Library

Introduction

Continuation passing style is a form of control flow that involves passing to functions the rest of the
computation as a "continuation" argument. The function in question later invokes that continuation
to continue program execution. One way to think of a continuation is as a closure. The Scala
continuations library brings delimited continuations in the form of the primitives shift/reset to the
language.

continuations library: https://github.com/scala/scala-continuations

Syntax

reset { ... } // Continuations extend up to the end of the enclosing reset block•
shift { ... } // Create a continuation stating from after the call, passing it to the closure•
A @cpsParam[B, C] // A computation that requires a function A => B to create a value of C•
@cps[A] // Alias for @cpsParam[A, A]•
@suspendable // Alias for @cpsParam[Unit, Unit]•

Remarks

shift and reset are primitive control flow structures, like Int.+ is a primitive operation and Long is a
primitive type. They are more primitive than either in that delimited continuations can actually be
used to construct almost all control flow structures. They are not very useful "out-of-the-box", but
they truly shine when they are used in libraries to create rich APIs.

Continuations and monads are also closely linked. Continuations can be made into the
continuation monad, and monads are continuations because their flatMap operation takes a
continuation as parameter.

Examples

Callbacks are Continutations

// Takes a callback and executes it with the read value
def readFile(path: String)(callback: Try[String] => Unit): Unit = ???

readFile(path) { _.flatMap { file1 =>
 readFile(path2) { _.foreach { file2 =>
 processFiles(file1, file2)
 }}
}}

The function argument to readFile is a continuation, in that readFile invokes it to continue program

https://riptutorial.com/ 34

https://github.com/scala/scala-continuations
http://blog.tmorris.net/posts/continuation-monad-in-scala/

execution after it has done its job.

In order to rein in what can easily become callback hell, we use the continuations library.

reset { // Reset is a delimiter for continuations.
 for { // Since the callback hell is relegated to continuation library machinery.
 // a for-comprehension can be used
 file1 <- shift(readFile(path1)) // shift has type (((A => B) => C) => A)
 // We use it as (((Try[String] => Unit) => Unit) => Try[String])
 // It takes all the code that occurs after it is called, up to the end of reset, and
 // makes it into a closure of type (A => B).
 // The reason this works is that shift is actually faking its return type.
 // It only pretends to return A.
 // It actually passes that closure into its function parameter (readFile(path1) here),
 // And that function calls what it thinks is a normal callback with an A.
 // And through compiler magic shift "injects" that A into its own callsite.
 // So if readFile calls its callback with parameter Success("OK"),
 // the shift is replaced with that value and the code is executed until the end of reset,
 // and the return value of that is what the callback in readFile returns.
 // If readFile called its callback twice, then the shift would run this code twice too.
 // Since readFile returns Unit though, the type of the entire reset expression is Unit
 //
 // Think of shift as shifting all the code after it into a closure,
 // and reset as resetting all those shifts and ending the closures.
 file2 <- shift(readFile(path2))
 } processFiles(file1, file2)
}

// After compilation, shift and reset are transformed back into closures
// The for comprehension first desugars to:
reset {
 shift(readFile(path1)).flatMap { file1 => shift(readFile(path2)).foreach { file2 =>
processFiles(file1, file2) } }
}
// And then the callbacks are restored via CPS transformation
readFile(path1) { _.flatMap { file1 => // We see how shift moves the code after it into a
closure
 readFile(path2) { _.foreach { file2 =>
 processFiles(file1, file2)
 }}
}} // And we see how reset closes all those closures
// And it looks just like the old version!

Creating Functions That Take Continuations

If shift is called outside of a delimiting reset block, it can be used to create functions that
themselves create continuations inside a reset block. It is important to note that shift's type is not
just (((A => B) => C) => A), it is actually (((A => B) => C) => (A @cpsParam[B, C])). That annotation
marks where CPS transformations are needed. Functions that call shift without reset have their
return type "infected" with that annotation.

Inside a reset block, a value of A @cpsParam[B, C] seems to have a value of A, though really it's just
pretending. The continuation that is needed to complete the computation has type A => B, so the
code following a method that returns this type must return B. C is the "real" return type, and after
CPS transformation the function call has the type C.

https://riptutorial.com/ 35

Now, the example, taken from the Scaladoc of the library

val sessions = new HashMap[UUID, Int=>Unit]
def ask(prompt: String): Int @suspendable = // alias for @cpsParam[Unit, Unit]. @cps[Unit] is
also an alias. (@cps[A] = @cpsParam[A,A])
 shift {
 k: (Int => Unit) => {
 println(prompt)
 val id = uuidGen
 sessions += id -> k
 }
 }

def go(): Unit = reset {
 println("Welcome!")
 val first = ask("Please give me a number") // Uses CPS just like shift
 val second = ask("Please enter another number")
 printf("The sum of your numbers is: %d\n", first + second)
}

Here, ask will store the continuation into a map, and later some other code can retrieve that
"session" and pass in the result of the query to the user. In this way, go can actually be using an
asynchronous library while its code looks like normal imperative code.

Read Continuations Library online: https://riptutorial.com/scala/topic/8312/continuations-library

https://riptutorial.com/ 36

http://www.scala-lang.org/files/archive/api/2.11.8/scala-continuations-library/#scala.util.continuations.package
https://riptutorial.com/scala/topic/8312/continuations-library

Chapter 8: Currying

Syntax

aFunction(10)_ //Using '_' Tells the compiler that all the parameters in the rest of the
parameter groups will be curried.

•

nArityFunction.curried //Converts an n-arity Function to an equivalent curried version•
anotherFunction(x)(_: String)(z) // Currying an arbitrary parameter. It needs its type explicitly
stated.

•

Examples

A configurable multiplier as a curried function

def multiply(factor: Int)(numberToBeMultiplied: Int): Int = factor * numberToBeMultiplied

val multiplyBy3 = multiply(3)_ // resulting function signature Int => Int
val multiplyBy10 = multiply(10)_ // resulting function signature Int => Int

val sixFromCurriedCall = multiplyBy3(2) //6
val sixFromFullCall = multiply(3)(2) //6

val fortyFromCurriedCall = multiplyBy10(4) //40
val fortyFromFullCall = multiply(10)(4) //40

Multiple parameter groups of different types, currying parameters of arbitrary
positions

def numberOrCharacterSwitch(toggleNumber: Boolean)(number: Int)(character: Char): String =
 if (toggleNumber) number.toString else character.toString

// need to explicitly specify the type of the parameter to be curried
// resulting function signature Boolean => String
val switchBetween3AndE = numberOrCharacterSwitch(_: Boolean)(3)('E')

switchBetween3AndE(true) // "3"
switchBetween3AndE(false) // "E"

Currying a function with a single parameter group

def minus(left: Int, right: Int) = left - right

val numberMinus5 = minus(_: Int, 5)
val fiveMinusNumber = minus(5, _: Int)

numberMinus5(7) // 2
fiveMinusNumber(7) // -2

https://riptutorial.com/ 37

Currying

Let's define a function of 2 arguments:

def add: (Int, Int) => Int = (x,y) => x + y
val three = add(1,2)

Currying add transforms it into a function that takes one Int and returns a function (from one Int
to an Int)

val addCurried: (Int) => (Int => Int) = add2.curried
// ^~~ take *one* Int
// ^~~~ return a *function* from Int to Int

val add1: Int => Int = addCurried(1)
val three: Int = add1(2)
val allInOneGo: Int = addCurried(1)(2)

You can apply this concept to any function that takes multiple arguments. Currying a function that
takes multiple arguments, transforms it into a series of applications of functions that take one
argument:

def add3: (Int, Int, Int) => Int = (a,b,c) => a + b + c + d
def add3Curr: Int => (Int => (Int => Int)) = add3.curried

val x = add3Curr(1)(2)(42)

Currying

Currying, according to Wikipedia,

is the technique of translating the evaluation of a function that takes multiple arguments
into evaluating a sequence of functions.

Concretely, in terms of scala types, in the context of a function that take two arguments, (has arity
2) it is the conversion of

val f: (A, B) => C // a function that takes two arguments of type `A` and `B` respectively
 // and returns a value of type `C`

to

val curriedF: A => B => C // a function that take an argument of type `A`
 // and returns *a function*
 // that takes an argument of type `B` and returns a `C`

So for arity-2 functions we can write the curry function as:

def curry[A, B, C](f: (A, B) => C): A => B => C = {
 (a: A) => (b: B) => f(a, b)

https://riptutorial.com/ 38

https://en.wikipedia.org/wiki/Currying

}

Usage:

val f: (String, Int) => Double = {(_, _) => 1.0}
val curriedF: String => Int => Double = curry(f)
f("a", 1) // => 1.0
curriedF("a")(1) // => 1.0

Scala gives us a few language features that help with this:

You can write curried functions as methods. so curriedF can be written as:1.

def curriedFAsAMethod(str: String)(int: Int): Double = 1.0
val curriedF = curriedFAsAMethod _

You can un-curry (i.e. go from A => B => C to (A, B) => C) using a standard library method:
Function.uncurried

2.

val f: (String, Int) => Double = Function.uncurried(curriedF)
f("a", 1) // => 1.0

When to use Currying

Currying is the technique of translating the evaluation of a function that takes multiple arguments
into evaluating a sequence of functions, each with a single argument.

This is normally useful when for example:

different arguments of a function are calculated at different times. (Example 1)1.
different arguments of a function are calculated by different tiers of the application.
(Example 2)

2.

Example 1

Let's assume that the total yearly income is a function composed by the income and a bonus:

val totalYearlyIncome:(Int,Int) => Int = (income, bonus) => income + bonus

The curried version of the above 2-arity function is:

val totalYearlyIncomeCurried: Int => Int => Int = totalYearlyIncome.curried

Note in the above definition that the type can be also viewed/written as:

Int => (Int => Int)

Let's assume that the yearly income portion is known in advance:

https://riptutorial.com/ 39

https://en.wikipedia.org/wiki/Currying

val partialTotalYearlyIncome: Int => Int = totalYearlyIncomeCurried(10000)

And at some point down the line the bonus is known:

partialTotalYearlyIncome(100)

Example 2

Let's assume that the car manufacturing involves the application of car wheels and car body:

val carManufacturing:(String,String) => String = (wheels, body) => wheels + body

These parts are applied by different factories:

class CarWheelsFactory {
 def applyCarWheels(carManufacturing:(String,String) => String): String => String =
 carManufacturing.curried("applied wheels..")
}

class CarBodyFactory {
 def applyCarBody(partialCarWithWheels: String => String): String =
partialCarWithWheels("applied car body..")
}

Notice that the CarWheelsFactory above curries the car manufacturing function and only applies the
wheels.

The car manufacturing process then will take the below form:

val carWheelsFactory = new CarWheelsFactory()
val carBodyFactory = new CarBodyFactory()

val carManufacturing:(String,String) => String = (wheels, body) => wheels + body

val partialCarWheelsApplied: String => String =
carWheelsFactory.applyCarWheels(carManufacturing)
val carCompleted = carBodyFactory.applyCarBody(partialCarWheelsApplied)

A real world use of Currying.

What we have is a list of credit cards and we'd like to calculate the premiums for all those cards
that the credit card company has to pay out. The premiums themselves depend on the total
number of credit cards, so that the company adjust them accordingly.

We already have a function that calculates the premium for a single credit card and takes into
account the total cards the company has issued:

case class CreditCard(creditInfo: CreditCardInfo, issuer: Person, account: Account)

object CreditCard {
 def getPremium(totalCards: Int, creditCard: CreditCard): Double = { ... }

https://riptutorial.com/ 40

}

Now a reasonable approach to this problem would be to map each credit card to a premium and
reduce it to a sum. Something like this:

val creditCards: List[CreditCard] = getCreditCards()
val allPremiums = creditCards.map(CreditCard.getPremium).sum //type mismatch; found : (Int,
CreditCard) ⇒ Double required: CreditCard ⇒ ?

However the compiler isn't going to like this, because CreditCard.getPremium requires two
parameters. Partial application to the rescue! We can partially apply the total number of credit
cards and use that function to map the credit cards to their premiums. All we need to do is curry
the getPremium function by changing it to use multiple parameter lists and we're good to go.

The result should look something like this:

object CreditCard {
 def getPremium(totalCards: Int)(creditCard: CreditCard): Double = { ... }
}

val creditCards: List[CreditCard] = getCreditCards()

val getPremiumWithTotal = CreditCard.getPremium(creditCards.length)_

val allPremiums = creditCards.map(getPremiumWithTotal).sum

Read Currying online: https://riptutorial.com/scala/topic/1636/currying

https://riptutorial.com/ 41

https://riptutorial.com/scala/topic/1636/currying

Chapter 9: Dependency Injection

Examples

Cake Pattern with inner implementation class.

//create a component that will be injected
trait TimeUtil {
 lazy val timeUtil = new TimeUtilImpl()

 class TimeUtilImpl{
 def now() = new DateTime()
 }
}

//main controller is depended on time util
trait MainController {
 _ : TimeUtil => //inject time util into main controller

 lazy val mainController = new MainControllerImpl()

 class MainControllerImpl {
 def printCurrentTime() = println(timeUtil.now()) //timeUtil is injected from TimeUtil
trait
 }
}

object MainApp extends App {
 object app extends MainController
 with TimeUtil //wire all components

 app.mainController.printCurrentTime()
}

In the above example, I demonstrated how to inject TimeUtil into MainController.

The most important syntax is the self-annotation (_: TimeUtil =>) which is to inject TimeUtil into
MainController. In another word, MainController depends on TimeUtil.

I use inner class (e.g. TimeUtilImpl) in each component because, in my opinion, that it is easier for
testing as we can mock the inner class. And it is also easier for tracing where the method is called
from when project grows more complex.

Lastly, I wire all component together. If you are familiar with Guice, this is equivalent to Binding

Read Dependency Injection online: https://riptutorial.com/scala/topic/5909/dependency-injection

https://riptutorial.com/ 42

https://riptutorial.com/scala/topic/5909/dependency-injection

Chapter 10: Dynamic Invocation

Introduction

Scala allows you to use dynamic invocation when calling methods or accessing fields on an
object. Instead of having this built deep into the language, this is accomplished through rewriting
rules similar to those of implicit conversions, enabled by the marker trait [scala.Dynamic][Dynamic
scaladoc]. This allows you to emulate the ability to dynamically add properties to objects present in
dynamic languages, and more. [Dynamic scaladoc]: http://www.scala-
lang.org/api/2.12.x/scala/Dynamic.html

Syntax

class Foo extends Dynamic•
foo.field•
foo.field = value•
foo.method(args)•
foo.method(namedArg = x, y)•

Remarks

In order to declare subtypes of Dynamic, the language feature dynamics must be enabled, either by
importing scala.language.dynamics or by the -language:dynamics compiler option. Users of this
Dynamic who do not define their own subtypes do not need to enable this.

Examples

Field Accesses

This:

class Foo extends Dynamic {
 // Expressions are only rewritten to use Dynamic if they are not already valid
 // Therefore foo.realField will not use select/updateDynamic
 var realField: Int = 5
 // Called for expressions of the type foo.field
 def selectDynamic(fieldName: String) = ???
 def updateDynamic(fieldName: String)(value: Int) = ???
}

allows for simple access to fields:

val foo: Foo = ???
foo.realField // Does NOT use Dynamic; accesses the actual field
foo.realField = 10 // Actual field access here too
foo.unrealField // Becomes foo.selectDynamic(unrealField)

https://riptutorial.com/ 43

foo.field = 10 // Becomes foo.updateDynamic("field")(10)
foo.field = "10" // Does not compile; "10" is not an Int.
foo.x() // Does not compile; Foo does not define applyDynamic, which is used for methods.
foo.x.apply() // DOES compile, as Nothing is a subtype of () => Any
// Remember, the compiler is still doing static type checks, it just has one more way to
// "recover" and rewrite otherwise invalid code now.

Method Calls

This:

class Villain(val minions: Map[String, Minion]) extends Dynamic {
 def applyDynamic(name: String)(jobs: Task*) = jobs.foreach(minions(name).do)
 def applyDynamicNamed(name: String)(jobs: (String, Task)*) = jobs.foreach {
 // If a parameter does not have a name, and is simply given, the name passed as ""
 case ("", task) => minions(name).do(task)
 case (subsys, task) => minions(name).subsystems(subsys).do(task)
 }
}

allows for calls to methods, with and without named parameters:

val gru: Villain = ???
gru.blu() // Becomes gru.applyDynamic("blu")()
// Becomes gru.applyDynamicNamed("stu")(("fooer", ???), ("boomer", ???), ("", ???),
// ("computer breaker", ???), ("fooer", ???))
// Note how the `???` without a name is given the name ""
// Note how both occurrences of `fooer` are passed to the method
gru.stu(fooer = ???, boomer = ???, ???, `computer breaker` = ???, fooer = ???)
gru.ERR("a") // Somehow, scalac thinks "a" is not a Task, though it clearly is (it isn't)

Interaction Between Field Access and Update Method

Slightly counterintuitively (but also the only sane way to make it work), this:

val dyn: Dynamic = ???
dyn.x(y) = z

is equivalent to:

dyn.selectDynamic("x").update(y, z)

while

dyn.x(y)

is still

dyn.applyDynamic("x")(y)

It is important to be aware of this, or else it may sneak by unnoticed and cause strange errors.

https://riptutorial.com/ 44

Read Dynamic Invocation online: https://riptutorial.com/scala/topic/8296/dynamic-invocation

https://riptutorial.com/ 45

https://riptutorial.com/scala/topic/8296/dynamic-invocation

Chapter 11: Enumerations

Remarks

Approach with sealed trait and case objects is preferred because Scala enumeration has a few
problems:

Enumerations have the same type after erasure.1.
Compiler doesn't complain about “Match is not exhaustive", if case is missed it will fail in
runtime scala.MatchError:

2.

def isWeekendWithBug(day: WeekDays.Value): Boolean = day match {
 case WeekDays.Sun | WeekDays.Sat => true
}

isWeekendWithBug(WeekDays.Fri)
scala.MatchError: Fri (of class scala.Enumeration$Val)

Compare with:

def isWeekendWithBug(day: WeekDay): Boolean = day match {
 case WeekDay.Sun | WeekDay.Sat => true
}

Warning: match may not be exhaustive.
It would fail on the following inputs: Fri, Mon, Thu, Tue, Wed
def isWeekendWithBug(day: WeekDay): Boolean = day match {
 ^

More detailed explanation is presented in this article about Scala Enumeration.

Examples

Days of the week using Scala Enumeration

Java-like enumerations can be created by extending Enumeration.

object WeekDays extends Enumeration {
 val Mon, Tue, Wed, Thu, Fri, Sat, Sun = Value
}

def isWeekend(day: WeekDays.Value): Boolean = day match {
 case WeekDays.Sat | WeekDays.Sun => true
 case _ => false
}

isWeekend(WeekDays.Sun)
res0: Boolean = true

It is also possible to add a human-readable name for values in an enumeration:

https://riptutorial.com/ 46

http://underscore.io/blog/posts/2014/09/03/enumerations.html
http://www.scala-lang.org/api/2.11.4/scala/Enumeration.html

object WeekDays extends Enumeration {
 val Mon = Value("Monday")
 val Tue = Value("Tuesday")
 val Wed = Value("Wednesday")
 val Thu = Value("Thursday")
 val Fri = Value("Friday")
 val Sat = Value("Saturday")
 val Sun = Value("Sunday")
}

println(WeekDays.Mon)
>> Monday

WeekDays.withName("Monday") == WeekDays.Mon
>> res0: Boolean = true

Beware of the not-so-typesafe behavior, wherein different enumerations can evaluate as the same
instance type:

object Parity extends Enumeration {
 val Even, Odd = Value
}

WeekDays.Mon.isInstanceOf[Parity.Value]
>> res1: Boolean = true

Using sealed trait and case objects

An alternative to extending Enumeration is using sealed case objects:

sealed trait WeekDay

object WeekDay {
 case object Mon extends WeekDay
 case object Tue extends WeekDay
 case object Wed extends WeekDay
 case object Thu extends WeekDay
 case object Fri extends WeekDay
 case object Sun extends WeekDay
 case object Sat extends WeekDay
}

The sealed keyword guarantees that the trait WeekDay cannot be extended in another file. This
allows the compiler to make certain assumptions, including that all possible values of WeekDay are
already enumerated.

One drawback is that this method does not allow you to obtain a list of all possible values. To get
such a list it must be provided explicitly:

val allWeekDays = Seq(Mon, Tue, Wed, Thu, Fri, Sun, Sat)

Case classes can also extend a sealed trait. Thus, objects and case classes can be mixed to
create complex hierarchies:

https://riptutorial.com/ 47

sealed trait CelestialBody

object CelestialBody {
 case object Earth extends CelestialBody
 case object Sun extends CelestialBody
 case object Moon extends CelestialBody
 case class Asteroid(name: String) extends CelestialBody
}

Another drawback is that there is no way to access a the variable name of a sealed object's
enumeration, or search by it. If you need some kind of name associated to each value, it must be
manually defined:

 sealed trait WeekDay { val name: String }

 object WeekDay {
 case object Mon extends WeekDay { val name = "Monday" }
 case object Tue extends WeekDay { val name = "Tuesday" }
 (...)
 }

Or just:

 sealed case class WeekDay(name: String)

 object WeekDay {
 object Mon extends WeekDay("Monday")
 object Tue extends WeekDay("Tuesday")
 (...)
 }

Using sealed trait and case objects and allValues-macro

This is just an extension on the sealed trait variant where a macro generates a set with all
instances at compile time. This nicely omits the drawback that a developer can add a value to the
enumeration but forget to add it to the allElements set.

This variant especially becomes handy for large enums.

import EnumerationMacros._

sealed trait WeekDay
object WeekDay {
 case object Mon extends WeekDay
 case object Tue extends WeekDay
 case object Wed extends WeekDay
 case object Thu extends WeekDay
 case object Fri extends WeekDay
 case object Sun extends WeekDay
 case object Sat extends WeekDay
 val allWeekDays: Set[WeekDay] = sealedInstancesOf[WeekDay]
}

For this to work you need this macro:

https://riptutorial.com/ 48

import scala.collection.immutable.TreeSet
import scala.language.experimental.macros
import scala.reflect.macros.blackbox

/**
A macro to produce a TreeSet of all instances of a sealed trait.
Based on Travis Brown's work:
http://stackoverflow.com/questions/13671734/iteration-over-a-sealed-trait-in-scala
CAREFUL: !!! MUST be used at END OF code block containing the instances !!!
*/
object EnumerationMacros {
 def sealedInstancesOf[A]: TreeSet[A] = macro sealedInstancesOf_impl[A]

 def sealedInstancesOf_impl[A: c.WeakTypeTag](c: blackbox.Context) = {
 import c.universe._

 val symbol = weakTypeOf[A].typeSymbol.asClass

 if (!symbol.isClass || !symbol.isSealed)
 c.abort(c.enclosingPosition, "Can only enumerate values of a sealed trait or class.")
 else {

 val children = symbol.knownDirectSubclasses.toList

 if (!children.forall(_.isModuleClass)) c.abort(c.enclosingPosition, "All children must
be objects.")
 else c.Expr[TreeSet[A]] {

 def sourceModuleRef(sym: Symbol) =
Ident(sym.asInstanceOf[scala.reflect.internal.Symbols#Symbol
].sourceModule.asInstanceOf[Symbol]
)

 Apply(
 Select(
 reify(TreeSet).tree,
 TermName("apply")
),
 children.map(sourceModuleRef(_))
)
 }
 }
 }
}

Read Enumerations online: https://riptutorial.com/scala/topic/1499/enumerations

https://riptutorial.com/ 49

https://riptutorial.com/scala/topic/1499/enumerations

Chapter 12: Error Handling

Examples

Try

Using Try with map, getOrElse and flatMap:

import scala.util.Try

val i = Try("123".toInt) // Success(123)
i.map(_ + 1).getOrElse(321) // 124

val j = Try("abc".toInt) // Failure(java.lang.NumberFormatException)
j.map(_ + 1).getOrElse(321) // 321

Try("123".toInt) flatMap { i =>
 Try("234".toInt)
 .map(_ + i)
} // Success(357)

Using Try with pattern matching:

Try(parsePerson("John Doe")) match {
 case Success(person) => println(person.surname)
 case Failure(ex) => // Handle error ...
}

Either

Different data types for error/success

def getPersonFromWebService(url: String): Either[String, Person] = {

 val response = webServiceClient.get(url)

 response.webService.status match {
 case 200 => {
 val person = parsePerson(response)
 if(!isValid(person)) Left("Validation failed")
 else Right(person)
 }

 case _ => Left(s"Request failed with error code $response.status")
 }
}

Pattern matching on Either value

getPersonFromWebService("http://some-webservice.com/person") match {
 case Left(errorMessage) => println(errorMessage)

https://riptutorial.com/ 50

 case Right(person) => println(person.surname)
}

Convert Either value to Option

val maybePerson: Option[Person] = getPersonFromWebService("http://some-
webservice.com/person").right.toOption

Option

The use of null values is strongly discouraged, unless interacting with legacy Java code that
expects null. Instead, Option should be used when the result of a function might either be
something (Some) or nothing (None).

A try-catch block is more appropriate for error-handling, but if the function might legitimately return
nothing, Option is appropriate to use, and simple.

An Option[T] can either be Some(value) (contains a value of type T) or None:

def findPerson(name: String): Option[Person]

If no person is found, None can be returned. Otherwise, an object of type Some containing a Person
object is returned. What follows are ways to handle an object of type Option.

Pattern Matching

findPerson(personName) match {
 case Some(person) => println(person.surname)
 case None => println(s"No person found with name $personName")
}

Using map and getOrElse

val name = findPerson(personName).map(_.firstName).getOrElse("Unknown")
println(name) // Prints either the name of the found person or "Unknown"

Using fold

val name = findPerson(personName).fold("Unknown")(_.firstName)
// equivalent to the map getOrElse example above.

Converting to Java

If you need to convert an Option type to a null-able Java type for interoperability:

https://riptutorial.com/ 51

http://www.riptutorial.com/scala/topic/2293/option-class

val s: Option[String] = Option("hello")
s.orNull // "hello": String
s.getOrElse(null) // "hello": String

val n: Option[Int] = Option(42)
n.orNull // compilation failure (Cannot prove that Null <:< Int.)
n.getOrElse(null) // 42

Handling Errors Originating in Futures

When an exception is thrown from within a Future, you can (should) use recover to handle it.

For instance,

def runFuture: Future = Future { throw new FairlyStupidException }

val itWillBeAwesome: Future = runFuture

...will throw an Exception from within the Future. But seeing as we can predict that an Exception of
type FairlyStupidException with a high probability, we can specifically handle this case in an
elegant way:

val itWillBeAwesomeOrIllRecover = runFuture recover {
 case stupid: FairlyStupidException =>
 BadRequest("Another stupid exception!")
}

As you can see the method given to recover is a PartialFunction over the domain of all Throwable,
so you can handle just a certain few types and then let the rest go into the ether of exception
handling at higher levels in the Future stack.

Note that this is similar to running the following code in a non-Future context:

def runNotFuture: Unit = throw new FairlyStupidException

try {
 runNotFuture
} catch {
 case e: FairlyStupidException => BadRequest("Another stupid exception!")
}

It is really important to handle exceptions generated within Futures because much of the time they
are more insidious. They don't get all in your face usually, because they run in a different
execution context and thread, and thus do not prompt you to fix them when they happen,
especially if you don't notice anything in logs or the behavior of the application.

Using try-catch clauses

In addition to functional constructs such as Try, Option and Either for error handling, Scala also
supports a syntax similar to Java's, using a try-catch clause (with a potential finally block as well).
The catch clause is a pattern match:

https://riptutorial.com/ 52

try {
 // ... might throw exception
} catch {
 case ioe: IOException => ... // more specific cases first
 case e: Exception => ...
 // uncaught types will be thrown
} finally {
 // ...
}

Convert Exceptions into Either or Option Types

To convert exceptions into Either or Option types, you can use methods that provided in
scala.util.control.Exception

import scala.util.control.Exception._

val plain = "71a"
val optionInt: Option[Int] = catching(classOf[java.lang.NumberFormatException]) opt {
plain.toInt }
val eitherInt = Either[Throwable, Int] = catching(classOf[java.lang.NumberFormatException])
either { plain.toInt }

Read Error Handling online: https://riptutorial.com/scala/topic/910/error-handling

https://riptutorial.com/ 53

https://riptutorial.com/scala/topic/910/error-handling

Chapter 13: Extractors

Syntax

val extractor(extractedValue1, _ /* ignored second extracted value */) = valueToBeExtracted•
valueToBeExtracted match { case extractor(extractedValue1, _) => ???}•
val (tuple1, tuple2, tuple3) = tupleWith3Elements•
object Foo { def unapply(foo: Foo): Option[String] = Some(foo.x); }•

Examples

Tuple Extractors

x and y are extracted from the tuple:

val (x, y) = (1337, 42)
// x: Int = 1337
// y: Int = 42

To ignore a value use _:

val (_, y: Int) = (1337, 42)
// y: Int = 42

To unpack an extractor:

val myTuple = (1337, 42)
myTuple._1 // res0: Int = 1337
myTuple._2 // res1: Int = 42

Note that tuples have a maximum length of 22, and thus ._1 through ._22 will work (assuming the
tuple is at least that size).

Tuple extractors may be used to provide symbolic arguments for literal functions:

val persons = List("A." -> "Lovelace", "G." -> "Hopper")
val names = List("Lovelace, A.", "Hopper, G.")

assert {
 names ==
 (persons map { name =>
 s"${name._2}, ${name._1}"
 })
}

assert {
 names ==
 (persons map { case (given, surname) =>
 s"$surname, $given"

https://riptutorial.com/ 54

 })
}

Case Class Extractors

A case class is a class with a lot of standard boilerplate code automatically included. One benefit
of this is that Scala makes it easy to use extractors with case classes.

case class Person(name: String, age: Int) // Define the case class
val p = Person("Paola", 42) // Instantiate a value with the case class type

val Person(n, a) = p // Extract values n and a
// n: String = Paola
// a: Int = 42

At this juncture, both n and a are vals in the program and can be accessed as such: they are said
to have been 'extracted' from p. Continuing:

val p2 = Person("Angela", 1337)

val List(Person(n1, a1), Person(_, a2)) = List(p, p2)
// n1: String = Paola
// a1: Int = 42
// a2: Int = 1337

Here we see two important things:

Extraction can happen at 'deep' levels: properties of nested objects can be extracted.•
Not all elements need to be extracted. The wildcard _ character indicates that that particular
value can be anything, and is ignored. No val is created.

•

In particular, this can make matching over collections easy:

val ls = List(p1, p2, p3) // List of Person objects
ls.map(person => person match {
 case Person(n, a) => println("%s is %d years old".format(n, a))
})

Here, we have code that uses the extractor to explicitly check that person is a Person object and
immediately pull out the variables that we care about: n and a.

Unapply - Custom Extractors

A custom extraction can be written by implementing the unapply method and returning a value of
type Option:

class Foo(val x: String)

object Foo {
 def unapply(foo: Foo): Option[String] = Some(foo.x)
}

https://riptutorial.com/ 55

http://www.riptutorial.com/scala/topic/1022/case-classes

new Foo("42") match {
 case Foo(x) => x
}
// "42"

The return type of unapply may be something other than Option, provided the type returned
provides get and isEmpty methods. In this example, Bar is defined with those methods, and unapply
returns an instance of Bar:

class Bar(val x: String) {
 def get = x
 def isEmpty = false
}

object Bar {
 def unapply(bar: Bar): Bar = bar
}

new Bar("1337") match {
 case Bar(x) => x
}
// "1337"

The return type of unapply can also be a Boolean, which is a special case that does not carry the get
and isEmpty requirements above. However, note in this example that DivisibleByTwo is an object,
not a class, and does not take a parameter (and therefore that parameter cannot be bound):

object DivisibleByTwo {
 def unapply(num: Int): Boolean = num % 2 == 0
}

4 match {
 case DivisibleByTwo() => "yes"
 case _ => "no"
}
// yes

3 match {
 case DivisibleByTwo() => "yes"
 case _ => "no"
}
// no

Remember that unapply goes in the companion object of a class, not in the class. The example
above will be clear if you understand this distinction.

Extractor Infix notation

If a case class has exactly two values, its extractor can be used in infix notation.

case class Pair(a: String, b: String)
val p: Pair = Pair("hello", "world")
val x Pair y = p

https://riptutorial.com/ 56

//x: String = hello
//y: String = world

Any extractor that returns a 2-tuple can work this way.

object Foo {
 def unapply(s: String): Option[(Int, Int)] = Some((s.length, 5))
}
val a Foo b = "hello world!"
//a: Int = 12
//b: Int = 5

Regex Extractors

A regular expression with grouped parts can be used as an extractor:

scala> val address = """(.+):(\d+)""".r
address: scala.util.matching.Regex = (.+):(\d+)

scala> val address(host, port) = "some.domain.org:8080"
host: String = some.domain.org
port: String = 8080

Note that when it is not matched, a MatchError will be thrown at runtime:

scala> val address(host, port) = "something not a host and port"
scala.MatchError: something not a host and port (of class java.lang.String)

Transformative extractors

Extractor behavior can be used to derive arbitrary values from their input. This can be useful in
scenarios where you want to be able to act on the results of a transformation in the event that the
transformation is successful.

Consider as an example the various user name formats usable in a Windows environment:

object UserPrincipalName {
 def unapply(str: String): Option[(String, String)] = str.split('@') match {
 case Array(u, d) if u.length > 0 && d.length > 0 => Some((u, d))
 case _ => None
 }
}

object DownLevelLogonName {
 def unapply(str: String): Option[(String, String)] = str.split('\\') match {
 case Array(d, u) if u.length > 0 && d.length > 0 => Some((d, u))
 case _ => None
 }
}

def getDomain(str: String): Option[String] = str match {
 case UserPrincipalName(_, domain) => Some(domain)
 case DownLevelLogonName(domain, _) => Some(domain)

https://riptutorial.com/ 57

https://msdn.microsoft.com/en-us/library/windows/desktop/aa380525(v=vs.85).aspx

 case _ => None
}

In fact it is possible to create an extractor exhibiting both behaviors by broadening the types it can
match:

object UserPrincipalName {
 def unapply(obj: Any): Option[(String, String)] = obj match {
 case upn: UserPrincipalName => Some((upn.username, upn.domain))
 case str: String => str.split('@') match {
 case Array(u, d) if u.length > 0 && d.length > 0 => Some((u, d))
 case _ => None
 }
 case _ => None
 }
}

In general, extractors are simply a convenient reformulation of the Option pattern, as applied to
methods with names like tryParse:

UserPrincipalName.unapply("user@domain") match {
 case Some((u, d)) => ???
 case None => ???
}

Read Extractors online: https://riptutorial.com/scala/topic/930/extractors

https://riptutorial.com/ 58

https://riptutorial.com/scala/topic/930/extractors

Chapter 14: For Expressions

Syntax

for {clauses} body•
for {clauses} yield body•
for (clauses) body•
for (clauses) yield body•

Parameters

Parameter Details

for Required keyword to use a for loop/comprehension

clauses The iteration and filters over which the for works.

yield
Use this if you want to create or 'yield' a collection. Using yield will cause the
return type of the for to be a collection instead of Unit.

body The body of the for expression, executed on each iteration.

Examples

Basic For Loop

for (x <- 1 to 10)
 println("Iteration number " + x)

This demonstrates iterating a variable, x, from 1 to 10 and doing something with that value. The
return type of this for comprehension is Unit.

Basic For Comprehension

This demonstrates a filter on a for-loop, and the use of yield to create a 'sequence
comprehension':

for (x <- 1 to 10 if x % 2 == 0)
 yield x

The output for this is:

scala.collection.immutable.IndexedSeq[Int] = Vector(2, 4, 6, 8, 10)

https://riptutorial.com/ 59

A for comprehension is useful when you need to create a new collection based on the iteration
and it's filters.

Nested For Loop

This shows how you can iterate over multiple variables:

for {
 x <- 1 to 2
 y <- 'a' to 'd'
} println("(" + x + "," + y + ")")

(Note that to here is an infix operator method that returns an inclusive range. See the definition
here.)

This creates the output:

(1,a)
(1,b)
(1,c)
(1,d)
(2,a)
(2,b)
(2,c)
(2,d)

Note that this is an equivalent expression, using parentheses instead of brackets:

for (
 x <- 1 to 2
 y <- 'a' to 'd'
) println("(" + x + "," + y + ")")

In order to get all of the combinations into a single vector, we can yield the result and set it to a
val:

val a = for {
 x <- 1 to 2
 y <- 'a' to 'd'
} yield "(%s,%s)".format(x, y)
// a: scala.collection.immutable.IndexedSeq[String] = Vector((1,a), (1,b), (1,c), (1,d),
(2,a), (2,b), (2,c), (2,d))

Monadic for comprehensions

If you have several objects of monadic types, we can achieve combinations of the values using a
'for comprehension':

for {
 x <- Option(1)
 y <- Option("b")
 z <- List(3, 4)

https://riptutorial.com/ 60

http://www.scala-lang.org/api/2.10.3/#scala.collection.immutable.NumericRange$$Inclusive
http://www.scala-lang.org/api/2.10.3/#scala.Char
http://www.riptutorial.com/scala/topic/4112/monads

} {
 // Now we can use the x, y, z variables
 println(x, y, z)
 x // the last expression is *not* the output of the block in this case!
}

// This prints
// (1, "b", 3)
// (1, "b", 4)

The return type of this block is Unit.

If the objects are of the same monadic type M (e.g. Option) then using yield will return an object of
type M instead of Unit.

val a = for {
 x <- Option(1)
 y <- Option("b")
} yield {
 // Now we can use the x, y variables
 println(x, y)
 // whatever is at the end of the block is the output
 (7 * x, y)
}

// This prints:
// (1, "b")
// The val `a` is set:
// a: Option[(Int, String)] = Some((7,b))

Note that the yield keyword cannot be used in the original example, where there is a mix of
monadic types (Option and List). Trying to do so will yield a compile-time type mismatch error.

Iterate Through Collections Using a For Loop

This demonstrates how to print each element of a Map

val map = Map(1 -> "a", 2 -> "b")
for (number <- map) println(number) // prints (1,a), (2,b)
for ((key, value) <- map) println(value) // prints a, b

This demonstrates how to print each element of a list

val list = List(1,2,3)
for(number <- list) println(number) // prints 1, 2, 3

Desugaring For Comprehensions

for comprehensions in Scala are just syntactic sugar. These comprehensions are implemented
using the withFilter, foreach, flatMap and map methods of their subject types. For this reason, only
types that have these methods defined can be utilized in a for comprehension.

https://riptutorial.com/ 61

https://en.wikipedia.org/wiki/Syntactic_sugar

A for comprehension of the following form, with patterns pN, generators gN and conditions cN:

for(p0 <- x0 if g0; p1 <- g1 if c1) { ??? }

... will de-sugar to nested calls using withFilter and foreach:

g0.withFilter({ case p0 => c0 case _ => false }).foreach({
 case p0 => g1.withFilter({ case p1 => c1 case _ => false }).foreach({
 case p1 => ???
 })
})

Whereas a for/yield expression of the following form:

for(p0 <- g0 if c0; p1 <- g1 if c1) yield ???

... will de-sugar to nested calls using withFilter and either flatMap or map:

g0.withFilter({ case p0 => c0 case _ => false }).flatMap({
 case p0 => g1.withFilter({ case p1 => c1 case _ => false }).map({
 case p1 => ???
 })
})

(Note that map is used in the innermost comprehension, and flatMap is used in every outer
comprehension.)

A for comprehension can be applied to any type implementing the methods required by the de-
sugared representation. There are no restrictions on the return types of these methods, so long as
they are composable.

Read For Expressions online: https://riptutorial.com/scala/topic/669/for-expressions

https://riptutorial.com/ 62

https://riptutorial.com/scala/topic/669/for-expressions

Chapter 15: Functions

Remarks

Scala has first-class functions.

Difference between functions and methods:

A function is not a method in Scala: functions are a value, and may be assigned as such. Methods
(created using def), on the other hand, must belong to a class, trait or object.

Functions are compiled to a class extending a trait (such as Function1) at compile-time, and
are instantiated to a value at runtime. Methods, on the other hand, are members of their
class, trait or object, and do not exist outside of that.

•

A method may be converted to a function, but a function cannot be converted to a method.•
Methods can have type parameterization, whereas functions do not.•
Methods can have parameter default values, whereas functions can not.•

Examples

Anonymous Functions

Anonymous functions are functions that are defined but not assigned a name.

The following is an anonymous function that takes in two integers and returns the sum.

(x: Int, y: Int) => x + y

The resultant expression can be assigned to a val:

val sum = (x: Int, y: Int) => x + y

Anonymous functions are primarily used as arguments to other functions. For instance, the map
function on a collection expects another function as its argument:

// Returns Seq("FOO", "BAR", "QUX")
Seq("Foo", "Bar", "Qux").map((x: String) => x.toUpperCase)

The types of the arguments of the anonymous function can be omitted: the types are inferred
automatically:

Seq("Foo", "Bar", "Qux").map((x) => x.toUpperCase)

If there is just one argument, the parentheses around that argument can be omitted:

https://riptutorial.com/ 63

http://www.riptutorial.com/scala/topic/4918/type-inference
http://www.riptutorial.com/scala/topic/4918/type-inference

Seq("Foo", "Bar", "Qux").map(x => x.toUpperCase)

Underscores shorthand

There is an even shorter syntax that doesn't require names for the arguments. The above snippet
can be written:

Seq("Foo", "Bar", "Qux").map(_.toUpperCase)

_ represents the anonymous function arguments positionally. With an anonymous function that has
multiple parameters, each occurrence of _ will refer to a different argument. For instance, the two
following expressions are equivalent:

// Returns "FooBarQux" in both cases
Seq("Foo", "Bar", "Qux").reduce((s1, s2) => s1 + s2)
Seq("Foo", "Bar", "Qux").reduce(_ + _)

When using this shorthand, any argument represented by the positional _ can only be referenced
a single time and in the same order.

Anonymous Functions with No Parameters

To create a value for an anonymous function that does not take parameters, leave the parameter
list blank:

val sayHello = () => println("hello")

Composition

Function composition allows for two functions to operate and be viewed as a single function.
Expressed in mathematical terms, given a function f(x) and a function g(x), the function h(x) =
f(g(x)).

When a function is compiled, it is compiled to a type related to Function1. Scala provides two
methods in the Function1 implementation related to composition: andThen and compose. The compose
method fits with the above mathematical definition like so:

val f: B => C = ...
val g: A => B = ...

val h: A => C = f compose g

The andThen (think h(x) = g(f(x))) has a more 'DSL-like' feeling:

val f: A => B = ...

https://riptutorial.com/ 64

http://www.scala-lang.org/api/rc2/scala/Function1.html

val g: B => C = ...

val h: A => C = f andThen g

A new anonymous function is allocated with that is closed over f and g. This function is bound to
the new function h in both cases.

def andThen(g: B => C): A => C = new (A => C){
 def apply(x: A) = g(self(x))
}

If either f or g works via a side-effect, then calling h will cause all side-effects of f and g to happen
in the order. The same is true of any mutable state changes.

Relationship to PartialFunctions

trait PartialFunction[-A, +B] extends (A => B)

Every single-argument PartialFunction is also a Function1. This is counter-intuitive in a formal
mathematical sense, but better fits object oriented design. For this reason Function1 does not have
to provide a constant true isDefinedAt method.

To define a partial function (which is also a function), use the following syntax:

{ case i: Int => i + 1 } // or equivalently { case i: Int ⇒ i + 1 }

For further details, take a look at PartialFunctions.

Read Functions online: https://riptutorial.com/scala/topic/477/functions

https://riptutorial.com/ 65

http://www.riptutorial.com/scala/topic/1638/partial-functions
https://riptutorial.com/scala/topic/477/functions

Chapter 16: Futures

Examples

Creating a Future

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global

object FutureDivider {
 def divide(a: Int, b: Int): Future[Int] = Future {
 // Note that this is integer division.
 a / b
 }
}

Quite simply, the divide method creates a Future that will resolve with the quotient of a over b.

Consuming a Successful Future

The easiest way to consume a successful Future-- or rather, get the value inside the Future-- is to
use the map method. Suppose some code calls the divide method of the FutureDivider object from
the "Creating a Future" example. What would the code need to look like to get the quotient of a
over b?

object Calculator {
 def calculateAndReport(a: Int, b: Int) = {
 val eventualQuotient = FutureDivider divide(a, b)

 eventualQuotient map {
 quotient => println(quotient)
 }
 }
}

Consuming a Failed Future

Sometimes the computation in a Future can create an exception, which will cause the Future to
fail. In the "Creating a Future" example, what if the calling code passed 55 and 0 to the divide
method? It'd throw an ArithmeticException after trying to divide by zero, of course. How would that
be handled in consuming code? There are actually a handful of ways to deal with failures.

Handle the exception with recover and pattern matching.

object Calculator {
 def calculateAndReport(a: Int, b: Int) = {
 val eventualQuotient = FutureDivider divide(a, b)

 eventualQuotient recover {
 case ex: ArithmeticException => println(s"It failed with: ${ex.getMessage}")

https://riptutorial.com/ 66

 }
 }
}

Handle the exception with the failed projection, where the exception becomes the value of the
Future:

object Calculator {
 def calculateAndReport(a: Int, b: Int) = {
 val eventualQuotient = FutureDivider divide(a, b)

 // Note the use of the dot operator to get the failed projection and map it.
 eventualQuotient.failed.map {
 ex => println(s"It failed with: ${ex.getMessage}")
 }
 }
}

Putting the Future Together

The previous examples demonstrated the individual features of a Future, handling success and
failure cases. Usually, however, both features are handled much more tersely. Here's the
example, written in a neater and more realistic way:

object Calculator {
 def calculateAndReport(a: Int, b: Int) = {
 val eventualQuotient = FutureDivider divide(a, b)

 eventualQuotient map {
 quotient => println(s"Quotient: $quotient")
 } recover {
 case ex: ArithmeticException => println(s"It failed with: ${ex.getMessage}")
 }
 }
}

Sequencing and traversing Futures

In some cases it is necessary to calculate a variable amount of values on separate Futures.
Assume to have a List[Future[Int]], but instead a List[Int] needs to be processed. Then the
question is how to turn this instance of List[Future[Int]] into a Future[List[Int]]. For this purpose
there is the sequence method on the Future companion object.

def listOfFuture: List[Future[Int]] = List(1,2,3).map(Future(_))
def futureOfList: Future[List[Int]] = Future.sequence(listOfFuture)

In general sequence is a commonly known operator within the world of functional programming that
transforms F[G[T]] into G[F[T]] with restrictions to F and G.

There is an alternate operator called traverse, which works similar but takes a function as an extra
argument. With the identity function x => x as a parameter it behaves like the sequence operator.

https://riptutorial.com/ 67

http://www.scala-lang.org/api/2.9.3/scala/concurrent/Future$.html

def listOfFuture: List[Future[Int]] = List(1,2,3).map(Future(_))
def futureOfList: Future[List[Int]] = Future.traverse(listOfFuture)(x => x)

However, the extra argument allows to modify each future instance inside the given listOfFuture.
Furthermore, the first argument doesn't need to be a list of Future. Therefore it is possible to
transform the example as follows:

def futureOfList: Future[List[Int]] = Future.traverse(List(1,2,3))(Future(_))

In this case the List(1,2,3) is directly passed as first argument and the identity function x => x is
replaced with the function Future(_) to similarly wrap each Int value into a Future. An advantage of
this is that the intermediary List[Future[Int]] can be omitted to improve performance.

Combine Multiple Futures – For Comprehension

The for comprehension is a compact way to run a block of code that depends on the successful
result of multiple futures.

With f1, f2, f3 three Future[String]'s that will contain the strings one, two, three respectively,

val fCombined =
 for {
 s1 <- f1
 s2 <- f2
 s3 <- f3
 } yield (s"$s1 - $s2 - $s3")

fCombined will be a Future[String] containing the string one - two - three once all the futures have
completed successfully.

Note that an implicit ExectionContext is assumed here.

Also, keep in mind that for comprehension is just a syntactic sugar for a flatMap method, so Future
objects construction inside for body would eliminate concurrent execution of code-blocks enclosed
by futures and lead to sequential code. You see it on example:

val result1 = for {
 first <- Future {
 Thread.sleep(2000)
 System.currentTimeMillis()
 }
 second <- Future {
 Thread.sleep(1000)
 System.currentTimeMillis()
 }
} yield first - second

val fut1 = Future {
 Thread.sleep(2000)
 System.currentTimeMillis()
}
val fut2 = Future {

https://riptutorial.com/ 68

https://en.wikipedia.org/wiki/Syntactic_sugar

 Thread.sleep(1000)
 System.currentTimeMillis()
}
val result2 = for {
 first <- fut1
 second <- fut2
} yield first - second

Value enclosed by result1 object would be always negative while result2 would be positive.

For more details about the for comprehension and yield in general, see http://docs.scala-
lang.org/tutorials/FAQ/yield.html

Read Futures online: https://riptutorial.com/scala/topic/3245/futures

https://riptutorial.com/ 69

http://docs.scala-lang.org/tutorials/FAQ/yield.html
http://docs.scala-lang.org/tutorials/FAQ/yield.html
https://riptutorial.com/scala/topic/3245/futures

Chapter 17: Handling units (measures)

Syntax

class Meter(val meters: Double) extends AnyVal•
type Meter = Double•

Remarks

It is recommended to use value classes for units or a dedicated library for them.

Examples

Type aliases

type Meter = Double

This simple approach has serious drawbacks for unit handling as every other type that is a Double
will be compatible with it:

type Second = Double
var length: Meter = 3
val duration: Second = 1
length = duration
length = 0d

All of the above compiles, so in this case units can only be used for marking input/output types for
the readers of the code (only the intent).

Value classes

case class Meter(meters: Double) extends AnyVal
case class Gram(grams: Double) extends AnyVal

Value classes provide a type-safe way to encode units, even if they require a bit more characters
to use them:

var length = Meter(3)
var weight = Gram(4)
//length = weight //type mismatch; found : Gram required: Meter

By extending AnyVals, there is no runtime penalty for using them, on the JVM level, those are
regular primitive types (Doubles in this case).

In case you want to automatically generate other units (like Velocity aka MeterPerSecond), this

https://riptutorial.com/ 70

approach is not the best, though there are libraries that can be used in those cases too:

Squants•
units•
ScalaQuantity•

Read Handling units (measures) online: https://riptutorial.com/scala/topic/5966/handling-units--
measures-

https://riptutorial.com/ 71

http://www.squants.com/
https://github.com/KarolS/units
https://github.com/zzorn/ScalaQuantity
https://riptutorial.com/scala/topic/5966/handling-units--measures-
https://riptutorial.com/scala/topic/5966/handling-units--measures-

Chapter 18: Higher Order Function

Remarks

Scala goes to great lengths to treat methods and functions as syntactically identical. But under the
hood, they are distinct concepts.

A method is executable code, and has no value representation.

A function is an actual object instance of type Function1 (or a similar type of another arity). Its code
is contained in its apply method. Effectively, it simply acts as a value that can be passed around.

Incidentally, the ability to treat functions as values is exactly what is meant by a language having
support for higher-order functions. Function instances are Scala's approach to implementing this
feature.

An actual higher-order function is a function that either takes a function value as an argument or
returns a function value. But in Scala, as all operations are methods, it's more general to think of
methods that receive or return function parameters. So map, as defined on Seq might be thought of
as a "higher-order function" due to its parameter being a function, but it is not literally a function; it
is a method.

Examples

Using methods as function values

The Scala compiler will automatically convert methods into function values for the purpose of
passing them into higher-order functions.

object MyObject {
 def mapMethod(input: Int): String = {
 int.toString
 }
}

Seq(1, 2, 3).map(MyObject.mapMethod) // Seq("1", "2", "3")

In the example above, MyObject.mapMethod is not a function call, but instead is passed to map as a
value. Indeed, map requires a function value passed to it, as can be seen in it's signature. The
signature for the map of a List[A] (a list of objects of type A) is:

def map[B](f: (A) ⇒ B): List[B]

The f: (A) => B part indicates that the parameter to this method call is some function that takes an
object of type A and returns an object of type B. A and B are arbitrarily defined. Returning to the first
example, we can see that mapMethod takes an Int (which corresponds to A) and returns a String
(which corresponds to B). Thus mapMethod is a valid function value to pass to map. We could rewrite

https://riptutorial.com/ 72

http://www.scala-lang.org/api/current/scala/Function1.html
http://www.scala-lang.org/api/current/index.html#scala.collection.Seq@map%5BB%5D(f:A=%3EB):Seq%5BB%5D

the same code like this:

Seq(1, 2, 3).map(x:Int => int.toString)

This inlines the function value, which may add clarity for simple functions.

High Order Functions(Function as Parameter)

A higher-order function, as opposed to a first-order function, can have one of three forms:

One or more of its parameters is a function, and it returns some value.•

It returns a function, but none of its parameters is a function.•

Both of the above: One or more of its parameters is a function, and it returns a function.

object HOF {
 def main(args: Array[String]) {
 val list =
List(("Srini","E"),("Subash","R"),("Ranjith","RK"),("Vicky","s"),("Sudhar","s"))
 //HOF
 val fullNameList= list.map(n => getFullName(n._1, n._2))

 }

 def getFullName(firstName: String, lastName: String): String = firstName + "." +
lastName
 }

•

Here the map function takes a getFullName(n._1,n._2) function as a parameter. This is called HOF
(Higher order function).

Arguments lazy evaluation

Scala supports lazy evaluation for function arguments using notation: def func(arg: => String).
Such function argument might take regular String object or a higher order function with String
return type. In second case, function argument would be evaluated on value access.

Please see the example:

def calculateData: String = {
 print("Calculating expensive data! ")
 "some expensive data"
}

def dumbMediator(preconditions: Boolean, data: String): Option[String] = {
 print("Applying mediator")
 preconditions match {
 case true => Some(data)
 case false => None
 }
}

https://riptutorial.com/ 73

def smartMediator(preconditions: Boolean, data: => String): Option[String] = {
 print("Applying mediator")
 preconditions match {
 case true => Some(data)
 case false => None
 }
}

smartMediator(preconditions = false, calculateData)

dumbMediator(preconditions = false, calculateData)

smartMediator call would return None value and print message "Applying mediator".

dumbMediator call would return None value and print message "Calculating expensive data!
Applying mediator".

Lazy evaluation might be extremely useful when you want to optimize an overhead of expensive
arguments calculation.

Read Higher Order Function online: https://riptutorial.com/scala/topic/1642/higher-order-function

https://riptutorial.com/ 74

https://riptutorial.com/scala/topic/1642/higher-order-function

Chapter 19: If Expressions

Examples

Basic If Expressions

In Scala (in contrast to Java and most other languages), if is an expression instead of a
statement. Regardless, the syntax is identical:

if(x < 1984) {
 println("Good times")
} else if(x == 1984) {
 println("The Orwellian Future begins")
} else {
 println("Poor guy...")
}

The implication of if being an expression is that you can assign the result of the evalation of the
expression to a variable:

val result = if(x > 0) "Greater than 0" else "Less than or equals 0"
\\ result: String = Greater than 0

Above we see that the if expression is evaluated and result is set to that resulting value.

The return type of an if expression is the supertype of all logic branches. This means that for this
example the return type is a String. Since not all if expressions return a value (such as an if
statement that has no else branch logic), it is possible that the return type is Any:

val result = if(x > 0) "Greater than 0"
// result: Any = Greater than 0

If no value can be returned (such as if only side effects like println are used inside the logical
branches), then the return type will be Unit:

val result = if(x > 0) println("Greater than 0")
// result: Unit = ()

if expressions in Scala are similar to how the ternary operator in Java functions. Because of this
similarity, there is no such operator in Scala: it would be redundant.

Curly braces can be omitted in an if expression if the content is a single line.

Read If Expressions online: https://riptutorial.com/scala/topic/4171/if-expressions

https://riptutorial.com/ 75

http://www.riptutorial.com/java/example/4431/the-conditional-operator------
https://riptutorial.com/scala/topic/4171/if-expressions

Chapter 20: Implicits

Syntax

implicit val x: T = ???•

Remarks

Implicit classes allow custom methods to be added to existing types, without having to modify their
code, thereby enriching types without needing control of the code.

Using implicit types to enrich an existing class is often referred to as an 'enrich my library' pattern.

Restrictions on Implicit Classes

Implicit classes may only exist within another class, object, or trait.1.
Implicit classes may only have one non-implicit primary constructor parameter.2.
There may not be another object, class, trait, or class member definition within the same
scope that has the same name as the implicit class.

3.

Examples

Implicit Conversion

An implicit conversion allows the compiler to automatically convert an object of one type to another
type. This allows the code to treat an object as an object of another type.

case class Foo(i: Int)

// without the implicit
Foo(40) + 2 // compilation-error (type mismatch)

// defines how to turn a Foo into an Int
implicit def fooToInt(foo: Foo): Int = foo.i

// now the Foo is converted to Int automatically when needed
Foo(40) + 2 // 42

The conversion is one-way: in this case you cannot convert 42 back to Foo(42). To do so, a second
implicit conversion must be defined:

implicit def intToFoo(i: Int): Foo = Foo(i)

Note that this is the mechanism by which a float value can be added to an integer value, for
instance.

Implicit conversions should be used sparingly because they obfuscate what is

https://riptutorial.com/ 76

happening. It is a best practice to use an explicit conversion via a method call unless
there's a tangible readability gain from using an implicit conversion.

There is no significant performance impact of implicit conversions.

Scala automatically imports a variety of implicit conversions in scala.Predef, including all
conversions from Java to Scala and back. These are included by default in any file compilation.

Implicit Parameters

Implicit parameters can be useful if a parameter of a type should be defined once in the scope and
then applied to all functions that use a value of that type.

A normal function call looks something like this:

// import the duration methods
import scala.concurrent.duration._

// a normal method:
def doLongRunningTask(timeout: FiniteDuration): Long = timeout.toMillis

val timeout = 1.second
// timeout: scala.concurrent.duration.FiniteDuration = 1 second

// to call it
doLongRunningTask(timeout) // 1000

Now lets say we have some methods that all have a timeout duration, and we want to call all those
methods using the same timeout. We can define timeout as an implicit variable.

// import the duration methods
import scala.concurrent.duration._

// dummy methods that use the implicit parameter
def doLongRunningTaskA()(implicit timeout: FiniteDuration): Long = timeout.toMillis
def doLongRunningTaskB()(implicit timeout: FiniteDuration): Long = timeout.toMillis

// we define the value timeout as implicit
implicit val timeout: FiniteDuration = 1.second

// we can now call the functions without passing the timeout parameter
doLongRunningTaskA() // 1000
doLongRunningTaskB() // 1000

The way this works is that the scalac compiler looks for a value in the scope which is marked as
implicit and whose type matches the one of the implicit parameter. If it finds one, it will apply it
as the implicit parameter.

Note that this won't work if you define two or even more implicits of the same type in
the scope.

To customize the error message, use the implicitNotFound annotation on the type:

https://riptutorial.com/ 77

http://www.scala-lang.org/api/2.12.x/scala/Predef$.html

@annotation.implicitNotFound(msg = "Select the proper implicit value for type M[${A}]!")
case class M[A](v: A) {}

def usage[O](implicit x: M[O]): O = x.v

//Does not work because no implicit value is present for type `M[Int]`
//usage[Int] //Select the proper implicit value for type M[Int]!
implicit val first: M[Int] = M(1)
usage[Int] //Works when `second` is not in scope
implicit val second: M[Int] = M(2)
//Does not work because more than one implicit values are present for the type `M[Int]`
//usage[Int] //Select the proper implicit value for type M[Int]!

A timeout is a usual use case for this, or for example in Akka the ActorSystem is (most of the
times) always the same, so it's usually passed implicitly. Another use case would be library
design, most commonly with FP libraries that rely on typeclasses (like scalaz, cats or rapture).

It's generally considered bad practice to use implicit parameters with basic types like
Int, Long, String etc. since it will create confusion and make the code less readable.

Implicit Classes

Implicit classes make it possible to add new methods to previously defined classes.

The String class has no method withoutVowels. This can be added like so:

object StringUtil {
 implicit class StringEnhancer(str: String) {
 def withoutVowels: String = str.replaceAll("[aeiou]", "")
 }
}

The implicit class has a single constructor parameter (str) with the type that you would like to
extend (String) and contains the method you would like to "add" to the type (withoutVowels). The
newly defined methods can now be used directly on the enhanced type (when the enhanced type
is in implicit scope):

import StringUtil.StringEnhancer // Brings StringEnhancer into implicit scope

println("Hello world".withoutVowels) // Hll wrld

Under the hood, implicit classes define an implicit conversion from the enhanced type to the
implicit class, like this:

implicit def toStringEnhancer(str: String): StringEnhancer = new StringEnhancer(str)

Implicit classes are often defined as Value classes to avoid creating runtime objects and thus
removing the runtime overhead:

implicit class StringEnhancer(val str: String) extends AnyVal {
 /* conversions code here */

https://riptutorial.com/ 78

http://akka.io/
https://github.com/scalaz/scalaz
https://github.com/typelevel/cats
https://github.com/propensive/rapture
http://www.riptutorial.com/scala/example/5606/implicit-conversion
http://docs.scala-lang.org/overviews/core/value-classes.html

}

With the above improved definition, a new instance of StringEnhancer doesn't need to be created
every time the withoutVowels method gets invoked.

Resolving Implicit Parameters Using 'implicitly'

Assuming an implicit parameter list with more than one implicit parameter:

case class Example(p1:String, p2:String)(implicit ctx1:SomeCtx1, ctx2:SomeCtx2)

Now, assuming that one of the implicit instances is not available (SomeCtx1) while all other implicit
instances needed are in-scope, to create an instance of the class an instance of SomeCtx1 must be
provided.

This can be done while preserving each other in-scope implicit instance using the implicitly
keyword:

Example("something","somethingElse")(new SomeCtx1(), implicitly[SomeCtx2])

Implicits in the REPL

To view all the implicits in-scope during a REPL session:

scala> :implicits

To also include implicit conversions defined in Predef.scala:

scala> :implicits -v

If one has an expression and wishes to view the effect of all rewrite rules that apply to it (including
implicits):

scala> reflect.runtime.universe.reify(expr) // No quotes. reify is a macro operating directly
on code.

(Example:

scala> import reflect.runtime.universe._
scala> reify(Array("Alice", "Bob", "Eve").mkString(", "))
resX: Expr[String] = Expr[String](Predef.refArrayOps(Array.apply("Alice", "Bob",
"Eve")(Predef.implicitly)).mkString(", "))

)

Read Implicits online: https://riptutorial.com/scala/topic/1732/implicits

https://riptutorial.com/ 79

https://riptutorial.com/scala/topic/1732/implicits

Chapter 21: Java Interoperability

Examples

Converting Scala Collections to Java Collections and vice versa

When you need to pass a collection into a Java method:

import scala.collection.JavaConverters._

val scalaList = List(1, 2, 3)
JavaLibrary.process(scalaList.asJava)

If the Java code returns a Java collection, you can turn it into a Scala collection in a similar
manner:

import scala.collection.JavaConverters._

val javaCollection = JavaLibrary.getList
val scalaCollection = javaCollection.asScala

Note that these are decorators, so they merely wrap the underlying collections in a Scala or Java
collection interface. Therefore, the calls .asJava and .asScala do not copy the collections.

Arrays

Arrays are regular JVM arrays with a twist that they are treated as invariant and have special
constructors and implicit conversions. Construct them without the new keyword.

 val a = Array("element")

Now a has type Array[String].

 val acs: Array[CharSequence] = a
 //Error: type mismatch; found : Array[String] required: Array[CharSequence]

Although String is convertible to CharSequence, Array[String] is not convertible to
Array[CharSequence].

You can use an Array like other collections, thanks to an implicit conversion to TraversableLike
ArrayOps:

 val b: Array[Int] = a.map(_.length)

Most of the Scala collections (TraversableOnce) have a toArray method taking an implicit ClassTag to
construct the result array:

https://riptutorial.com/ 80

 List(0).toArray
 //> res1: Array[Int] = Array(0)

This makes it easy to use any TraversableOnce in your Scala code and then pass it to Java code
which expects an array.

Scala and Java type conversions

Scala offers implicit conversions between all the major collection types in the JavaConverters
object.

The following type conversions are bidirectional.

Scala Type Java Type

Iterator java.util.Iterator

Iterator java.util.Enumeration

Iterator java.util.Iterable

Iterator java.util.Collection

mutable.Buffer java.util.List

mutable.Set java.util.Set

mutable.Map java.util.Map

mutable.ConcurrentMap java.util.concurrent.ConcurrentMap

Certain other Scala collections can also be converted to Java, but do not have a conversion back
to the original Scala type:

Scala Type Java Type

Seq java.util.List

mutable.Seq java.util.List

Set java.util.Set

Map java.util.Map

Reference:

Conversions Between Java and Scala Collections

Functional Interfaces for Scala functions - scala-java8-compat

https://riptutorial.com/ 81

http://docs.scala-lang.org/overviews/collections/conversions-between-java-and-scala-collections.html

A Java 8 compatibility kit for Scala.

Most examples are copied from Readme

Converters between scala.FunctionN and java.util.function

import java.util.function._
import scala.compat.java8.FunctionConverters._

val foo: Int => Boolean = i => i > 7
def testBig(ip: IntPredicate) = ip.test(9)
println(testBig(foo.asJava)) // Prints true

val bar = new UnaryOperator[String]{ def apply(s: String) = s.reverse }
List("cod", "herring").map(bar.asScala) // List("doc", "gnirrih")

def testA[A](p: Predicate[A])(a: A) = p.test(a)
println(testA(asJavaPredicate(foo))(4)) // Prints false

Converters between scala.Option and java.util classes Optional, OptionalDouble,
OptionalInt, and OptionalLong.

import scala.compat.java8.OptionConverters._

 class Test {
 val o = Option(2.7)
 val oj = o.asJava // Optional[Double]
 val ojd = o.asPrimitive // OptionalDouble
 val ojds = ojd.asScala // Option(2.7) again
 }

Converters from Scala collections to Java 8 Streams

import java.util.stream.IntStream

import scala.compat.java8.StreamConverters._
import scala.compat.java8.collectionImpl.{Accumulator, LongAccumulator}

 val m = collection.immutable.HashMap("fish" -> 2, "bird" -> 4)
 val parStream: IntStream = m.parValueStream
 val s: Int = parStream.sum
 // 6, potientially computed in parallel
 val t: List[String] = m.seqKeyStream.toScala[List]
 // List("fish", "bird")
 val a: Accumulator[(String, Int)] = m.accumulate // Accumulator[(String, Int)]

 val n = a.stepper.fold(0)(_ + _._1.length) +
 a.parStream.count // 8 + 2 = 10

 val b: LongAccumulator = java.util.Arrays.stream(Array(2L, 3L, 4L)).accumulate
 // LongAccumulator
 val l: List[Long] = b.to[List] // List(2L, 3L, 4L)

Read Java Interoperability online: https://riptutorial.com/scala/topic/2441/java-interoperability

https://riptutorial.com/ 82

https://github.com/scala/scala-java8-compat
https://github.com/scala/scala-java8-compat/blob/master/README.md
https://riptutorial.com/scala/topic/2441/java-interoperability

Chapter 22: JSON

Examples

JSON with spray-json

spray-json provides an easy way to work with JSON. Using implicit formats, everything happens
"behind the scenes":

Make the Library Available with SBT

To manage spray-json with SBT managed library dependencies:

libraryDependencies += "io.spray" %% "spray-json" % "1.3.2"

Note that the last parameter, the version number (1.3.2), may be different in different projects.

The spray-json library is hosted at repo.spray.io.

Import the Library

import spray.json._
import DefaultJsonProtocol._

The default JSON protocol DefaultJsonProtocol contains formats for all basic types. To provide
JSON functionality for custom types, either use convenience builders for formats or write formats
explicitly.

Read JSON

// generates an intermediate JSON representation (abstract syntax tree)
val res = """{ "foo": "bar" }""".parseJson // JsValue = {"foo":"bar"}

res.convertTo[Map[String, String]] // Map(foo -> bar)

Write JSON

val values = List("a", "b", "c")
values.toJson.prettyPrint // ["a", "b", "c"]

https://riptutorial.com/ 83

https://github.com/spray/spray-json
http://www.riptutorial.com/sbt/topic/6760/dependencies
http://repo.spray.io/

DSL

DSL is not supported.

Read-Write to Case Classes

The following example shows how to serialize a case class object into the JSON format.

case class Address(street: String, city: String)
case class Person(name: String, address: Address)

// create the formats and provide them implicitly
implicit val addressFormat = jsonFormat2(Address)
implicit val personFormat = jsonFormat2(Person)

// serialize a Person
Person("Fred", Address("Awesome Street 9", "SuperCity"))
val fredJsonString = fred.toJson.prettyPrint

This results in the following JSON:

{
 "name": "Fred",
 "address": {
 "street": "Awesome Street 9",
 "city": "SuperCity"
 }
}

That JSON can, in turn, be deserialized back into an object:

val personRead = fredJsonString.parseJson.convertTo[Person]
//Person(Fred,Address(Awesome Street 9,SuperCity))

Custom Format

Write a custom JsonFormat if a special serialization of a type is required. For example, if the field
names are different in Scala than in JSON. Or, if different concrete types are instantiated based on
the input.

implicit object BetterPersonFormat extends JsonFormat[Person] {
 // deserialization code
 override def read(json: JsValue): Person = {
 val fields = json.asJsObject("Person object expected").fields
 Person(
 name = fields("name").convertTo[String],
 address = fields("home").convertTo[Address]
)
 }

https://riptutorial.com/ 84

https://github.com/spray/spray-json#providing-jsonformats-for-other-types
https://github.com/spray/spray-json#providing-jsonformats-for-other-types

 // serialization code
 override def write(person: Person): JsValue = JsObject(
 "name" -> person.name.toJson,
 "home" -> person.address.toJson
)
}

JSON with Circe

Circe provides compile-time derived codecs for en/decode json into case classes. A simple
example looks like this:

import io.circe._
import io.circe.generic.auto._
import io.circe.parser._
import io.circe.syntax._

case class User(id: Long, name: String)

val user = User(1, "John Doe")

// {"id":1,"name":"John Doe"}
val json = user.asJson.noSpaces

// Right(User(1L, "John Doe"))
val res: Either[Error, User] = decode[User](json)

JSON with play-json

play-json uses implicit formats as other json frameworks

SBT dependency: libraryDependencies += ""com.typesafe.play" %% "play-json" % "2.4.8"

import play.api.libs.json._
import play.api.libs.functional.syntax._ // if you need DSL

DefaultFormat contains defaul formats to read/write all basic types. To provide JSON functionality
for your own types, you can either use convenience builders for formats or write formats explicitly.

Read json

// generates an intermediate JSON representation (abstract syntax tree)
val res = Json.parse("""{ "foo": "bar" }""") // JsValue = {"foo":"bar"}

res.as[Map[String, String]] // Map(foo -> bar)
res.validate[Map[String, String]] //JsSuccess(Map(foo -> bar),)

Write json

val values = List("a", "b", "c")
Json.stringify(Json.toJson(values)) // ["a", "b", "c"]

https://riptutorial.com/ 85

https://github.com/travisbrown/circe

DSL

val json = parse("""{ "foo": [{"foo": "bar"}]}""")
(json \ "foo").get //Simple path: [{"foo":"bar"}]
(json \\ "foo") //Recursive path:List([{"foo":"bar"}], "bar")
(json \ "foo")(0).get //Index lookup (for JsArrays): {"foo":"bar"}

As always prefer pattern matching against JsSuccess/JsError and try to avoid .get, array(i) calls.

Read and write to case class

case class Address(street: String, city: String)
case class Person(name: String, address: Address)

// create the formats and provide them implicitly
implicit val addressFormat = Json.format[Address]
implicit val personFormat = Json.format[Person]

// serialize a Person
val fred = Person("Fred", Address("Awesome Street 9", "SuperCity"))
val fredJsonString = Json.stringify(Json.toJson(Json.toJson(fred)))

val personRead = Json.parse(fredJsonString).as[Person] //Person(Fred,Address(Awesome Street
9,SuperCity))

Own Format

You can write your own JsonFormat if you require a special serialization of your type (e.g. name
the fields differently in scala and Json or instantiate different concrete types based on the input)

case class Address(street: String, city: String)

// create the formats and provide them implicitly
implicit object AddressFormatCustom extends Format[Address] {
 def reads(json: JsValue): JsResult[Address] = for {
 street <- (json \ "Street").validate[String]
 city <- (json \ "City").validate[String]
 } yield Address(street, city)

 def writes(x: Address): JsValue = Json.obj(
 "Street" -> x.street,
 "City" -> x.city
)
}
// serialize an address
val address = Address("Awesome Street 9", "SuperCity")
val addressJsonString = Json.stringify(Json.toJson(Json.toJson(address)))
//{"Street":"Awesome Street 9","City":"SuperCity"}

val addressRead = Json.parse(addressJsonString).as[Address]
//Address(Awesome Street 9,SuperCity)

Alternative

If the json doesn't exactly match your case class fields (isAlive in case class vs is_alive in json):

https://riptutorial.com/ 86

case class User(username: String, friends: Int, enemies: Int, isAlive: Boolean)

object User {

 import play.api.libs.functional.syntax._
 import play.api.libs.json._

 implicit val userReads: Reads[User] = (
 (JsPath \ "username").read[String] and
 (JsPath \ "friends").read[Int] and
 (JsPath \ "enemies").read[Int] and
 (JsPath \ "is_alive").read[Boolean]
) (User.apply _)
}

Json with optional fields

case class User(username: String, friends: Int, enemies: Int, isAlive: Option[Boolean])

object User {

 import play.api.libs.functional.syntax._
 import play.api.libs.json._

 implicit val userReads: Reads[User] = (
 (JsPath \ "username").read[String] and
 (JsPath \ "friends").read[Int] and
 (JsPath \ "enemies").read[Int] and
 (JsPath \ "is_alive").readNullable[Boolean]
) (User.apply _)
}

Reading timestamps from json

Imagine you have a Json object, with a Unix timestamp field:

{
 "field": "example field",
 "date": 1459014762000
}

solution:

case class JsonExampleV1(field: String, date: DateTime)
object JsonExampleV1{
 implicit val r: Reads[JsonExampleV1] = (
 (__ \ "field").read[String] and
 (__ \ "date").read[DateTime](Reads.DefaultJodaDateReads)
)(JsonExampleV1.apply _)
}

Reading custom case classes

Now, if you do wrap your object identifiers for type safety, you will enjoy this. See the following
json object:

https://riptutorial.com/ 87

{
 "id": 91,
 "data": "Some data"
}

and the corresponding case classes:

case class MyIdentifier(id: Long)

case class JsonExampleV2(id: MyIdentifier, data: String)

Now you just need to read the primitive type (Long), and map to your idenfier:

object JsonExampleV2 {
 implicit val r: Reads[JsonExampleV2] = (
 (__ \ "id").read[Long].map(MyIdentifier) and
 (__ \ "data").read[String]
)(JsonExampleV2.apply _)
}

code at https://github.com/pedrorijo91/scala-play-json-examples

JSON with json4s

json4s uses implicit formats as other json frameworks.

SBT dependency:

libraryDependencies += "org.json4s" %% "json4s-native" % "3.4.0"
//or
libraryDependencies += "org.json4s" %% "json4s-jackson" % "3.4.0"

Imports

import org.json4s.JsonDSL._
import org.json4s._
import org.json4s.native.JsonMethods._

implicit val formats = DefaultFormats

DefaultFormats contains default formats to read/write all basic types.

Read json

// generates an intermediate JSON representation (abstract syntax tree)
val res = parse("""{ "foo": "bar" }""") // JValue = {"foo":"bar"}
res.extract[Map[String, String]] // Map(foo -> bar)

Write json

val values = List("a", "b", "c")

https://riptutorial.com/ 88

https://github.com/pedrorijo91/scala-play-json-examples

compact(render(values)) // ["a", "b", "c"]

DSL

json \ "foo" //Simple path: JArray(List(JObject(List((foo,JString(bar))))))
json \\ "foo" //Recursive path: ~List([{"foo":"bar"}], "bar")
(json \ "foo")(0) //Index lookup (for JsArrays): JObject(List((foo,JString(bar))))
("foo" -> "bar") ~ ("field" -> "value") // {"foo":"bar","field":"value"}

Read and write to case class

import org.json4s.native.Serialization.{read, write}

case class Address(street: String, city: String)
val addressString = write(Address("Awesome stree", "Super city"))
// {"street":"Awesome stree","city":"Super city"}

read[Address](addressString) // Address(Awesome stree,Super city)
//or
parse(addressString).extract[Address]

Read and Write heterogenous lists

To serialize and deserialize an heterogenous (or polymorphic) list, specific type-hints need to be
provided.

trait Location
case class Street(name: String) extends Location
case class City(name: String, zipcode: String) extends Location
case class Address(street: Street, city: City) extends Location
case class Locations (locations : List[Location])

implicit val formats = Serialization.formats(ShortTypeHints(List(classOf[Street],
classOf[City], classOf[Address])))

val locationsString = write(Locations(Street("Lavelle Street"):: City("Super city","74658")))

read[Locations](locationsString)

Own Format

class AddressSerializer extends CustomSerializer[Address](format => (
 {
 case JObject(JField("Street", JString(s)) :: JField("City", JString(c)) :: Nil) =>
 new Address(s, c)
 },
 {
 case x: Address => ("Street" -> x.street) ~ ("City" -> x.city)
 }
))

implicit val formats = DefaultFormats + new AddressSerializer
val str = write[Address](Address("Awesome Stree", "Super City"))
// {"Street":"Awesome Stree","City":"Super City"}
read[Address](str)

https://riptutorial.com/ 89

// Address(Awesome Stree,Super City)

Read JSON online: https://riptutorial.com/scala/topic/2348/json

https://riptutorial.com/ 90

https://riptutorial.com/scala/topic/2348/json

Chapter 23: Macros

Introduction

Macros are a form of compile time metaprogramming. Certain elements of Scala code, such as
annotations and methods, can be made to transform other code when they are compiled. Macros
are ordinary Scala code that operate on data types that represent other code. The [Macro
Paradise][] plugin extends the abilities of macros beyond the base language. [Macro Paradise]:
http://docs.scala-lang.org/overviews/macros/paradise.html

Syntax

def x() = macro x_impl // x is a macro, where x_impl is used to transform code•
def macroTransform(annottees: Any*): Any = macro impl // Use in annotations to make them
macros

•

Remarks

Macros are a language feature that need to be enabled, either by importing scala.language.macros
or with the compiler option -language:macros. Only macro definitions require this; code that uses
macros need not do it.

Examples

Macro Annotation

This simple macro annotation outputs the annotated item as-is.

import scala.annotation.{compileTimeOnly, StaticAnnotation}
import scala.reflect.macros.whitebox.Context

@compileTimeOnly("enable macro paradise to expand macro annotations")
class noop extends StaticAnnotation {
 def macroTransform(annottees: Any*): Any = macro linkMacro.impl
}

object linkMacro {
 def impl(c: Context)(annottees: c.Expr[Any]*): c.Expr[Any] = {
 import c.universe._

 c.Expr[Any](q"{..$annottees}")
 }
}

The @compileTimeOnly annotation generates an error with a message indicating that the paradise
compiler plugin must be included to use this macro. Instructions to include this via SBT are here.

https://riptutorial.com/ 91

http://docs.scala-lang.org/overviews/macros/paradise.html
http://docs.scala-lang.org/overviews/macros/paradise.html
http://docs.scala-lang.org/overviews/macros/paradise.html
http://www.riptutorial.com/sbt/example/24879/configure-macros-in-a-project

You can use the above-defined macro like this:

@noop
case class Foo(a: String, b: Int)

@noop
object Bar {
 def f(): String = "hello"
}

@noop
def g(): Int = 10

Method Macros

When a method is defined to be a macro, the compiler takes the code that is passed as its
argument and turns it into an AST. It then invokes the macro implementation with that AST, and it
returns a new AST that is then spliced back to its call site.

import reflect.macros.blackbox.Context

object Macros {
 // This macro simply sees if the argument is the result of an addition expression.
 // E.g. isAddition(1+1) and isAddition("a"+1).
 // but !isAddition(1+1-1), as the addition is underneath a subtraction, and also
 // !isAddition(x.+), and !isAddition(x.+(a,b)) as there must be exactly one argument.
 def isAddition(x: Any): Boolean = macro isAddition_impl

 // The signature of the macro implementation is the same as the macro definition,
 // but with a new Context parameter, and everything else is wrapped in an Expr.
 def isAddition_impl(c: Context)(expr: c.Expr[Any]): c.Expr[Boolean] = {
 import c.universe._ // The universe contains all the useful methods and types
 val plusName = TermName("+").encodedName // Take the name + and encode it as $plus
 expr.tree match { // Turn expr into an AST representing the code in isAddition(...)
 case Apply(Select(_, `plusName`), List(_)) => reify(true)
 // Pattern match the AST to see whether we have an addition
 // Above we match this AST
 // Apply (function application)
 // / \
 // Select List(_) (exactly one argument)
 // (selection ^ of entity, basically the . in x.y)
 // / \
 // _ \
 // `plusName` (method named +)
 case _ => reify(false)
 // reify is a macro you use when writing macros
 // It takes the code given as its argument and creates an Expr out of it
 }
 }
}

It is also possible to have macros that take Trees as arguments. Like how reify is used to create
Exprs, the q (for quasiquote) string interpolator lets us create and deconstruct Trees. Note that we
could have used q above (expr.tree is, surprise, a Tree itself) too, but didn't for demonstrative
purposes.

https://riptutorial.com/ 92

// No Exprs, just Trees
def isAddition_impl(c: Context)(tree: c.Tree): c.Tree = {
 import c.universe._
 tree match {
 // q is a macro too, so it must be used with string literals.
 // It can destructure and create Trees.
 // Note how there was no need to encode + this time, as q is smart enough to do it itself.
 case q"${_} + ${_}" => q"true"
 case _ => q"false"
 }
}

Errors in Macros

Macros can trigger compiler warnings and errors through the use of their Context.

Say we're a particularly overzealous when it comes to bad code, and we want to mark every
instance of technical debt with a compiler info message (let's not think about how bad this idea is).
We can use a macro that does nothing except emit such a message.

import reflect.macros.blackbox.Context

def debtMark(message: String): Unit = macro debtMark_impl
def debtMarkImpl(c: Context)(message: c.Tree): c.Tree = {
 message match {
 case Literal(Constant(msg: String)) => c.info(c.enclosingPosition, msg, false)
 // false above means "do not force this message to be shown unless -verbose"
 case _ => c.abort(c.enclosingPosition, "Message must be a
string literal.")
 // Abort causes the compilation to completely fail. It's not even a compile error, where
 // multiple can stack up; this just kills everything.
 }
 q"()" // At runtime this method does nothing, so we return ()
}

Additionally, instead of using ??? to mark unimplemented code, we can create two macros, !!! and
?!?, that serve the same purpose, but emit compiler warnings. ?!? will cause a warning to be
issued, and !!! will cause an outright error.

import reflect.macros.blackbox.Context

def ?!? : Nothing = macro impl_?!?
def !!! : Nothing = macro impl_!!!

def impl_?!?(c: Context): c.Tree = {
 import c.universe._
 c.warning(c.enclosingPosition, "Unimplemented!")
 q"${termNames.ROOTPKG}.scala.Predef.???"
 // If someone were to shadow the scala package, scala.Predef.??? would not work, as it
 // would end up referring to the scala that shadows and not the actual scala.
 // ROOTPKG is the very root of the tree, and acts like it is imported anew in every
 // expression. It is actually named _root_, but if someone were to shadow it, every
 // reference to it would be an error. It allows us to safely access ??? and know that
 // it is the one we want.
}

https://riptutorial.com/ 93

def impl_!!!(c: Context): c.Tree = {
 import c.universe._
 c.error(c.enclosingPosition, "Unimplemented!")
 q"${termNames.ROOTPKG}.scala.Predef.???"
}

Read Macros online: https://riptutorial.com/scala/topic/3808/macros

https://riptutorial.com/ 94

https://riptutorial.com/scala/topic/3808/macros

Chapter 24: Monads

Examples

Monad Definition

Informally, a monad is a container of elements, notated as F[_], packed with 2 functions: flatMap
(to transform this container) and unit (to create this container).

Common library examples include List[T], Set[T] and Option[T].

Formal definition

Monad M is a parametric type M[T] with two operations flatMap and unit, such as:

trait M[T] {
 def flatMap[U](f: T => M[U]): M[U]
}

def unit[T](x: T): M[T]

These functions must satisfy three laws:

Associativity: (m flatMap f) flatMap g = m flatMap (x => f(x) flatMap g)
That is, if the sequence is unchanged you may apply the terms in any order. Thus, applying m
to f, and then applying the result to g will yield the same result as applying f to g, and then
applying m to that result.

1.

Left unit: unit(x) flatMap f == f(x)
That is, the unit monad of x flat-mapped across f is equivalent to applying f to x.

2.

Right unit: m flatMap unit == m
This is an 'identity': any monad flat-mapped against unit will return a monad equivalent to
itself.

3.

Example:

val m = List(1, 2, 3)
def unit(x: Int): List[Int] = List(x)
def f(x: Int): List[Int] = List(x * x)
def g(x: Int): List[Int] = List(x * x * x)
val x = 1

Associativity:1.

(m flatMap f).flatMap(g) == m.flatMap(x => f(x) flatMap g) //Boolean = true
//Left side:
List(1, 4, 9).flatMap(g) // List(1, 64, 729)
//Right side:
 m.flatMap(x => (x * x) * (x * x) * (x * x)) //List(1, 64, 729)

https://riptutorial.com/ 95

https://en.wikipedia.org/wiki/Parametric_polymorphism

Left unit2.

unit(x).flatMap(x => f(x)) == f(x)
List(1).flatMap(x => x * x) == 1 * 1

Right unit3.

//m flatMap unit == m
m.flatMap(unit) == m
List(1, 2, 3).flatMap(x => List(x)) == List(1,2,3) //Boolean = true

Standard Collections are Monads

Most of the standard collections are monads (List[T], Option[T]), or monad-like (Either[T],
Future[T]). These collections can be easily combined together within for comprehensions (which
are an equivalent way of writing flatMap transformations):

val a = List(1, 2, 3)
val b = List(3, 4, 5)
for {
 i <- a
 j <- b
} yield(i * j)

The above is equivalent to:

a flatMap {
 i => b map {
 j => i * j
 }
}

Because a monad preserves the data structure and only acts on the elements within that structure,
we can endless chain monadic datastructures, as shown here in a for-comprehension.

Read Monads online: https://riptutorial.com/scala/topic/4112/monads

https://riptutorial.com/ 96

https://riptutorial.com/scala/topic/4112/monads

Chapter 25: Operator Overloading

Examples

Defining Custom Infix Operators

In Scala operators (such as +, -, *, ++, etc.) are just methods. For instance, 1 + 2 can be written as
1.+(2). These sorts of methods are called 'infix operators'.

This means custom methods can be defined on your own types, reusing these operators:

class Matrix(rows: Int, cols: Int, val data: Seq[Seq[Int]]){
 def +(that: Matrix) = {
 val newData = for (r <- 0 until rows) yield
 for (c <- 0 until cols) yield this.data(r)(c) + that.data(r)(c)

 new Matrix(rows, cols, newData)
 }
}

These operators defined-as-methods can be used like so:

val a = new Matrix(2, 2, Seq(Seq(1,2), Seq(3,4)))
val b = new Matrix(2, 2, Seq(Seq(1,2), Seq(3,4)))

// could also be written a.+(b)
val sum = a + b

Note that infix operators can only have a single argument; the object before the operator will call
it's own operator on the object after the operator. Any Scala method with a single argument can be
used as an infix operator.

This should be used with parcimony. It is generally considered good practice only if
your own method does exactly what one would expect from that operator. In case of
doubt, use a more conservative naming, like add instead of +.

Defining Custom Unary Operators

Unary operators can be defined by prepending the operator with unary_. Unary operators are
limited to unary_+, unary_-, unary_! and unary_~:

class Matrix(rows: Int, cols: Int, val data: Seq[Seq[Int]]){
 def +(that: Matrix) = {
 val newData = for (r <- 0 until rows) yield
 for (c <- 0 until cols) yield this.data(r)(c) + that.data(r)(c)

 new Matrix(rows, cols, newData)
 }

 def unary_- = {

https://riptutorial.com/ 97

http://docs.scala-lang.org/tutorials/tour/operators.html

 val newData = for (r <- 0 until rows) yield
 for (c <- 0 until cols) yield this.data(r)(c) * -1

 new Matrix(rows, cols, newData)
 }
}

The unary operator can be used as follows:

val a = new Matrix(2, 2, Seq(Seq(1,2), Seq(3,4)))
val negA = -a

This should be used with parcimony. Overloading a unary operator with a definition that
is not what one would expect can lead to code confusion.

Read Operator Overloading online: https://riptutorial.com/scala/topic/2271/operator-overloading

https://riptutorial.com/ 98

https://riptutorial.com/scala/topic/2271/operator-overloading

Chapter 26: Operators in Scala

Examples

Built-in Operators

Scala has the following built-in operators (methods/language elements with predefined
precedence rules):

Type Symbol Example

Arithmetic operators + - * / % a + b

Relational operators == != > < >= <= a > b

Logical operators && & || | ! a && b

Bit-wise operators & | ^ ~ << >> >>> a & b, ~a, a >>> b

Assignment operators = += -= *= /= %= <<= >>= &= ^= |= a += b

Scala operators have the same meaning as in Java

Note: methods ending with : bind to the right (and right associative), so the call with
list.::(value) can be written as value :: list with operator syntax. (1 :: 2 :: 3 :: Nil is the
same as 1 :: (2 :: (3 :: Nil)))

Operator Overloading

In Scala you can define your own operators:

class Team {
 def +(member: Person) = ...
}

With the above defines you can use it like:

ITTeam + Jack

or

ITTeam.+(Jack)

To define unary operators you can prefix it with unary_. E.g. unary_!

class MyBigInt {

https://riptutorial.com/ 99

http://www.riptutorial.com/java/topic/176/operators

 def unary_! = ...
}

var a: MyBigInt = new MyBigInt
var b = !a

Operator Precedence

Category Operator Associativity

Postfix () [] Left to right

Unary ! ~ Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift >> >>> << Left to right

Relational > >= < <= Left to right

Equality == != Left to right

Bitwise and & Left to right

Bitwise xor ^ Left to right

Bitwise or | Left to right

Logical and && Left to right

Logical or || Left to right

Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left

Comma , Left to right

Programming in Scala gives the following outline based on the 1st character in the operator. E.g. >
is the 1st character in the operator >>>:

Operator

(all other special characters)

* / %

+ -

:

https://riptutorial.com/ 100

http://www.artima.com/pins1ed/basic-types-and-operations.html

Operator

= !

< >

&

^

|

(all letters)

(all assignment operators)

The one exception to this rule concerns assignment operators, e.g. +=, *=, etc. If an operator ends
with an equal character (=) and is not one of the comparison operators <=, >=, == or !=, then the
precedence of the operator is the same as simple assignment. In other words, lower than that of
any other operator.

Read Operators in Scala online: https://riptutorial.com/scala/topic/6604/operators-in-scala

https://riptutorial.com/ 101

https://riptutorial.com/scala/topic/6604/operators-in-scala

Chapter 27: Option Class

Syntax

class Some[+T](value: T) extends Option[T]•

object None extends Option[Nothing]•

Option[T](value: T)

Constructor to create either a Some(value) or None as appropriate for the value provided.

•

Examples

Options as Collections

Options have some useful higher-order functions that can be easily understood by viewing options
as collections with zero or one items - where None behaves like the empty collection, and Some(x)
behaves like a collection with a single item, x.

val option: Option[String] = ???

option.map(_.trim) // None if option is None, Some(s.trim) if Some(s)
option.foreach(println) // prints the string if it exists, does nothing otherwise
option.forall(_.length > 4) // true if None or if Some(s) and s.length > 4
option.exists(_.length > 4) // true if Some(s) and s.length > 4
option.toList // returns an actual list

Using Option Instead of Null

In Java (and other languages), using null is a common way of indicating that there is no value
attached to a reference variable. In Scala, using Option is preferred over using null. Option wraps
values that might be null.

None is a subclass of Option wrapping a null reference. Some is a subclass of Option wrapping a non-
null reference.

Wrapping a reference is easy:

val nothing = Option(null) // None
val something = Option("Aren't options cool?") // Some("Aren't options cool?")

This is typical code when calling a Java library that might return a null reference:

val resource = Option(JavaLib.getResource())
// if null, then resource = None
// else resource = Some(resource)

https://riptutorial.com/ 102

If getResource() returns a null value, resource will be a None object. Otherwise it will be a
Some(resource) object. The preferred way to handle an Option is using higher order functions
available within the Option type. For example if you want to check if your value is not None (similar
to checking if value == null), you would use the isDefined function:

val resource: Option[Resource] = Option(JavaLib.getResource())
if (resource.isDefined) { // resource is `Some(_)` type
 val r: Resource = resource.get
 r.connect()
}

Similarly, to check for a null reference you can do this:

val resource: Option[Resource] = Option(JavaLib.getResource())
if (resource.isEmpty) { // resource is `None` type.
 System.out.println("Resource is empty! Cannot connect.")
}

It is preferred that you treat conditional execution on the wrapped value of an Option (without using
the 'exceptional' Option.get method) by treating the Option as a monad and using foreach:

val resource: Option[Resource] = Option(JavaLib.getResource())
resource foreach (r => r.connect())
// if r is defined, then r.connect() is run
// if r is empty, then it does nothing

If a Resource instance is required (versus an Option[Resource] instance), you can still use Option to
protect against null values. Here the getOrElse method provides a default value:

lazy val defaultResource = new Resource()
val resource: Resource = Option(JavaLib.getResource()).getOrElse(defaultResource)

Java code won't readily handle Scala's Option, so when passing values to Java code it is good
form to unwrap an Option, passing null or a sensible default where appropriate:

val resource: Option[Resource] = ???
JavaLib.sendResource(resource.orNull)
JavaLib.sendResource(resource.getOrElse(defaultResource)) //

Basics

An Option is a data structure that contains either a single value, or no value at all. An Option can be
thought of as collections of zero or one elements.

Option is an abstract class with two children: Some and None.

Some contains a single value, and None contains no value.

Option is useful in expressions that would otherwise use null to represent the lack of a concrete

https://riptutorial.com/ 103

value. This protects against a NullPointerException, and allows the composition of many
expressions that might not return a value using combinators such as Map, FlatMap, etc.

Example with Map

val countries = Map(
 "USA" -> "Washington",
 "UK" -> "London",
 "Germany" -> "Berlin",
 "Netherlands" -> "Amsterdam",
 "Japan" -> "Tokyo"
)

println(countries.get("USA")) // Some(Washington)
println(countries.get("France")) // None
println(countries.get("USA").get) // Washington
println(countries.get("France").get) // Error: NoSuchElementException
println(countries.get("USA").getOrElse("Nope")) // Washington
println(countries.get("France").getOrElse("Nope")) // Nope

Option[A] is sealed and thus cannot be extended. Therefore it's semantics are stable and can be
relied on.

Options in for comprehensions

Options have a flatMap method. This means they can be used in a for comprehension. In this way
we can lift regular functions to work on Options without having to redefine them.

val firstOption: Option[Int] = Option(1)
val secondOption: Option[Int] = Option(2)

val myResult = for {
 firstValue <- firstOption
 secondValue <- secondOption
} yield firstValue + secondValue
// myResult: Option[Int] = Some(3)

When one of the values is a None the ending result of the calculation will be None as well.

val firstOption: Option[Int] = Option(1)
val secondOption: Option[Int] = None

val myResult = for {
 firstValue <- firstOption
 secondValue <- secondOption
} yield firstValue + secondValue
// myResult: Option[Int] = None

Note: this pattern extends more generally for concepts called Monads. (More information should be
available on pages relating to for comprehensions and Monads)

In general it is not possible to mix different monads in a for comprehension. But since Option can
be easily converted to an Iterable, we can easily mix Options and Iterables by calling the

https://riptutorial.com/ 104

.toIterable method.

val option: Option[Int] = Option(1)
val iterable: Iterable[Int] = Iterable(2, 3, 4, 5)

// does NOT compile since we cannot mix Monads in a for comprehension
// val myResult = for {
// optionValue <- option
// iterableValue <- iterable
//} yield optionValue + iterableValue

// It does compile when adding a .toIterable on the option
val myResult = for {
 optionValue <- option.toIterable
 iterableValue <- iterable
} yield optionValue + iterableValue
// myResult: Iterable[Int] = List(2, 3, 4, 5)

A small note: if we had defined our for comprehension the other way around the for
comprehension would compile since our option would be converted implicitly. For that reason it is
useful to always add this .toIterable (or corresponding function depending on which collection you
are using) for consistency.

Read Option Class online: https://riptutorial.com/scala/topic/2293/option-class

https://riptutorial.com/ 105

https://riptutorial.com/scala/topic/2293/option-class

Chapter 28: Packages

Introduction

Packages in Scala manage namespaces in large programs. For example, the name connection
can occur in the packages com.sql and org.http. You can use the fully qualified com.sql.connection
and org.http.connection, respectively, in order to access each of these packages.

Examples

Package structure

package com {
 package utility {
 package serialization {
 class Serializer
 ...
 }
 }
}

Packages and files

The package clause is not directly binded with the file where it is found. It is possible to find
common elements of the package clause in diferent files. For example, the package clauses
bellow can be found in the file math1.scala and in the file math2.scala.

File math1.scala

package org {
 package math {
 package statistics {
 class Interval
 }
 }
}

File math2.scala

package org {
 package math{
 package probability {
 class Density
 }
 }
}

File study.scala

https://riptutorial.com/ 106

import org.math.probability.Density
import org.math.statistics.Interval

object Study {

 def main(args: Array[String]): Unit = {
 var a = new Interval()
 var b = new Density()
 }
}

Package naming convension

Scala packages should follow the Java package naming conventions.
Package names are written in all lower case to avoid conflict with the names of classes or
interfaces. Companies use their reversed Internet domain name to begin their package
names—for example,

io.super.math

Read Packages online: https://riptutorial.com/scala/topic/8231/packages

https://riptutorial.com/ 107

https://riptutorial.com/scala/topic/8231/packages

Chapter 29: Parallel Collections

Remarks

Parallel collections facilitate parallel programming by hiding low-level parallelization details. This
makes taking advantage of multi-core architectures easy. Examples of parallel collections include
ParArray, ParVector, mutable.ParHashMap, immutable.ParHashMap, and ParRange. A full list can be found
in the documentation.

Examples

Creating and Using Parallel Collections

To create a parallel collection from a sequential collection, call the par method. To create a
sequential collection from a parallel collection, call the seq method. This example shows how you
turn a regular Vector into a ParVector, and then back again:

scala> val vect = (1 to 5).toVector
vect: Vector[Int] = Vector(1, 2, 3, 4, 5)

scala> val parVect = vect.par
parVect: scala.collection.parallel.immutable.ParVector[Int] = ParVector(1, 2, 3, 4, 5)

scala> parVect.seq
res0: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3, 4, 5)

The par method can be chained, allowing you to convert a sequential collection to a parallel
collection and immediately perform an action on it:

scala> vect.map(_ * 2)
res1: scala.collection.immutable.Vector[Int] = Vector(2, 4, 6, 8, 10)

scala> vect.par.map(_ * 2)
res2: scala.collection.parallel.immutable.ParVector[Int] = ParVector(2, 4, 6, 8, 10)

In these examples, the work is actually parceled out to multiple processing units, and then re-
joined after the work is complete - without requiring developer intervention.

Pitfalls

Do not use parallel collections when the collection elements must be received in a specific
order.

Parallel collections perform operations concurrently. That means that all of the work is divided into
parts and distributed to different processors. Each processor is unaware of the work being done by
others. If the order of the collection matters then work processed in parallel is nondeterministic.
(Running the same code twice can yield different results.)

https://riptutorial.com/ 108

http://docs.scala-lang.org/overviews/parallel-collections/concrete-parallel-collections

Non-associative Operations

If an operation is non-associative (if the order of execution matters), then the result on a
parallelized collection will be nondeterministic.

scala> val list = (1 to 1000).toList
list: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10...

scala> list.reduce(_ - _)
res0: Int = -500498

scala> list.reduce(_ - _)
res1: Int = -500498

scala> list.reduce(_ - _)
res2: Int = -500498

scala> val listPar = list.par
listPar: scala.collection.parallel.immutable.ParSeq[Int] = ParVector(1, 2, 3, 4, 5, 6, 7, 8,
9, 10...

scala> listPar.reduce(_ - _)
res3: Int = -408314

scala> listPar.reduce(_ - _)
res4: Int = -422884

scala> listPar.reduce(_ - _)
res5: Int = -301748

Side Effects

Operations that have side effects, such as foreach, may not execute as desired on parallelized
collections due to race conditions. Avoid this by using functions that have no side effects, such as
reduce or map.

scala> val wittyOneLiner = Array("Artificial", "Intelligence", "is", "no", "match", "for",
"natural", "stupidity")

scala> wittyOneLiner.foreach(word => print(word + " "))
Artificial Intelligence is no match for natural stupidity

scala> wittyOneLiner.par.foreach(word => print(word + " "))
match natural is for Artificial no stupidity Intelligence

scala> print(wittyOneLiner.par.reduce{_ + " " + _})
Artificial Intelligence is no match for natural stupidity

scala> val list = (1 to 100).toList
list: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15...

Read Parallel Collections online: https://riptutorial.com/scala/topic/3882/parallel-collections

https://riptutorial.com/ 109

https://riptutorial.com/scala/topic/3882/parallel-collections

Chapter 30: Parser Combinators

Remarks

ParseResult Cases

A ParseResult comes in three flavors:

Success, with a marker as to the start of the match and the next character to be matched.•
Failure, with a marker as to the start of where the match was attempted. In this case the
parser backtracks to that position, where it will be when parsing continues.

•

Error, which stops the parsing. No backtracking or further parsing occurs.•

Examples

Basic Example

import scala.util.parsing.combinator._

class SimpleParser extends RegexParsers {
 // Define a grammar rule, turn it into a regex, and apply it the input.
 def word: Parser[String] = """[A-Z][a-z]+""".r ^^ { _.toString }
}

object SimpleParser extends SimpleParser {
 val parseAlice = parse(word, "Alice went to Alamo Square.")
 val parseBarb = parse(word, "barb went Upside Down.")
}

//Successfully finds a match
println(SimpleParser.parseAlice)
//Fails to find a match
println(SimpleParser.parseBarb)

The output will be as follows:

[1.6] parsed: Alice
res0: Unit = ()

[1.1] failure: string matching regex `[A-Z][a-z]+' expected but `b' found

barb went Upside Down.
^

[1.6] in the Alice example indicates that the start of the match is at position 1, and the fist
character remaining to match starts at position 6.

Read Parser Combinators online: https://riptutorial.com/scala/topic/3730/parser-combinators

https://riptutorial.com/ 110

https://riptutorial.com/scala/topic/3730/parser-combinators

Chapter 31: Partial Functions

Examples

Composition

Partial functions are often used to define a total function in parts:

sealed trait SuperType
case object A extends SuperType
case object B extends SuperType
case object C extends SuperType

val pfA: PartialFunction[SuperType, Int] = {
 case A => 5
}

val pfB: PartialFunction[SuperType, Int] = {
 case B => 10
}

val input: Seq[SuperType] = Seq(A, B, C)

input.map(pfA orElse pfB orElse {
 case _ => 15
}) // Seq(5, 10, 15)

In this usage, the partial functions are attempted in order of concatenation with the orElse method.
Typically, a final partial function is provided that matches all remaining cases. Collectively, the
combination of these functions acts as a total function.

This pattern is typically used to separate concerns where a function may effectively act a
dispatcher for disparate code paths. This is common, for example, in the receive method of an
Akka Actor.

Usage with `collect`

While partial function are often used as convenient syntax for total functions, by including a final
wildcard match (case _), in some methods, their partiality is key. One very common example in
idiomatic Scala is the collect method, defined in the Scala collections library. Here, partial
functions allow the common functions of examining the elements of a collection to map and/or filter
them to occur in one compact syntax.

Example 1

Assuming that we have a square root function defined as partial function:

val sqRoot:PartialFunction[Double,Double] = { case n if n > 0 => math.sqrt(n) }

https://riptutorial.com/ 111

http://www.scala-lang.org/api/current/index.html#scala.PartialFunction@orElse%5BA1%3C:A,B1%3E:B%5D(that:PartialFunction%5BA1,B1%5D):PartialFunction%5BA1,B1%5D
http://doc.akka.io/docs/akka/snapshot/scala/actors.html#Defining_an_Actor_class
http://doc.akka.io/docs/akka/snapshot/scala/actors.html#Defining_an_Actor_class
http://www.scala-lang.org/api/current/index.html#scala.collection.TraversableLike@collect%5BB%5D(pf:PartialFunction%5BA,B%5D):Traversable%5BB%5D

We can invoke it with the collect combinator:

List(-1.1,2.2,3.3,0).collect(sqRoot)

effectively performing the same operation as:

List(-1.1,2.2,3.3,0).filter(sqRoot.isDefinedAt).map(sqRoot)

Example 2

sealed trait SuperType // `sealed` modifier allows inheritance within current build-unit only
case class A(value: Int) extends SuperType
case class B(text: String) extends SuperType
case object C extends SuperType

val input: Seq[SuperType] = Seq(A(5), B("hello"), C, A(25), B(""))

input.collect {
 case A(value) if value < 10 => value.toString
 case B(text) if text.nonEmpty => text
} // Seq("5", "hello")

There are several things to note in the example above:

The left-hand side of each pattern match effectively selects elements to process and include
in the output. Any value that doesn't have a matching case is simply omitted.

•

The right-hand side defines the case-specific processing to apply.•
Pattern matching binds variable for use in guard statements (the if clauses) and the right-
hand side.

•

Basic syntax

Scala has a special type of function called a partial function, which extends normal functions --
meaning that a PartialFunction instance can be used wherever Function1 is expected. Partial
functions can be defined anonymously using case syntax also used in pattern matching:

val pf: PartialFunction[Boolean, Int] = {
 case true => 7
}

pf.isDefinedAt(true) // returns true
pf(true) // returns 7

pf.isDefinedAt(false) // returns false
pf(false) // throws scala.MatchError: false (of class java.lang.Boolean)

As seen in the example, a partial function need not be defined over the whole domain of its first
parameter. A standard Function1 instance is assumed to be total, meaning that it is defined for
every possible argument.

Usage as a total function

https://riptutorial.com/ 112

http://www.scala-lang.org/api/current/index.html#scala.PartialFunction
http://www.scala-lang.org/api/current/index.html#scala.Function1
http://www.riptutorial.com/scala/topic/661/pattern-matching

Partial functions are very common in idiomatic Scala. They are often used for their convenient case
-based syntax to define total functions over traits:

sealed trait SuperType // `sealed` modifier allows inheritance within current build-unit only
case object A extends SuperType
case object B extends SuperType
case object C extends SuperType

val input: Seq[SuperType] = Seq(A, B, C)

input.map {
 case A => 5
 case _ => 10
} // Seq(5, 10, 10)

This saves the additional syntax of a match statement in a regular anonymous function. Compare:

input.map { item =>
 item match {
 case A => 5
 case _ => 10
 }
} // Seq(5, 10, 10)

It is also frequently used to perform a parameter decomposition using pattern matching, when a
tuple or a case class is passed to a function:

val input = Seq("A" -> 1, "B" -> 2, "C" -> 3)

input.map { case (a, i) =>
 a + i.toString
} // Seq("A1", "B2", "C3")

Usage to extract tuples in a map function

These three map functions are equivalent, so use the variation that your team finds most readable.

val numberNames = Map(1 -> "One", 2 -> "Two", 3 -> "Three")

// 1. No extraction
numberNames.map(it => s"${it._1} is written ${it._2}")

// 2. Extraction within a normal function
numberNames.map(it => {
 val (number, name) = it
 s"$number is written $name"
})

// 3. Extraction via a partial function (note the brackets in the parentheses)
numberNames.map({ case (number, name) => s"$number is written $name" })

The partial function must match all input: any case which doesn't match will throw an exception
at runtime.

https://riptutorial.com/ 113

http://www.riptutorial.com/scala/topic/1056/traits

Read Partial Functions online: https://riptutorial.com/scala/topic/1638/partial-functions

https://riptutorial.com/ 114

https://riptutorial.com/scala/topic/1638/partial-functions

Chapter 32: Pattern Matching

Syntax

selector match partialFunction•
selector match {list of case alternatives) // This is most common form of the above•

Parameters

Parameter Details

selector The expression whose value is being pattern-matched.

alternatives a list of case-delimited alternatives.

Examples

Simple Pattern Match

This example shows how to match an input against several values:

def f(x: Int): String = x match {
 case 1 => "One"
 case 2 => "Two"
 case _ => "Unknown!"
}

f(2) // "Two"
f(3) // "Unknown!"

Live demo

Note: _ is the fall through or default case, but it is not required.

def g(x: Int): String = x match {
 case 1 => "One"
 case 2 => "Two"
}

g(1) // "One"
g(3) // throws a MatchError

To avoid throwing an exception, it is a best functional-programming practice here to handle the
default case (case _ => <do something>). Note that matching over a case class can help the
compiler produce a warning if a case is missing. The same goes for user-defined types which
extend a sealed trait. If the match is total then a default case may not be needed

https://riptutorial.com/ 115

http://ideone.com/cWOQYT
http://www.riptutorial.com/scala/topic/1022/case-classes

It is also possible to match against values that are not defined inline. These must be stable
identifiers, which are obtained by either using a capitalized name or enclosing backticks.

With Oneand two defined somewhere else, or passed as function parameters:

val One: Int = 1
val two: Int = 2

They can be matched against in the following way:

def g(x: Int): String = x match {
 case One => "One"
 case `two` => "Two"
}

Unlike other programming languages as Java for example there is no fall through. If a case block
matches an input, it gets executed and the matching is finished. Therefore the least specific case
should be the last case block.

def f(x: Int): String = x match {
 case _ => "Default"
 case 1 => "One"
}

f(5) // "Default"
f(1) // "Default"

Pattern Matching With Stable Identifier

In standard pattern matching, the identifier used will shadow any identifier in the enclosing scope.
Sometimes it is necessary to match on the enclosing scope's variable.

The following example function takes a character and a list of tuples and returns a new list of
tuples. If the character existed as the first element in one of the tuples, the second element is
incremented. If it does not yet exist in the list, a new tuple is created.

def tabulate(char: Char, tab: List[(Char, Int)]): List[(Char, Int)] = tab match {
 case Nil => List((char, 1))
 case (`char`, count) :: tail => (char, count + 1) :: tail
 case head :: tail => head :: tabulate(char, tail)
}

The above demonstrates pattern matching where the method's input, char, is kept 'stable' in the
pattern match: that is, if you call tabulate('x', ...), the first case statement would be interpreted
as:

case('x', count) => ...

Scala will interpret any variable demarcated with a tick mark as a stable identifier: it will also
interpret any variable that starts with a capital letter in the same way.

https://riptutorial.com/ 116

Pattern Matching on a Seq

To check for a precise number of elements in the collection

def f(ints: Seq[Int]): String = ints match {
 case Seq() =>
 "The Seq is empty !"
 case Seq(first) =>
 s"The seq has exactly one element : $first"
 case Seq(first, second) =>
 s"The seq has exactly two elements : $first, $second"
 case s @ Seq(_, _, _) =>
 s"s is a Seq of length three and looks like ${s}" // Note individual elements are not
bound to their own names.
 case s: Seq[Int] if s.length == 4 =>
 s"s is a Seq of Ints of exactly length 4" // Again, individual elements are not bound
to their own names.
 case _ =>
 "No match was found!"
}

Live demo

To extract the first(s) element(s) and keeping the rest as a collection:

def f(ints: Seq[Int]): String = ints match {
 case Seq(first, second, tail @ _*) =>
 s"The seq has at least two elements : $first, $second. The rest of the Seq is $tail"
 case Seq(first, tail @ _*) =>
 s"The seq has at least one element : $first. The rest of the Seq is $tail"
 // alternative syntax
 // here of course this one will never match since it checks
 // for the same thing as the one above
 case first +: tail =>
 s"The seq has at least one element : $first. The rest of the Seq is $tail"
 case _ =>
 "The seq didn't match any of the above, so it must be empty"
}

In general, any form that can be used to construct a sequence can be used to pattern match
against an existing sequence.

Note that while using Nil and :: will work when pattern matching a Sequence, it does convert it to
a List, and can have unexpected results. Constrain yourself to Seq(...) and +: to avoid this.

Note that while using :: will not work for WrappedArray, Vector etc, see:

scala> def f(ints:Seq[Int]) = ints match {
 | case h :: t => h
 | case _ => "No match"
 | }
f: (ints: Seq[Int])Any

scala> f(Array(1,2))
res0: Any = No match

https://riptutorial.com/ 117

http://ideone.com/uTGdSa

And with +:

scala> def g(ints:Seq[Int]) = ints match {
 | case h+:t => h
 | case _ => "No match"
 | }
g: (ints: Seq[Int])Any

scala> g(Array(1,2).toSeq)
res4: Any = 1

Guards (if expressions)

Case statements can be combined with if expressions to provide extra logic when pattern
matching.

def checkSign(x: Int): String = {
 x match {
 case a if a < 0 => s"$a is a negative number"
 case b if b > 0 => s"$b is a positive number"
 case c => s"$c neither positive nor negative"
 }
}

It is important to ensure your guards do not create a non-exhaustive match (the compiler often will
not catch this):

def f(x: Option[Int]) = x match {
 case Some(i) if i % 2 == 0 => doSomething(i)
 case None => doSomethingIfNone
}

This throws a MatchError on odd numbers. You must either account for all cases, or use a wildcard
match case:

def f(x: Option[Int]) = x match {
 case Some(i) if i % 2 == 0 => doSomething(i)
 case _ => doSomethingIfNoneOrOdd
}

Pattern Matching with Case Classes

Every case class defines an extractor that can be used to capture the members of the case class
when pattern matching:

case class Student(name: String, email: String)

def matchStudent1(student: Student): String = student match {
 case Student(name, email) => s"$name has the following email: $email" // extract name and
email
}

https://riptutorial.com/ 118

All the normal rules of pattern-matching apply - you can use guards and constant expressions to
control matching:

def matchStudent2(student: Student): String = student match {
 case Student("Paul", _) => "Matched Paul" // Only match students named Paul, ignore email
 case Student(name, _) if name == "Paul" => "Matched Paul" // Use a guard to match students
named Paul, ignore email
 case s if s.name == "Paul" => "Matched Paul" // Don't use extractor; use a guard to match
students named Paul, ignore email
 case Student("Joe", email) => s"Joe has email $email" // Match students named Joe, capture
their email
 case Student(name, email) if name == "Joe" => s"Joe has email $email" // use a guard to
match students named Joe, capture their email
 case Student(name, email) => s"$name has email $email." // Match all students, capture
name and email
}

Matching on an Option

If you are matching on an Option type:

def f(x: Option[Int]) = x match {
 case Some(i) => doSomething(i)
 case None => doSomethingIfNone
}

This is functionally equivalent to using fold, or map/getOrElse:

def g(x: Option[Int]) = x.fold(doSomethingIfNone)(doSomething)
def h(x: Option[Int]) = x.map(doSomething).getOrElse(doSomethingIfNone)

Pattern Matching Sealed Traits

When pattern matching an object whose type is a sealed trait, Scala will check at compile-time
that all cases are 'exhaustively matched':

sealed trait Shape
case class Square(height: Int, width: Int) extends Shape
case class Circle(radius: Int) extends Shape
case object Point extends Shape

def matchShape(shape: Shape): String = shape match {
 case Square(height, width) => "It's a square"
 case Circle(radius) => "It's a circle"
 //no case for Point because it would cause a compiler warning.
}

If a new case class for Shape is later added, all match statements on Shape will start to throw a
compiler warning. This makes thorough refactoring easier: the compiler will alert the developer to
all code that needs to be updated.

https://riptutorial.com/ 119

https://stackoverflow.com/documentation/scala/2293/options/7535/working-with-options#

Pattern Matching with Regex

val emailRegex: Regex = "(.+)@(.+)\\.(.+)".r

"name@example.com" match {
 case emailRegex(userName, domain, topDomain) => println(s"Hi $userName from $domain")
 case _ => println(s"This is not a valid email.")
}

In this example, the regex attempts to match the email address provided. If it does, the userName
and domain is extracted and printed. topDomain is also extracted, but nothing is done with it in this
example. Calling .r on a String str is equivalent to new Regex(str). The r function is available via
an implicit conversion.

Pattern binder (@)

The @ sign binds a variable to a name during a pattern match. The bound variable can either be
the entire matched object or part of the matched object:

sealed trait Shape
case class Rectangle(height: Int, width: Int) extends Shape
case class Circle(radius: Int) extends Shape
case object Point extends Shape

(Circle(5): Shape) match {
 case Rectangle(h, w) => s"rectangle, $h x $w."
 case Circle(r) if r > 9 => s"large circle"
 case c @ Circle(_) => s"small circle: ${c.radius}" // Whole matched object is bound to c
 case Point => "point"
}

> res0: String = small circle: 5

The bound identifier can be used in conditional filters. Thus:

case Circle(r) if r > 9 => s"large circle"

can be written as:

case c @ Circle(_) if c.radius > 9 => s"large circle"

The name can be bound to only a part of the matched pattern:

Seq(Some(1), Some(2), None) match {
 // Only the first element of the matched sequence is bound to the name 'c'
 case Seq(c @ Some(1), _*) => head
 case _ => None
}

> res0: Option[Int] = Some(1)

https://riptutorial.com/ 120

http://www.riptutorial.com/scala/example/5606/implicit-conversion

Pattern Matching Types

Pattern matching can also be used to check the type of an instance, rather than using
isInstanceOf[B]:

val anyRef: AnyRef = ""

anyRef match {
 case _: Number => "It is a number"
 case _: String => "It is a string"
 case _: CharSequence => "It is a char sequence"
}
//> res0: String = It is a string

The order of the cases is important:

anyRef match {
 case _: Number => "It is a number"
 case _: CharSequence => "It is a char sequence"
 case _: String => "It is a string"
}
//> res1: String = It is a char sequence

In this manner it is similar to a classical 'switch' statement, without the fall-through functionality.
However, you can also pattern match and 'extract' values from the type in question. For instance:

case class Foo(s: String)
case class Bar(s: String)
case class Woo(s: String, i: Int)

def matcher(g: Any):String = {
 g match {
 case Bar(s) => s + " is classy!"
 case Foo(_) => "Someone is wicked smart!"
 case Woo(s, _) => s + " is adventerous!"
 case _ => "What are we talking about?"
 }
}

print(matcher(Foo("Diana"))) // prints 'Diana is classy!'
print(matcher(Bar("Hadas"))) // prints 'Someone is wicked smart!'
print(matcher(Woo("Beth", 27))) // prints 'Beth is adventerous!'
print(matcher(Option("Katie"))) // prints 'What are we talking about?'

Note that in the Foo and Woo case we use the underscore (_) to 'match an unbound variable'. That is
to say that the value (in this case Hadas and 27, respectively) is not bound to a name and thus is
not available in the handler for that case. This is useful shorthand in order to match 'any' value
without worrying about what that value is.

Pattern Matching compiled as tableswitch or lookupswitch

The @switch annotation tells the compiler that the match statement can be replaced with a single
tableswitch instruction at the bytecode level. This is a minor optimization that can remove

https://riptutorial.com/ 121

http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html#traits

unnecessary comparisons and variable loads during runtime.

The @switch annotation works only for matches against literal constants and final val identifiers. If
the pattern match cannot be compiled as a tableswitch/lookupswitch, the compiler will raise a
warning.

import annotation.switch

def suffix(i: Int) = (i: @switch) match {
 case 1 => "st"
 case 2 => "nd"
 case 3 => "rd"
 case _ => "th"
}

The results are the same as a normal pattern match:

scala> suffix(2)
res1: String = "2nd"

scala> suffix(4)
res2: String = "4th"

From the Scala Documentation (2.8+) – @switch:

An annotation to be applied to a match expression. If present, the compiler will verify
that the match has been compiled to a tableswitch or lookupswitch, and issue an error
if it instead compiles into a series of conditional expressions.

From the Java Specification:

tableswitch: "Access jump table by index and jump"•
lookupswitch: "Access jump table by key match and jump"•

Matching Multiple Patterns At Once

The | can be used to have a single case statement match against multiple inputs to yield the same
result:

def f(str: String): String = str match {
 case "foo" | "bar" => "Matched!"
 case _ => "No match."
}

f("foo") // res0: String = Matched!
f("bar") // res1: String = Matched!
f("fubar") // res2: String = No match.

Note that while matching values this way works well, the following matching of types will cause
problems:

https://riptutorial.com/ 122

http://www.scala-lang.org/api/2.12.1/scala/annotation/switch.html
https://docs.oracle.com/javase/specs/jvms/se6/html/Instructions2.doc14.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html#lookupswitch

sealed class FooBar
case class Foo(s: String) extends FooBar
case class Bar(s: String) extends FooBar

val d = Foo("Diana")
val h = Bar("Hadas")

// This matcher WILL NOT work.
def matcher(g: FooBar):String = {
 g match {
 case Foo(s) | Bar(s) => print(s) // Won't work: s cannot be resolved
 case Foo(_) | Bar(_) => _ // Won't work: _ is an unbound placeholder
 case _ => "Could not match"
 }
}

If in the latter case (with _) you don't need the value of the unbound variable and just want to do
something else, you're fine:

def matcher(g: FooBar):String = {
 g match {
 case Foo(_) | Bar(_) => "Is either Foo or Bar." // Works fine
 case _ => "Could not match"
 }
}

Otherwise, you are left with splitting your cases:

def matcher(g: FooBar):String = {
 g match {
 case Foo(s) => s
 case Bar(s) => s
 case _ => "Could not match"
 }
}

Pattern Matching on tuples

Given the following List of tuples:

val pastries = List(("Chocolate Cupcake", 2.50),
 ("Vanilla Cupcake", 2.25),
 ("Plain Muffin", 3.25))

Pattern matching can be used to handle each element differently:

pastries foreach { pastry =>
 pastry match {
 case ("Plain Muffin", price) => println(s"Buying muffin for $price")
 case p if p._1 contains "Cupcake" => println(s"Buying cupcake for ${p._2}")
 case _ => println("We don't sell that pastry")
 }
}

https://riptutorial.com/ 123

The first case shows how to match against a specific string and get the corresponding price. The
second case shows a use of if and tuple extraction to match against elements of the tuple.

Read Pattern Matching online: https://riptutorial.com/scala/topic/661/pattern-matching

https://riptutorial.com/ 124

http://www.riptutorial.com/scala/example/3070/tuple-extractors
https://riptutorial.com/scala/topic/661/pattern-matching

Chapter 33: Quasiquotes

Examples

Create a syntax tree with quasiquotes

Use quasiquotes to create a Tree in a macro.

object macro {
 def addCreationDate(): java.util.Date = macro impl.addCreationDate
}

object impl {
 def addCreationDate(c: Context)(): c.Expr[java.util.Date] = {
 import c.universe._

 val date = q"new java.util.Date()" // this is the quasiquote
 c.Expr[java.util.Date](date)
 }
}

It can be arbitrarily complex but it will be validated for correct scala syntax.

Read Quasiquotes online: https://riptutorial.com/scala/topic/4032/quasiquotes

https://riptutorial.com/ 125

https://riptutorial.com/scala/topic/4032/quasiquotes

Chapter 34: Recursion

Examples

Tail Recursion

Using regular recursion, each recursive call pushes another entry onto the call stack. When the
recursion is completed, the application has to pop each entry off all the way back down. If there
are much recursive function calls it can end up with a huge stack.

Scala automatically removes the recursion in case it finds the recursive call in tail position. The
annotation (@tailrec) can be added to recursive functions to ensure that tail call optimization is
performed. The compiler then shows an error message if it can't optimize your recursion.

Regular Recursion

This example is not tail recursive because when the recursive call is made, the function needs to
keep track of the multiplication it needs to do with the result after the call returns.

def fact(i : Int) : Int = {
 if(i <= 1) i
 else i * fact(i-1)
}

println(fact(5))

The function call with the parameter will result in a stack that looks like this:

(fact 5)
(* 5 (fact 4))
(* 5 (* 4 (fact 3)))
(* 5 (* 4 (* 3 (fact 2))))
(* 5 (* 4 (* 3 (* 2 (fact 1)))))
(* 5 (* 4 (* 3 (* 2 (* 1 (fact 0))))))
(* 5 (* 4 (* 3 (* 2 (* 1 * 1)))))
(* 5 (* 4 (* 3 (* 2))))
(* 5 (* 4 (* 6)))
(* 5 (* 24))
120

If we try to annotate this example with @tailrec we will get the following error message: could not
optimize @tailrec annotated method fact: it contains a recursive call not in tail position

Tail Recursion

In tail recursion, you perform your calculations first, and then you execute the recursive call,
passing the results of your current step to the next recursive step.

https://riptutorial.com/ 126

def fact_with_tailrec(i : Int) : Long = {
 @tailrec
 def fact_inside(i : Int, sum: Long) : Long = {
 if(i <= 1) sum
 else fact_inside(i-1,sum*i)
 }
 fact_inside(i,1)
}

println(fact_with_tailrec(5))

In contrast, the stack trace for the tail recursive factorial looks like the following:

(fact_with_tailrec 5)
(fact_inside 5 1)
(fact_inside 4 5)
(fact_inside 3 20)
(fact_inside 2 60)
(fact_inside 1 120)

There is only the need to keep track of the same amount of data for every call to fact_inside
because the function is simply returning the value it got right through to the top. This means that
even if fact_with_tail 1000000 is called, it needs only the same amount of space as fact_with_tail
3. This is not the case with the non-tail-recursive call, and as such large values may cause a stack
overflow.

Stackless recursion with trampoline(scala.util.control.TailCalls)

It is very common to get a StackOverflowError error while calling recursive function. Scala standard
library offers TailCall to avoid stack overflow by using heap objects and continuations to store the
local state of the recursion.

Two examples from the scaladoc of TailCalls

import scala.util.control.TailCalls._

def isEven(xs: List[Int]): TailRec[Boolean] =
 if (xs.isEmpty) done(true) else tailcall(isOdd(xs.tail))

def isOdd(xs: List[Int]): TailRec[Boolean] =
 if (xs.isEmpty) done(false) else tailcall(isEven(xs.tail))

// Does this List contain an even number of elements?
isEven((1 to 100000).toList).result

def fib(n: Int): TailRec[Int] =
 if (n < 2) done(n) else for {
 x <- tailcall(fib(n - 1))
 y <- tailcall(fib(n - 2))
 } yield (x + y)

// What is the 40th entry of the Fibonacci series?
fib(40).result

https://riptutorial.com/ 127

http://www.scala-lang.org/api/current/scala/util/control/TailCalls$.html
http://www.scala-lang.org/api/current/scala/util/control/TailCalls$.html

Read Recursion online: https://riptutorial.com/scala/topic/3889/recursion

https://riptutorial.com/ 128

https://riptutorial.com/scala/topic/3889/recursion

Chapter 35: Reflection

Examples

Loading a class using reflection

 import scala.reflect.runtime.universe._
 val mirror = runtimeMirror(getClass.getClassLoader)
 val module = mirror.staticModule("org.data.TempClass")

Read Reflection online: https://riptutorial.com/scala/topic/5824/reflection

https://riptutorial.com/ 129

https://riptutorial.com/scala/topic/5824/reflection

Chapter 36: Regular Expressions

Syntax

re.findAllIn(s: CharSequence): MatchIterator•
re.findAllMatchIn(s: CharSequence): Iterator[Match]•
re.findFirstIn(s: CharSequence): Option[String]•
re.findFirstMatchIn(s: CharSequence): Option[Match]•
re.findPrefixMatchIn(s: CharSequence): Option[Match]•
re.findPrefixOf(s: CharSequence): Option[String]•
re.replaceAllIn(s: CharSequence, replacer: Match => String): String•
re.replaceAllIn(s: CharSequence, replacement: String): String•
re.replaceFirstIn(s: CharSequence, replacement: String): String•
re.replaceSomeIn(s: CharSequence, replacer: Match => Option[String]): String•
re.split(s: CharSequence): Array[String]•

Examples

Declaring regular expressions

The r method implicitly provided via scala.collection.immutable.StringOps produces an instance of
scala.util.matching.Regex from the subject string. Scala's triple-quoted string syntax is useful here,
as you do not have to escape backslashes as you would in Java:

val r0: Regex = """(\d{4})-(\d${2})-(\d{2})""".r // :)
val r1: Regex = "(\\d{4})-(\\d{2})-(\\d{2})".r // :(

scala.util.matching.Regex implements an idiomatic regular expression API for Scala as a wrapper
over java.util.regex.Pattern, and the supported syntax is the same. That being said, Scala's
support for multi-line string literals makes the x flag substantially more useful, enabling comments
and ignoring pattern whitespace:

val dateRegex = """(?x:
 (\d{4}) # year
 -(\d{2}) # month
 -(\d{2}) # day
)""".r

There is an overloaded version of r, def r(names: String*): Regex which allows you to assign
group names to your pattern captures. This is somewhat brittle as the names are disassociated
from the captures, and should only be used if the regular expression will be used in multiple
locations:

"""(\d{4})-(\d{2})-(\d{2})""".r("y", "m", "d").findFirstMatchIn(str) match {
 case Some(matched) =>
 val y = matched.group("y").toInt

https://riptutorial.com/ 130

http://www.scala-lang.org/api/current/#scala.collection.immutable.StringOps
http://www.scala-lang.org/api/current/#scala.util.matching.Regex
http://www.scala-lang.org/api/current/#scala.util.matching.Regex
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

 val m = matched.group("m").toInt
 val d = matched.group("d").toInt
 java.time.LocalDate.of(y, m, d)
 case None => ???
}

Repeating matching of a pattern in a string

val re = """\((.*?)\)""".r

val str =
"(The)(example)(of)(repeating)(pattern)(in)(a)(single)(string)(I)(had)(some)(trouble)(with)(once)"

re.findAllMatchIn(str).map(_.group(1)).toList
res2: List[String] = List(The, example, of, repeating, pattern, in, a, single, string, I, had,
some, trouble, with, once)

Read Regular Expressions online: https://riptutorial.com/scala/topic/2891/regular-expressions

https://riptutorial.com/ 131

https://riptutorial.com/scala/topic/2891/regular-expressions

Chapter 37: Scala.js

Introduction

Scala.js is a port from Scala that compiles to JavaScript, which at the end will be running outside
the JVM. It has benefits as strong typing, code optimization at compile time, full interoperability with
JavaScript libraries.

Examples

console.log in Scala.js

println("Hello Scala.js") // In ES6: console.log("Hello Scala.js");

Fat arrow functions

val lastNames = people.map(p => p.lastName)
// Or shorter:
val lastNames = people.map(_.lastName)

Simple Class

class Person(val firstName: String, val lastName: String) {
 def fullName(): String =
 s"$firstName $lastName"
}

Collections

val personMap = Map(
 10 -> new Person("Roger", "Moore"),
 20 -> new Person("James", "Bond")
)
val names = for {
 (key, person) <- personMap
 if key > 15
} yield s"$key = ${person.firstName}"

Manipulating DOM

import org.scalajs.dom
import dom.document

def appendP(target: dom.Node, text: String) = {
 val pNode = document.createElement("p")
 val textNode = document.createTextNode(text)
 pNode.appendChild(textNode)

https://riptutorial.com/ 132

http://www.scala-js.org/

 target.appendChild(pNode)
}

Using with SBT

Sbt dependency

libraryDependencies += "org.scala-js" %%% "scalajs-dom" % "0.9.1" // (Triple %%%)

Running

sbt run

Running with continous compilation:

sbt ~run

Compile to a single JavaScript file:

sbt fastOptJS

Read Scala.js online: https://riptutorial.com/scala/topic/9426/scala-js

https://riptutorial.com/ 133

https://riptutorial.com/scala/topic/9426/scala-js

Chapter 38: Scaladoc

Syntax

Goes above methods, fields, classes or packages.•
Starts with /**•
Each line has an starting * proceding with the comments•
Ends with */•

Parameters

Parameter Details

Class specific _

@constructor detail Explains the main constructor of the class

Method specific _

@return detail Details about what is returned on the method.

Method, Constructor
and/or Class tags

_

@param x detail
Details about the value parameter x on a method or
constructor.

@tparam x detail
Details about the type parameter x on a method or
constructor.

@throws detail What exceptions may be thrown.

Usage _

@see detail References other sources of information.

@note detail
Adds a note for pre or post conditions, or any other notable
restrictions or expectations.

@example detail Provides example code or related example documentation.

@usecase detail
Provides a simplified method definition for when the full
method definition is too complex or noisy.

Other _

@author detail Provides information about the author of the following.

https://riptutorial.com/ 134

Parameter Details

@version detail Provides the version that this portion belongs to.

@deprecated detail Marks the following entity as deprecated.

Examples

Simple Scaladoc to method

/**
 * Explain briefly what method does here
 * @param x Explain briefly what should be x and how this affects the method.
 * @param y Explain briefly what should be y and how this affects the method.
 * @return Explain what is returned from execution.
 */
def method(x: Int, y: String): Option[Double] = {
 // Method content
}

Read Scaladoc online: https://riptutorial.com/scala/topic/4518/scaladoc

https://riptutorial.com/ 135

https://riptutorial.com/scala/topic/4518/scaladoc

Chapter 39: scalaz

Introduction

Scalaz is a Scala library for functional programming.

It provides purely functional data structures to complement those from the Scala standard library.
It defines a set of foundational type classes (e.g. Functor,Monad) and corresponding instances for a
large number of data structures.

Examples

ApplyUsage

import scalaz._
import Scalaz._

scala> Apply[Option].apply2(some(1), some(2))((a, b) => a + b)
res0: Option[Int] = Some(3)

scala> val intToString: Int => String = _.toString

scala> Apply[Option].ap(1.some)(some(intToString))
res1: Option[String] = Some(1)

scala> Apply[Option].ap(none)(some(intToString))
res2: Option[String] = None

scala> val double: Int => Int = _ * 2

scala> Apply[List].ap(List(1, 2, 3))(List(double))
res3: List[Int] = List(2, 4, 6)

scala> :kind Apply
scalaz.Apply's kind is X[F[A]]

FunctorUsage

import scalaz._
import Scalaz._
scala> val len: String => Int = _.length
len: String => Int = $$Lambda$1164/969820333@7e758f40

scala> Functor[Option].map(Some("foo"))(len)
res0: Option[Int] = Some(3)

scala> Functor[Option].map(None)(len)
res1: Option[Int] = None

scala> Functor[List].map(List("qwer", "adsfg"))(len)
res2: List[Int] = List(4, 5)

https://riptutorial.com/ 136

https://github.com/scalaz/scalaz

scala> :kind Functor
scalaz.Functor's kind is X[F[A]]

ArrowUsage

import scalaz._
import Scalaz._
scala> val plus1 = (_: Int) + 1
plus1: Int => Int = $$Lambda$1167/1113119649@6a6bfd97

scala> val plus2 = (_: Int) + 2
plus2: Int => Int = $$Lambda$1168/924329548@6bbe050f

scala> val rev = (_: String).reverse
rev: String => String = $$Lambda$1227/1278001332@72685b74

scala> plus1.first apply (1, "abc")
res0: (Int, String) = (2,abc)

scala> plus1.second apply ("abc", 2)
res1: (String, Int) = (abc,3)

scala> rev.second apply (1, "abc")
res2: (Int, String) = (1,cba)

scala> plus1 *** rev apply(7, "abc")
res3: (Int, String) = (8,cba)

scala> plus1 &&& plus2 apply 7
res4: (Int, Int) = (8,9)

scala> plus1.product apply (1, 2)
res5: (Int, Int) = (2,3)

scala> :kind Arrow
scalaz.Arrow's kind is X[F[A1,A2]]

Read scalaz online: https://riptutorial.com/scala/topic/9893/scalaz

https://riptutorial.com/ 137

https://riptutorial.com/scala/topic/9893/scalaz

Chapter 40: Scope

Introduction

Scope on Scala defines where a value (def, val, var or class) can be accessed from.

Syntax

declaration•
private declaration•
private[this] declaration•
private[fromWhere] declaration•
protected declaration•
protected[fromWhere] declaration•

Examples

Public (default) scope

By default, the scope is public, the value can be accessed from anywhere.

package com.example {
 class FooClass {
 val x = "foo"
 }
}

package an.other.package {
 class BarClass {
 val foo = new com.example.FooClass
 foo.x // <- Accessing a public value from another package
 }
}

A private scope

When the scope is private, it can only be accessed from the current class or other instances of the
current class.

package com.example {
 class FooClass {
 private val x = "foo"
 def aFoo(otherFoo: FooClass) {
 otherFoo.x // <- Accessing from another instance of the same class
 }
 }
 class BarClass {
 val f = new FooClass

https://riptutorial.com/ 138

 f.x // <- This will not compile
 }
}

A private package-specific scope

You can specify a package where the private value can be accessed.

package com.example {
 class FooClass {
 private val x = "foo"
 private[example] val y = "bar"
 }
 class BarClass {
 val f = new FooClass
 f.x // <- Will not compile
 f.y // <- Will compile
 }
}

Object private scope

The most restrictive scope is "object-private" scope, which only allows that value to be accessed
from the same instance of the object.

class FooClass {
 private[this] val x = "foo"
 def aFoo(otherFoo: FooClass) = {
 otherFoo.x // <- This will not compile, accessing x outside the object instance
 }
}

Protected scope

The protected scope allows the value to be accessed from any subclasses of the current class.

class FooClass {
 protected val x = "foo"
}
class BarClass extends FooClass {
 val y = x // It is a subclass instance, will compile
}
class ClassB {
 val f = new FooClass
 f.x // <- This will not compile
}

Package protected scope

The package protected scope allows the value to be accessed only from any subclass in a specific
package.

https://riptutorial.com/ 139

package com.example {
 class FooClass {
 protected[example] val x = "foo"
 }
 class ClassB extends FooClass {
 val y = x // It's in the protected scope, will compile
 }
}
package com {
 class BarClass extends com.example.FooClass {
 val y = x // <- Outside the protected scope, will not compile
 }
}

Read Scope online: https://riptutorial.com/scala/topic/9705/scope

https://riptutorial.com/ 140

https://riptutorial.com/scala/topic/9705/scope

Chapter 41: Self types

Syntax

trait Type { selfId => /other members can refer to selfId in case this means something/ }•
trait Type { selfId: OtherType => /* other members can use selfId and it will be of type
OtherType */

•

trait Type { selfId: OtherType1 with OtherType2 => /* selfId is of type OtherType1 and
OtherType2 */

•

Remarks

Often used with the cake pattern.

Examples

Simple self type example

Self types can be used in traits and classes to define constraints on the concrete classes it is
mixed to. It is also possible to use a different identifier for the this using this syntax (useful when
outer object has to be referenced from an inner object).

Assume you want to store some objects. For that, you create interfaces for the storage and to add
values to a container:

 trait Container[+T] {
 def add(o: T): Unit
 }

 trait PermanentStorage[T] {
 /* Constraint on self type: it should be Container
 * we can refer to that type as `identifier`, usually `this` or `self`
 * or the type's name is used. */
 identifier: Container[T] =>

 def save(o: T): Unit = {
 identifier.add(o)
 //Do something to persist too.
 }
 }

This way those are not in the same object hierarchy, but PermanentStorage cannot be implemented
without also implementing Container.

Read Self types online: https://riptutorial.com/scala/topic/4639/self-types

https://riptutorial.com/ 141

https://riptutorial.com/scala/topic/4639/self-types

Chapter 42: Setting up Scala

Examples

On Linux via dpkg

On Debian-based distributions, including Ubuntu, the most straightforward way is to use the .deb
installation file. Go to the Scala website. Choose the version you want to install then scroll down
and look for scala-x.x.x.deb.

You can install the scala deb from command line:

sudo dpkg -i scala-x.x.x.deb

To verify that it is installed correctly, in the terminal command prompt:

which scala

The response returned should be the equivalent to what you placed in your PATH variable. To
verify that scala is working:

scala

This should start the Scala REPL, and report the version (which, in turn, should match the version
you downloaded).

Ubuntu Installation via Manual Download and Configuration

Download your preferred version from Lightbend with curl:

curl -O http://downloads.lightbend.com/scala/2.xx.x/scala-2.xx.x.tgz

Unzip the tar file to /usr/local/share or /opt/bin:

unzip scala-2.xx.x.tgz
mv scala-2.xx.x /usr/local/share/scala

Add the PATH to ~/.profile or ~/.bash_profile or ~/.bashrc by including this text to one of those
files:

$SCALA_HOME=/usr/local/share/scala
export PATH=$SCALA_HOME/bin:$PATH

To verify that it is installed correctly, in the terminal command prompt:

https://riptutorial.com/ 142

http://www.scala-lang.org/download/all.html
http://www.lightbend.com/
https://en.wikipedia.org/wiki/CURL

which scala

The response returned should be the equivalent to what you placed in your PATH variable. To verify
that scala is working:

scala

This should start the Scala REPL, and report the version (which, in turn, should match the version
you downloaded).

Mac OSX via Macports

On Mac OSX computers with MacPorts installed, open a terminal window and type:

port list | grep scala

This will list all the Scala-related packages available. To install one (in this example the 2.11
version of Scala):

sudo port install scala2.11

(The 2.11 may change if you want to install a different version.)

All dependencies will automatically be installed and your $PATH parameter updated. To verify
everything worked:

which scala

This will show you the path to the Scala installation.

scala

This will open up the Scala REPL, and report the version number installed.

Read Setting up Scala online: https://riptutorial.com/scala/topic/2921/setting-up-scala

https://riptutorial.com/ 143

https://www.macports.org/
https://riptutorial.com/scala/topic/2921/setting-up-scala

Chapter 43: Single Abstract Method Types
(SAM Types)

Remarks

Single Abstract Methods are types, introduced in Java 8, that have exactly one abstract member.

Examples

Lambda Syntax

NOTE: This is only available in Scala 2.12+ (and in recent 2.11.x versions with the -
Xexperimental -Xfuture compiler flags)

A SAM type can be implemented using a lambda:

2.11.8

trait Runnable {
 def run(): Unit
}

val t: Runnable = () => println("foo")

The type can optionally have other non-abstract members:

2.11.8

trait Runnable {
 def run(): Unit
 def concrete: Int = 42
}

val t: Runnable = () => println("foo")

Read Single Abstract Method Types (SAM Types) online:
https://riptutorial.com/scala/topic/3664/single-abstract-method-types--sam-types-

https://riptutorial.com/ 144

https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html
https://riptutorial.com/scala/topic/3664/single-abstract-method-types--sam-types-

Chapter 44: Streams

Remarks

Streams are lazily-evaluated, meaning they can be used to implement generators, which will
provide or 'generate' a new item of the specified type on-demand, rather than before the fact. This
ensures only the computations necessary are done.

Examples

Using a Stream to Generate a Random Sequence

genRandom creates a stream of random numbers that has a one in four chance of terminating each
time it's called.

def genRandom: Stream[String] = {
 val random = scala.util.Random.nextFloat()
 println(s"Random value is: $random")
 if (random < 0.25) {
 Stream.empty[String]
 } else {
 ("%.3f : A random number" format random) #:: genRandom
 }
}

lazy val randos = genRandom // getRandom is lazily evaluated as randos is iterated through

for {
 x <- randos
} println(x) // The number of times this prints is effectively randomized.

Note the #:: construct, which lazily recurses: because it is prepending the current random number
to a stream, it does not evaluate the remainder of the stream until it is iterated through.

Infinite Streams via Recursion

Streams can be built that reference themselves and thus become infinitely recursive.

// factorial
val fact: Stream[BigInt] = 1 #:: fact.zipWithIndex.map{case (p,x)=>p*(x+1)}
fact.take(10) // (1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880)
fact(24) // 620448401733239439360000

// the Fibonacci series
val fib: Stream[BigInt] = 0 #:: fib.scan(1:BigInt)(_+_)
fib.take(10) // (0, 1, 1, 2, 3, 5, 8, 13, 21, 34)
fib(124) // 36726740705505779255899443

// random Ints between 10 and 99 (inclusive)
def rndInt: Stream[Int] = (util.Random.nextInt(90)+10) #:: rndInt
rndInt.take(10) // (20, 95, 14, 44, 42, 78, 85, 24, 99, 85)

https://riptutorial.com/ 145

In this context the difference between Var, Val, and Def is interesting. As a def each element is
recalculated every time it is referenced. As a val each element is retained and reused after it's
been calculated. This can be demonstrated by creating a side-effect with each calculation.

// def with extra output per calculation
def fact: Stream[Int] = 1 #:: fact.zipWithIndex.map{case (p,x)=>print("!");p*(x+1)}
fact(5) // !!!!!!!!!!!!!!! 120
fact(4) // !!!!!!!!!! 24
fact(7) // !!!!!!!!!!!!!!!!!!!!!!!!!!!! 5040

// now as val
val fact: Stream[Int] = 1 #:: fact.zipWithIndex.map{case (p,x)=>print("!");p*(x+1)}
fact(5) // !!!!! 120
fact(4) // 24
fact(7) // !! 5040

This also explains why the random number Stream doesn't work as a val.

val rndInt: Stream[Int] = (util.Random.nextInt(90)+10) #:: rndInt
rndInt.take(5) // (79, 79, 79, 79, 79)

Infinite self-referent stream

// Generate stream that references itself in its evaluation
lazy val primes: Stream[Int] =
 2 #:: Stream.from(3, 2)
 .filter { i => primes.takeWhile(p => p * p <= i).forall(i % _ != 0) }
 .takeWhile(_ > 0) // prevent overflowing

// Get list of 10 primes
assert(primes.take(10).toList == List(2, 3, 5, 7, 11, 13, 17, 19, 23, 29))

// Previously calculated values were memoized, as shown by toString
assert(primes.toString == "Stream(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ?)")

Read Streams online: https://riptutorial.com/scala/topic/3702/streams

https://riptutorial.com/ 146

http://www.riptutorial.com/scala/topic/3155/var--val--and-def
https://riptutorial.com/scala/topic/3702/streams

Chapter 45: String Interpolation

Remarks

This feature exists in Scala 2.10.0 and above.

Examples

Hello String Interpolation

The s interpolator allows the usage of variables within a string.

val name = "Brian"
println(s"Hello $name")

prints "Hello Brian" to the console when ran.

Formatted String Interpolation Using the f Interpolator

val num = 42d

Print two decimal places for num using f

println(f"$num%2.2f")
42.00

Print num using scientific notation using e

println(f"$num%e")
4.200000e+01

Print num in hexadecimal with a

println(f"$num%a")
0x1.5p5

Other format strings can be found at
https://docs.oracle.com/javase/6/docs/api/java/util/Formatter.html#detail

Using expression in string literals

You can use curly braces to interpolate expressions into string literals:

def f(x: String) = x + x
val a = "A"

https://riptutorial.com/ 147

https://docs.oracle.com/javase/6/docs/api/java/util/Formatter.html#detail

s"${a}" // "A"
s"${f(a)}" // "AA"

Without the braces, scala would only interpolate the identifier after the $ (in this case f). Since
there is no implicit conversion from f to a String this is an exception in this example:

s"$f(a)" // compile-time error (missing argument list for method f)

Custom string interpolators

It is possible to define custom string interpolators in addition to the built-in ones.

my"foo${bar}baz"

Is expanded by the compiler to:

new scala.StringContext("foo", "baz").my(bar)

scala.StringContext has no my method, therefore it can be provided by implicit conversion. A
custom interpolator with the same behavior as the builtin s interpolator would then be implemented
as follows:

implicit class MyInterpolator(sc: StringContext) {
 def my(subs: Any*): String = {
 val pit = sc.parts.iterator
 val sit = subs.iterator
 // Note parts.length == subs.length + 1
 val sb = new java.lang.StringBuilder(pit.next())
 while(sit.hasNext) {
 sb.append(sit.next().toString)
 sb.append(pit.next())
 }
 sb.toString
 }
}

And the interpolation my"foo${bar}baz" would desugar to:

new MyInterpolation(new StringContext("foo", "baz")).my(bar)

Note that there is no restriction on the arguments or return type of the interpolation function. This
leads us down a dark path where interpolation syntax can be used creatively to construct arbitrary
objects, as illustrated in the following example:

case class Let(name: Char, value: Int)

implicit class LetInterpolator(sc: StringContext) {
 def let(value: Int): Let = Let(sc.parts(0).charAt(0), value)
}

https://riptutorial.com/ 148

let"a=${4}" // Let(a, 4)
let"b=${"foo"}" // error: type mismatch
let"c=" // error: not enough arguments for method let: (value: Int)Let

String interpolators as extractors

It is also possible to use Scala's string interpolation feature to create elaborate extractors (pattern
matchers), as perhaps most famously employed in the quasiquotes API of Scala macros.

Given that n"p0${i0}p1" desugars to new StringContext("p0", "p1").n(i0), it is perhaps unsurprising
that extractor functionality is enabled by providing an implicit conversion from StringContext to a
class with property n of a type defining an unapply or unapplySeq method.

As an example, consider the following extractor which extracts path segments by constructing a
regular expression from the StringContext parts. We can then delegate most of the heavy lifting to
the unapplySeq method provided by the resulting scala.util.matching.Regex:

implicit class PathExtractor(sc: StringContext) {
 object path {
 def unapplySeq(str: String): Option[Seq[String]] =
 sc.parts.map(Regex.quote).mkString("^", "([^/]+)", "$").r.unapplySeq(str)
 }
}

"/documentation/scala/1629/string-interpolation" match {
 case path"/documentation/${topic}/${id}/${_}" => println(s"$topic, $id")
 case _ => ???
}

Note that the path object could also define an apply method in order to behave as a regular
interpolator as well.

Raw String Interpolation

You can use the raw interpolator if you want a String to be printed as is and without any escaping
of literals.

println(raw"Hello World In English And French\nEnglish:\tHello World\nFrench:\t\tBonjour Le
Monde")

With the use of the raw interpolator, you should see the following printed in the console:

Hello World In English And French\nEnglish:\tHello World\nFrench:\t\tBonjour Le Monde

Without the raw interpolator, \n and \t would have been escaped.

println("Hello World In English And French\nEnglish:\tHello World\nFrench:\t\tBonjour Le

https://riptutorial.com/ 149

http://docs.scala-lang.org/overviews/quasiquotes/unlifting
http://www.scala-lang.org/api/current/#scala.util.matching.Regex

Monde")

Prints:

Hello World In English And French
English: Hello World
French: Bonjour Le Monde

Read String Interpolation online: https://riptutorial.com/scala/topic/1629/string-interpolation

https://riptutorial.com/ 150

https://riptutorial.com/scala/topic/1629/string-interpolation

Chapter 46: Symbol Literals

Remarks

Scala comes with a concept of symbols - strings that are interned, that is: two symbols with the
same name (the same character sequence), in contrary to strings, will refer to the same object
during execution.

Symbols are a feature of many languages: Lisp, Ruby and Erlang and more, however in Scala
they are of relatively small use. Good feature to have nevertheless.

Use:

Any literal beginning with a single quote ', followed by one or more digits, letters, or under‐scores
_ is a symbol literal. The first character is an exception as it can’t be a digit.

Good definitions:

'ATM
'IPv4
'IPv6
'map_to_operations
'data_format_2006

// Using the `Symbol.apply` method

Symbol("hakuna matata")
Symbol("To be or not to be that is a question")

Bad definitions:

'8'th_division
'94_pattern
'bad-format

Examples

Replacing strings in case clauses

Let's say we have multiple data sources which include database, file, prompt and argumentList.
Depending on chosen source we change our approach:

def loadData(dataSource: Symbol): Try[String] = dataSource match {
 case 'database => loadDatabase() // Loading data from database
 case 'file => loadFile() // Loading data from file
 case 'prompt => askUser() // Asking user for data
 case 'argumentList => argumentListExtract() // Accessing argument list for data
 case _ => Failure(new Exception("Unsupported data source"))
}

https://riptutorial.com/ 151

We could have very well used String in place of Symbol. We didn't, because none of strings's
features are useful in this context.

This makes the code simpler and less error prone.

Read Symbol Literals online: https://riptutorial.com/scala/topic/6419/symbol-literals

https://riptutorial.com/ 152

https://riptutorial.com/scala/topic/6419/symbol-literals

Chapter 47: synchronized

Syntax

objectToSynchronizeOn.synchronized { /* code to run */}•
synchronized {/* code to run, can be suspended with wait */}•

Examples

synchronize on an object

synchronized is a low-level concurrency construct that can help preventing multiple threads access
the same resources. Introduction for the JVM using the Java language.

anInstance.synchronized {
 // code to run when the intristic lock on `anInstance` is acquired
 // other thread cannot enter concurrently unless `wait` is called on `anInstance` to suspend
 // other threads can continue of the execution of this thread if they `notify` or
`notifyAll` `anInstance`'s lock
}

In case of objects it might synchronize on the class of the object, not on the singleton instance.

synchronize implicitly on this

 /* within a class, def, trait or object, but not a constructor */
 synchronized {
 /* code to run when an intrisctic lock on `this` is acquired */
 /* no other thread can get the this lock unless execution is suspended with
 * `wait` on `this`
 */
 }

Read synchronized online: https://riptutorial.com/scala/topic/3371/synchronized

https://riptutorial.com/ 153

https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html
https://riptutorial.com/scala/topic/3371/synchronized

Chapter 48: Testing with ScalaCheck

Introduction

ScalaCheck is a library written in Scala and used for automated property-based testing of Scala or
Java programs. ScalaCheck was originally inspired by the Haskell library QuickCheck, but has
also ventured into its own.

ScalaCheck has no external dependencies other than the Scala runtime, and works great with sbt,
the Scala build tool. It is also fully integrated in the test frameworks ScalaTest and specs2.

Examples

Scalacheck with scalatest and error messages

Example of usage scalacheck with scalatest. Below we have four tests:

"show pass example" - it passes•
"show simple example without custom error message " - just failed message without details,
&& boolean operator is used

•

"show example with error messages on argument" - error message on argument ("argument"
|:) Props.all method is used instead of &&

•

"show example with error messages on command" - error message on command ("command"
|:) Props.all method is used instead of &&

•

import org.scalatest.prop.Checkers
import org.scalatest.{Matchers, WordSpecLike}

import org.scalacheck.Gen._
import org.scalacheck.Prop._
import org.scalacheck.Prop

object Splitter {
 def splitLineByColon(message: String): (String, String) = {
 val (command, argument) = message.indexOf(":") match {
 case -1 =>
 (message, "")
 case x: Int =>
 (message.substring(0, x), message.substring(x + 1))
 }
 (command.trim, argument.trim)
 }

 def splitLineByColonWithBugOnCommand(message: String): (String, String) = {
 val (command, argument) = splitLineByColon(message)
 (command.trim + 2, argument.trim)
 }

 def splitLineByColonWithBugOnArgument(message: String): (String, String) = {
 val (command, argument) = splitLineByColon(message)
 (command.trim, argument.trim + 2)

https://riptutorial.com/ 154

 }
}

class ScalaCheckSpec extends WordSpecLike with Matchers with Checkers {

 private val COMMAND_LENGTH = 4

 "ScalaCheckSpec " should {

 "show pass example" in {
 check {
 Prop.forAll(listOfN(COMMAND_LENGTH, alphaChar), alphaStr) {
 (chars, expArgument) =>
 val expCommand = new String(chars.toArray)
 val line = s"$expCommand:$expArgument"
 val (c, p) = Splitter.splitLineByColon(line)
 Prop.all("command" |: c =? expCommand, "argument" |: expArgument =? p)
 }

 }
 }

"show simple example without custom error message " in {
 check {
 Prop.forAll(listOfN(COMMAND_LENGTH, alphaChar), alphaStr) {
 (chars, expArgument) =>
 val expCommand = new String(chars.toArray)
 val line = s"$expCommand:$expArgument"
 val (c, p) = Splitter.splitLineByColonWithBugOnArgument(line)
 c === expCommand && expArgument === p
 }

 }
}

"show example with error messages on argument" in {
 check {
 Prop.forAll(listOfN(COMMAND_LENGTH, alphaChar), alphaStr) {
 (chars, expArgument) =>
 val expCommand = new String(chars.toArray)
 val line = s"$expCommand:$expArgument"
 val (c, p) = Splitter.splitLineByColonWithBugOnArgument(line)
 Prop.all("command" |: c =? expCommand, "argument" |: expArgument =? p)
 }

 }
}

"show example with error messages on command" in {
 check {
 Prop.forAll(listOfN(COMMAND_LENGTH, alphaChar), alphaStr) {
 (chars, expArgument) =>
 val expCommand = new String(chars.toArray)
 val line = s"$expCommand:$expArgument"
 val (c, p) = Splitter.splitLineByColonWithBugOnCommand(line)
 Prop.all("command" |: c =? expCommand, "argument" |: expArgument =? p)
 }

https://riptutorial.com/ 155

 }
}

The output (fragments):

[info] - should show example // passed
[info] - should show simple example without custom error message *** FAILED ***
[info] (ScalaCheckSpec.scala:73)
[info] Falsified after 0 successful property evaluations.
[info] Location: (ScalaCheckSpec.scala:73)
[info] Occurred when passed generated values (
[info] arg0 = List(), // 3 shrinks
[info] arg1 = ""
[info])
[info] - should show example with error messages on argument *** FAILED ***
[info] (ScalaCheckSpec.scala:86)
[info] Falsified after 0 successful property evaluations.
[info] Location: (ScalaCheckSpec.scala:86)
[info] Occurred when passed generated values (
[info] arg0 = List(), // 3 shrinks
[info] arg1 = ""
[info])
[info] Labels of failing property:
[info] Expected "" but got "2"
[info] argument
[info] - should show example with error messages on command *** FAILED ***
[info] (ScalaCheckSpec.scala:99)
[info] Falsified after 0 successful property evaluations.
[info] Location: (ScalaCheckSpec.scala:99)
[info] Occurred when passed generated values (
[info] arg0 = List(), // 3 shrinks
[info] arg1 = ""
[info])
[info] Labels of failing property:
[info] Expected "2" but got ""
[info] command

Read Testing with ScalaCheck online: https://riptutorial.com/scala/topic/9430/testing-with-
scalacheck

https://riptutorial.com/ 156

https://riptutorial.com/scala/topic/9430/testing-with-scalacheck
https://riptutorial.com/scala/topic/9430/testing-with-scalacheck

Chapter 49: Testing with ScalaTest

Examples

Hello World Spec Test

Create a testing class in the src/test/scala directory, in a file named HelloWorldSpec.scala. Put this
inside the file:

import org.scalatest.{FlatSpec, Matchers}

class HelloWorldSpec extends FlatSpec with Matchers {

 "Hello World" should "not be an empty String" in {
 val helloWorld = "Hello World"
 helloWorld should not be ("")
 }
}

This example is making use of FlatSpec and Matchers, which are part of the ScalaTest library.•
FlatSpec allows tests to be written in the Behavior-Driven Development (BDD) style. In this
style, a sentence is used to describe the expected behavior of a given unit of code. The test
confirms that the code adheres to that behavior. See the documentation for additional
information.

•

Spec Test Cheatsheet

Setup

The tests below uses these values for the examples.

val helloWorld = "Hello World"
val helloWorldCount = 1
val helloWorldList = List("Hello World", "Bonjour Le Monde")
def sayHello = throw new IllegalStateException("Hello World Exception")

Type check

To verify the type for a given val:

helloWorld shouldBe a [String]

Note that the brackets here are used to get type String.

Equal check

To test equality:

https://riptutorial.com/ 157

http://doc.scalatest.org/3.0.0/index.html#org.scalatest.FlatSpec
http://doc.scalatest.org/3.0.0/index.html#org.scalatest.Matchers
http://doc.scalatest.org/3.0.0/index.html#org.scalatest.FlatSpec
https://en.wikipedia.org/wiki/Behavior-driven_development
http://doc.scalatest.org/1.8/org/scalatest/FlatSpec.html
http://doc.scalatest.org/1.8/org/scalatest/FlatSpec.html

helloWorld shouldEqual "Hello World"
helloWorld should === ("Hello World")
helloWorldCount shouldEqual 1
helloWorldCount shouldBe 1
helloWorldList shouldEqual List("Hello World", "Bonjour Le Monde")
helloWorldList === List("Hello World", "Bonjour Le Monde")

Not Equal check

To test inequality:

helloWorld should not equal "Hello"
helloWorld !== "Hello"
helloWorldCount should not be 5
helloWorldList should not equal List("Hello World")
helloWorldList !== List("Hello World")
helloWorldList should not be empty

Length check

To verify length and/or size:

helloWorld should have length 11
helloWorldList should have size 2

Exceptions check

To verify the type and message of an exception:

val exception = the [java.lang.IllegalStateException] thrownBy {
 sayHello
}
exception.getClass shouldEqual classOf[java.lang.IllegalStateException]
exception.getMessage should include ("Hello World")

Include the ScalaTest Library with SBT

Using SBT to manage the library dependency, add this to build.sbt:

libraryDependencies += "org.scalactic" %% "scalactic" % "3.0.0"
libraryDependencies += "org.scalatest" %% "scalatest" % "3.0.0" % "test"

More details can be found at the ScalaTest site.

Read Testing with ScalaTest online: https://riptutorial.com/scala/topic/5506/testing-with-scalatest

https://riptutorial.com/ 158

http://www.riptutorial.com/sbt/topic/6760/dependencies
http://www.scalatest.org/user_guide/using_scalatest_with_sbt
https://riptutorial.com/scala/topic/5506/testing-with-scalatest

Chapter 50: Traits

Syntax

trait ATrait { ... }•
class AClass (...) extends ATrait { ... }•
class AClass extends BClass with ATrait•
class AClass extends ATrait with BTrait•
class AClass extends ATrait with BTrait with CTrait•
class ATrait extends BTrait•

Examples

Stackable Modification with Traits

You can use traits to modify methods of a class, using traits in stackable fashion.

The following example shows how traits can be stacked. The ordering of the traits are important.
Using different order of traits, different behavior is achieved.

class Ball {
 def roll(ball : String) = println("Rolling : " + ball)
}

trait Red extends Ball {
 override def roll(ball : String) = super.roll("Red-" + ball)
}

trait Green extends Ball {
 override def roll(ball : String) = super.roll("Green-" + ball)
}

trait Shiny extends Ball {
 override def roll(ball : String) = super.roll("Shiny-" + ball)
}

object Balls {
 def main(args: Array[String]) {
 val ball1 = new Ball with Shiny with Red
 ball1.roll("Ball-1") // Rolling : Shiny-Red-Ball-1

 val ball2 = new Ball with Green with Shiny
 ball2.roll("Ball-2") // Rolling : Green-Shiny-Ball-2
 }
}

Note that super is used to invoke roll() method in both the traits. Only in this way we can achieve
stackable modification. In cases of stackable modification, method invocation order is determined
by linearization rule.

https://riptutorial.com/ 159

http://www.riptutorial.com/scala/example/14607/linearization

Trait Basics

This is the most basic version of a trait in Scala.

trait Identifiable {
 def getIdentifier: String
 def printIndentification(): Unit = println(getIdentifier)
}

case class Puppy(id: String, name: String) extends Identifiable {
 def getIdentifier: String = s"$name has id $id"
}

Since no super class is declared for trait Identifiable, by default it extends from AnyRef class.
Because no definition for getIdentifier is provided in Identifiable, the Puppy class must implement
it. However, Puppy inherits the implementation of printIdentification from Identifiable.

In the REPL:

val p = new Puppy("K9", "Rex")
p.getIdentifier // res0: String = Rex has id K9
p.printIndentification() // Rex has id K9

Solving the Diamond Problem

The diamond problem, or multiple inheritance, is handled by Scala using Traits, which are similar
to Java interfaces. Traits are more flexible than interfaces and can include implemented methods.
This makes traits similar to mixins in other languages.

Scala does not support inheritance from multiple classes, but a user can extend multiple traits in a
single class:

trait traitA {
 def name = println("This is the 'grandparent' trait.")
}

trait traitB extends traitA {
 override def name = {
 println("B is a child of A.")
 super.name
 }

}

trait traitC extends traitA {
 override def name = {
 println("C is a child of A.")
 super.name
 }
}

object grandChild extends traitB with traitC

grandChild.name

https://riptutorial.com/ 160

https://en.wikipedia.org/wiki/Multiple_inheritance
https://en.wikipedia.org/wiki/Mixin

Here grandChild is inheriting from both traitB and traitC, which in turn both inherit from traitA.
The output (below) also shows the order of precedence when resolving which method
implementations are called first:

C is a child of A.
B is a child of A.
This is the 'grandparent' trait.

Note that, when super is used to invoke methods in class or trait, linearization rule come into play
to decide call hierarchy. Linearization order for grandChild will be:

grandChild -> traitC -> traitB -> traitA -> AnyRef -> Any

Below is another example:

trait Printer {
 def print(msg : String) = println (msg)
}

trait DelimitWithHyphen extends Printer {
 override def print(msg : String) {
 println("-------------")
 super.print(msg)
 }
}

trait DelimitWithStar extends Printer {
 override def print(msg : String) {
 println("*************")
 super.print(msg)
 }
}

class CustomPrinter extends Printer with DelimitWithHyphen with DelimitWithStar

object TestPrinter{
 def main(args: Array[String]) {
 new CustomPrinter().print("Hello World!")
 }
}

This program prints:

Hello World!

Linearization for CustomPrinter will be:

CustomPrinter -> DelimitWithStar -> DelimitWithHyphen -> Printer -> AnyRef -> Any

Linearization

https://riptutorial.com/ 161

http://www.riptutorial.com/scala/example/14607/linearization

In case of stackable modification, Scala arranges classes and traits in a linear order to determine
method call hierarchy, which is known as linearization. The linearization rule is used only for those
methods that involve method invocation via super(). Let's consider this by an example:

class Shape {
 def paint (shape: String): Unit = {
 println(shape)
 }
}

trait Color extends Shape {
 abstract override def paint (shape : String) {
 super.paint(shape + "Color ")
 }
}

trait Blue extends Color {
 abstract override def paint (shape : String) {
 super.paint(shape + "with Blue ")
 }
}

trait Border extends Shape {
 abstract override def paint (shape : String) {
 super.paint(shape + "Border ")
 }
}

trait Dotted extends Border {
 abstract override def paint (shape : String) {
 super.paint(shape + "with Dotted ")
 }
}

class MyShape extends Shape with Dotted with Blue {
 override def paint (shape : String) {
 super.paint(shape)
 }
}

Linearization happens from back to front. In this case,

First Shape will be linearized, which looks like:

Shape -> AnyRef -> Any

1.

Then Dotted is linearized:

Dotted -> Border -> Shape -> AnyRef -> Any

2.

Next in line is Blue. Normally Blue's linearization will be:

Blue -> Color -> Shape -> AnyRef -> Any

because, in MyShape's linearization until now (Step 2), Shape -> AnyRef -> Any has already
appeared. Hence, it is ignored. Thus, the Blue linearization will be:

Blue -> Color -> Dotted -> Border -> Shape -> AnyRef -> Any

3.

https://riptutorial.com/ 162

http://www.riptutorial.com/scala/example/3404/stackable-modification-with-traits

Finally, Circle will be added and final linearization order will be:

Circle -> Blue -> Color -> Dotted -> Border -> Shape -> AnyRef -> Any

4.

This linearization order decides invocation order of methods when super is used in any class or
trait. The first method implementation from the right is invoked, in the linearization order. If new
MyShape().paint("Circle ") is executed, it will print:

Circle with Blue Color with Dotted Border

More information on linearization can be found here.

Read Traits online: https://riptutorial.com/scala/topic/1056/traits

https://riptutorial.com/ 163

http://www.artima.com/pins1ed/traits.html#12.6
https://riptutorial.com/scala/topic/1056/traits

Chapter 51: Tuples

Remarks

Why are tuples limited to length 23?

Tuples are rewritten as objects by the compiler. The compiler has access to Tuple1 through Tuple22
. This arbitrary limit was decided by language designers.

Why do tuple lengths count from 0?

A Tuple0 is equivalent to a Unit.

Examples

Creating a new Tuple

A tuple is a heterogeneous collection of two to twenty-two values. A tuple can be defined using
parentheses. For tuples of size 2 (also called a 'pair') there's an arrow syntax.

scala> val x = (1, "hello")
x: (Int, String) = (1,hello)
scala> val y = 2 -> "world"
y: (Int, String) = (2,world)
scala> val z = 3 → "foo" //example of using U+2192 RIGHTWARD ARROW
z: (Int, String) = (3,foo)

x is a tuple of size two. To access the elements of a tuple use ._1, through ._22. For instance, we
can use x._1 to access the first element of the x tuple. x._2 accesses the second element. More
elegantly, you can use tuple extractors.

The arrow syntax for creating tuples of size two is primarily used in Maps, which are collections of
(key -> value) pairs:

scala> val m = Map[Int, String](2 -> "world")
m: scala.collection.immutable.Map[Int,String] = Map(2 -> world)

scala> m + x
res0: scala.collection.immutable.Map[Int,String] = Map(2 -> world, 1 -> hello)

scala> (m + x).toList
res1: List[(Int, String)] = List((2,world), (1,hello))

The syntax for the pair in the map is the arrow syntax, making it clear that 1 is the key and a is the
value associated with that key.

Tuples within Collections

https://riptutorial.com/ 164

http://www.riptutorial.com/scala/example/3070/tuple-extractors

Tuples are often used within collections but they must be handled in a specific way. For example,
given the following list of tuples:

scala> val l = List(1 -> 2, 2 -> 3, 3 -> 4)
l: List[(Int, Int)] = List((1,2), (2,3), (3,4))

It may seem natural to add the elements together using implicit tuple-unpacking:

scala> l.map((e1: Int, e2: Int) => e1 + e2)

However this results in the following error:

<console>:9: error: type mismatch;
 found : (Int, Int) => Int
 required: ((Int, Int)) => ?
 l.map((e1: Int, e2: Int) => e1 + e2)

Scala cannot implicitly unpack the tuples in this manner. We have two options to fix this map. The
first is to use the positional accessors _1 and _2:

scala> l.map(e => e._1 + e._2)
res1: List[Int] = List(3, 5, 7)

The other option is to use a case statement to unpack the tuples using pattern matching:

scala> l.map{ case (e1: Int, e2: Int) => e1 + e2}
res2: List[Int] = List(3, 5, 7)

These restrictions apply for any higher-order-function applied to a collection of tuples.

Read Tuples online: https://riptutorial.com/scala/topic/4971/tuples

https://riptutorial.com/ 165

https://riptutorial.com/scala/topic/4971/tuples

Chapter 52: Type Classes

Remarks

To avoid serialization problems, particularly in distributed environments (e.g. Apache Spark), it is a
best practice to implement the Serializable trait for type class instances.

Examples

Simple Type Class

A type class is simply a trait with one or more type parameters:

trait Show[A] {
 def show(a: A): String
}

Instead of extending a type class, an implicit instance of the type class is provided for each
supported type. Placing these implementations in the companion object of the type class allows
implicit resolution to work without any special imports:

object Show {
 implicit val intShow: Show[Int] = new Show {
 def show(x: Int): String = x.toString
 }

 implicit val dateShow: Show[java.util.Date] = new Show {
 def show(x: java.util.Date): String = x.getTime.toString
 }

 // ..etc
}

If you want to guarantee that a generic parameter passed to a function has an instance of a type
class, use implicit parameters:

def log[A](a: A)(implicit showInstance: Show[A]): Unit = {
 println(showInstance.show(a))
}

You can also use a context bound:

def log[A: Show](a: A): Unit = {
 println(implicitly[Show[A]].show(a))
}

Call the above log method like any other method. It will fail to compile if an implicit Show[A]
implementation can't be found for the A you pass to log

https://riptutorial.com/ 166

http://www.riptutorial.com/apache-spark/topic/833/getting-started-with-apache-spark
http://docs.scala-lang.org/tutorials/FAQ/context-and-view-bounds.html

log(10) // prints: "10"
log(new java.util.Date(1469491668401L) // prints: "1469491668401"
log(List(1,2,3)) // fails to compile with
 // could not find implicit value for evidence parameter of type
Show[List[Int]]

This example implements the Show type class. This is a common type class used to convert
arbitrary instances of arbitrary types into Strings. Even though every object has a toString
method, it's not always clear whether or not toString is defined in a useful way. With use of the
Show type class, you can guarantee that anything passed to log has a well-defined conversion to
String.

Extending a Type Class

This example discusses extending the below type class.

trait Show[A] {
 def show: String
}

To make a class you control (and is written in Scala) extend the type class, add an implicit to its
companion object. Let us show how we can get the Person class from this example to extend Show:

class Person(val fullName: String) {
 def this(firstName: String, lastName: String) = this(s"$firstName $lastName")
}

We can make this class extend Show by adding an implicit to Person's companion object:

object Person {
 implicit val personShow: Show[Person] = new Show {
 def show(p: Person): String = s"Person(${p.fullname})"
 }
}

A companion object must be in the same file as the class, so you need both class Person and
object Person in the same file.

To make a class you do not control, or is not written in Scala, extend the type class, add an implicit
to the companion object of the type class, as shown in the Simple Type Class example.

If you control neither the class nor the type class, create an implicit as above anywhere, and
import it. Using the log method on the Simple Type Class example:

object MyShow {
 implicit val personShow: Show[Person] = new Show {
 def show(p: Person): String = s"Person(${p.fullname})"
 }
}

def logPeople(persons: Person*): Unit = {

https://riptutorial.com/ 167

http://www.riptutorial.com/scala/example/10612/constructors
http://www.riptutorial.com/scala/example/13263/simple-type-class
http://www.riptutorial.com/scala/example/13263/simple-type-class

 import MyShow.personShow
 persons foreach { p => log(p) }
}

Add type class functions to types

Scala's implementation of type classes is rather verbose. One way to reduce the verbosity is to
introduce so-called "Operation Classes". These classes will automatically wrap a variable/value
when they are imported to extend functionality.

To illustrate this, let us first create a simple type class:

// The mathematical definition of "Addable" is "Semigroup"
trait Addable[A] {
 def add(x: A, y: A): A
}

Next we will implement the trait (instantiate the type class):

object Instances {

 // Instance for Int
 // Also called evidence object, meaning that this object saw that Int learned how to be
added
 implicit object addableInt extends Addable[Int] {
 def add(x: Int, y: Int): Int = x + y
 }

 // Instance for String
 implicit object addableString extends Addable[String] {
 def add(x: String, y: String): String = x + y
 }

}

At the moment it would be very cumbersome to use our Addable instances:

import Instances._
val three = addableInt.add(1,2)

We would rather just write write 1.add(2). Therefore we'll create an "Operation Class" (also called
an "Ops Class") that will always wrap over a type that implements Addable.

object Ops {
 implicit class AddableOps[A](self: A)(implicit A: Addable[A]) {
 def add(other: A): A = A.add(self, other)
 }
}

Now we can use our new function add as if it was part of Int and String:

object Main {

https://riptutorial.com/ 168

 import Instances._ // import evidence objects into this scope
 import Ops._ // import the wrappers

 def main(args: Array[String]): Unit = {

 println(1.add(5))
 println("mag".add("net"))
 // println(1.add(3.141)) // Fails because we didn't create an instance for Double

 }
}

"Ops" classes can be created automatically by macros in simulacrum library:

import simulacrum._

@typeclass trait Addable[A] {
 @op("|+|") def add(x: A, y: A): A
}

Read Type Classes online: https://riptutorial.com/scala/topic/3835/type-classes

https://riptutorial.com/ 169

https://github.com/mpilquist/simulacrum
https://riptutorial.com/scala/topic/3835/type-classes

Chapter 53: Type Inference

Examples

Local Type Inference

Scala has a powerful type-inference mechanism built-in to the language. This mechanism is
termed as 'Local Type Inference':

val i = 1 + 2 // the type of i is Int
val s = "I am a String" // the type of s is String
def squared(x : Int) = x*x // the return type of squared is Int

The compiler can infer the type of variables from the initialization expression. Similarly, the return
type of methods can be omitted, since they are equivalent to the type returned by the method
body. The above examples are equivalent to the below, explicit type declarations:

val i: Int = 1 + 2
val s: String = "I am a String"
def squared(x : Int): Int = x*x

Type Inference And Generics

The Scala compiler can also deduce type parameters when polymorphic methods are called, or
when generic classes are instantiated:

case class InferedPair[A, B](a: A, b: B)

val pairFirstInst = InferedPair("Husband", "Wife") //type is InferedPair[String, String]

// Equivalent, with type explicitly defined
val pairSecondInst: InferedPair[String, String]
 = InferedPair[String, String]("Husband", "Wife")

The above form of type inference is similar to the Diamond Operator, introduced in Java 7.

Limitations to Inference

There are scenarios in which Scala type-inference does not work. For instance, the compiler
cannot infer the type of method parameters:

def add(a, b) = a + b // Does not compile
def add(a: Int, b: Int) = a + b // Compiles
def add(a: Int, b: Int): Int = a + b // Equivalent expression, compiles

The compiler cannot infer the return type of recursive methods:

https://riptutorial.com/ 170

http://www.javaworld.com/article/2074080/core-java/jdk-7--the-diamond-operator.html

// Does not compile
def factorial(n: Int) = if (n == 0 || n == 1) 1 else n * factorial(n - 1)
// Compiles
def factorial(n: Int): Int = if (n == 0 || n == 1) 1 else n * factorial(n - 1)

Preventing inferring Nothing

Based on this blog post.

Assume you have a method like this:

 def get[T]: Option[T] = ???

When you try to call it without specifying the generic parameter, Nothing gets inferred, which is not
very useful for an actual implementation (and its result is not useful). With the following solution
the NotNothing context bound can prevent using the method without specifying the expected type
(in this example RuntimeClass is also excluded as for ClassTags not Nothing, but RuntimeClass is
inferred):

@implicitNotFound("Nothing was inferred")
sealed trait NotNothing[-T]

object NotNothing {
 implicit object notNothing extends NotNothing[Any]
 //We do not want Nothing to be inferred, so make an ambigous implicit
 implicit object `\n The error is because the type parameter was resolved to Nothing` extends
NotNothing[Nothing]
 //For classtags, RuntimeClass can also be inferred, so making that ambigous too
 implicit object `\n The error is because the type parameter was resolved to RuntimeClass`
extends NotNothing[RuntimeClass]
}

object ObjectStore {
 //Using context bounds
 def get[T: NotNothing]: Option[T] = {
 ???
 }

 def newArray[T](length: Int = 10)(implicit ct: ClassTag[T], evNotNothing: NotNothing[T]):
Option[Array[T]] = ???
}

Example usage:

object X {
 //Fails to compile
 //val nothingInferred = ObjectStore.get

 val anOption = ObjectStore.get[String]
 val optionalArray = ObjectStore.newArray[AnyRef]()

 //Fails to compile
 //val runtimeClassInferred = ObjectStore.newArray()
}

https://riptutorial.com/ 171

http://www.tikalk.com/java/avoiding-nothing/

Read Type Inference online: https://riptutorial.com/scala/topic/4918/type-inference

https://riptutorial.com/ 172

https://riptutorial.com/scala/topic/4918/type-inference

Chapter 54: Type Parameterization (Generics)

Examples

The Option type

A nice example of a parameterized type is the Option type. It is essentially just the following
definition (with several more methods defined on the type):

sealed abstract class Option[+A] {
 def isEmpty: Boolean
 def get: A

 final def fold[B](ifEmpty: => B)(f: A => B): B =
 if (isEmpty) ifEmpty else f(this.get)

 // lots of methods...
}

case class Some[A](value: A) extends Option[A] {
 def isEmpty = false
 def get = value
}

case object None extends Option[Nothing] {
 def isEmpty = true
 def get = throw new NoSuchElementException("None.get")
}

We can also see that this has a parameterized method, fold, which returns something of type B.

Parameterized Methods

The return type of a method can depend on the type of the parameter. In this example, x is the
parameter, A is the type of x, which is known as the type parameter.

def f[A](x: A): A = x

f(1) // 1
f("two") // "two"
f[Float](3) // 3.0F

Scala will use type inference to determine the return type, which constrains what methods may be
called on the parameter. Thus, care must be taken: the following is a compile-time error because *
is not defined for every type A:

def g[A](x: A): A = 2 * x // Won't compile

Generic collection

https://riptutorial.com/ 173

https://github.com/scala/scala/blob/2.12.x/src/library/scala/Option.scala
http://www.riptutorial.com/scala/topic/4918/type-inference

Defining the list of Ints

trait IntList { ... }

class Cons(val head: Int, val tail: IntList) extends IntList { ... }

class Nil extends IntList { ... }

but what if we need to define the list of Boolean, Double etc?

Defining generic list

trait List[T] {
 def isEmpty: Boolean
 def head: T
 def tail: List[T]
}

class Cons[T](val head: [T], val tail: List[T]) extends List[T] {
 def isEmpty: Boolean = false
}

class Nil[T] extends List[T] {
 def isEmpty: Boolean = true

 def head: Nothing = throw NoSuchElementException("Nil.head")

 def tail: Nothing = throw NoSuchElementException("Nil.tail")
}

Read Type Parameterization (Generics) online: https://riptutorial.com/scala/topic/782/type-
parameterization--generics-

https://riptutorial.com/ 174

https://riptutorial.com/scala/topic/782/type-parameterization--generics-
https://riptutorial.com/scala/topic/782/type-parameterization--generics-

Chapter 55: Type Variance

Examples

Covariance

The + symbol marks a type parameter as covariant - here we say that "Producer is covariant on A":

trait Producer[+A] {
 def produce: A
}

A covariant type parameter can be thought of as an "output" type. Marking A as covariant asserts
that Producer[X] <: Producer[Y] provided that X <: Y. For example, a Producer[Cat] is a valid
Producer[Animal], as all produced cats are also valid animals.

A covariant type parameter cannot appear in contravariant (input) position. The following example
will not compile as we are asserting that Co[Cat] <: Co[Animal], but Co[Cat] has def handle(a: Cat):
Unit which cannot handle any Animal as required by Co[Animal]!

trait Co[+A] {
 def produce: A
 def handle(a: A): Unit
}

One approach to dealing with this restriction is to use type parameters bounded by the covariant
type parameter. In the following example, we know that B is a supertype of A. Therefore given
Option[X] <: Option[Y] for X <: Y, we know that Option[X]'s def getOrElse[B >: X](b: => B): B can
accept any supertype of X - which includes the supertypes of Y as required by Option[Y]:

trait Option[+A] {
 def getOrElse[B >: A](b: => B): B
}

Invariance

By default all type parameters are invariant - given trait A[B], we say that "A is invariant on B".
This means that given two parametrizations A[Cat] and A[Animal], we assert no sub/superclass
relationship between these two types - it does not hold that A[Cat] <: A[Animal] nor that A[Cat] >:
A[Animal] regardless of the relationship between Cat and Animal.

Variance annotations provide us with a means of declaring such a relationship, and imposes rules
on the usage of type parameters so that the relationship remains valid.

Contravariance

The - symbol marks a type parameter as contravariant - here we say that "Handler is contravariant

https://riptutorial.com/ 175

on A":

trait Handler[-A] {
 def handle(a: A): Unit
}

A contravariant type parameter can be thought of as an "input" type. Marking A as contravariant
asserts that Handler[X] <: Handler[Y] provided that X >: Y. For example a Handler[Animal] is a valid
Handler[Cat], as a Handler[Animal] must also handle cats.

A contravariant type parameter cannot appear in covariant (output) position. The following
example will not compile as we are asserting that a Contra[Animal] <: Contra[Cat], however a
Contra[Animal] has def produce: Animal which is not guaranteed to produce cats as required by
Contra[Cat]!

trait Contra[-A] {
 def handle(a: A): Unit
 def produce: A
}

Beware however: for the purposes of overloading resolution, contravariance also counterintuitively
inverts the specificity of a type on the contravariant type parameter - Handler[Animal] is considered
to be "more specific" than Handler[Cat].

As it is not possible to overload methods on type parameters, this behavior generally only
becomes problematic when resolving implicit arguments. In the following example ofCat will never
be used, as the return type of ofAnimal is more specific:

implicit def ofAnimal: Handler[Animal] = ???
implicit def ofCat: Handler[Cat] = ???

implicitly[Handler[Cat]].handle(new Cat)

This behavior is currently slated to change in dotty, and is why (as an example)
scala.math.Ordering is invariant on its type parameter T. One workaround is to make your typeclass
invariant, and type-parametrize the implicit definition in the event that you want it to apply to
subclasses of a given type:

trait Person
object Person {
 implicit def ordering[A <: Person]: Ordering[A] = ???
}

Covariance of a collection

Because collections are typically covariant in their element type*, a collection of a subtype may be
passed where a super type is expected:

trait Animal { def name: String }

https://riptutorial.com/ 176

https://github.com/lampepfl/dotty/commit/89540268e6c49fb92b9ca61249e46bb59981bf5a

case class Dog(name: String) extends Animal

object Animal {
 def printAnimalNames(animals: Seq[Animal]) = {
 animals.foreach(animal => println(animal.name))
 }
}

val myDogs: Seq[Dog] = Seq(Dog("Curly"), Dog("Larry"), Dog("Moe"))

Animal.printAnimalNames(myDogs)
// Curly
// Larry
// Moe

It may not seem like magic, but the fact that a Seq[Dog] is accepted by a method that expects a
Seq[Animal] is the entire concept of a higher-kinded type (here: Seq) being covariant in its type
parameter.

* A counterexample being the standard library's Set

Covariance on an invariant trait

There is also a way to have a single method accept a covariant argument, instead of having the
whole trait covariant. This may be necessary because you would like to use T in a contravariant
position, but still have it covariant.

trait LocalVariance[T]{
 /// ??? throws a NotImplementedError
 def produce: T = ???
 // the implicit evidence provided by the compiler confirms that S is a
 // subtype of T.
 def handle[S](s: S)(implicit evidence: S <:< T) = {
 // and we can use the evidence to convert s into t.
 val t: T = evidence(s)
 ???
 }
}

trait A {}
trait B extends A {}

object Test {
 val lv = new LocalVariance[A] {}

 // now we can pass a B instead of an A.
 lv.handle(new B {})
}

Read Type Variance online: https://riptutorial.com/scala/topic/1651/type-variance

https://riptutorial.com/ 177

https://riptutorial.com/scala/topic/1651/type-variance

Chapter 56: Type-level Programming

Examples

Introduction to type-level programming

If we consider a heterogenous list, wherein the elements of the list have varied but known types, it
might be desirable to be able to perform operations on the elements of the list collectively without
discarding the elements' type information. The following example implements a mapping operation
over a simple heterogenous list.

Because the element type varies, the class of operations we can perform is restricted to some
form of type projection, so we define a trait Projection having abstract type Apply[A] computing the
result type of the projection, and def apply[A](a: A): Apply[A] computing the result value of the
projection.

trait Projection {
 type Apply[A] // <: Any
 def apply[A](a: A): Apply[A]
}

In implementing type Apply[A] we are programming at the type level (as opposed to the value
level).

Our heterogenous list type defines a map operation parametrized by the desired projection as well
as the projection's type. The result of the map operation is abstract, will vary by implementing
class and projection, and must naturally still be an HList:

sealed trait HList {
 type Map[P <: Projection] <: HList
 def map[P <: Projection](p: P): Map[P]
}

In the case of HNil, the empty heterogenous list, the result of any projection will always be itself.
Here we declare trait HNil as a convenience so that we may write HNil as a type in lieu of
HNil.type:

sealed trait HNil extends HList
case object HNil extends HNil {
 type Map[P <: Projection] = HNil
 def map[P <: Projection](p: P): Map[P] = HNil
}

HCons is the non-empty heterogenous list. Here we assert that when applying a map operation, the
resulting head type is that which results from the application of the projection to the head value (
P#Apply[H]), and that the resulting tail type is that which results from mapping the projection over
the tail (T#Map[P]), which is known to be an HList:

https://riptutorial.com/ 178

case class HCons[H, T <: HList](head: H, tail: T) extends HList {
 type Map[P <: Projection] = HCons[P#Apply[H], T#Map[P]]
 def map[P <: Projection](p: P): Map[P] = HCons(p.apply(head), tail.map(p))
}

The most obvious such projection is to perform some form of wrapping operation - the following
example yields an instance of HCons[Option[String], HCons[Option[Int], HNil]]:

HCons("1", HCons(2, HNil)).map(new Projection {
 type Apply[A] = Option[A]
 def apply[A](a: A): Apply[A] = Some(a)
})

Read Type-level Programming online: https://riptutorial.com/scala/topic/3738/type-level-
programming

https://riptutorial.com/ 179

https://riptutorial.com/scala/topic/3738/type-level-programming
https://riptutorial.com/scala/topic/3738/type-level-programming

Chapter 57: User Defined Functions for Hive

Examples

A simple Hive UDF within Apache Spark

import org.apache.spark.sql.functions._

// Create a function that uses the content of the column inside the dataframe
val code = (param: String) => if (param == "myCode") 1 else 0
// With that function, create the udf function
val myUDF = udf(code)
// Apply the udf to a column inside the existing dataframe, creating a dataframe with the
additional new column
val newDataframe = aDataframe.withColumn("new_column_name", myUDF(col(inputColumn)))

Read User Defined Functions for Hive online: https://riptutorial.com/scala/topic/8241/user-defined-
functions-for-hive

https://riptutorial.com/ 180

https://riptutorial.com/scala/topic/8241/user-defined-functions-for-hive
https://riptutorial.com/scala/topic/8241/user-defined-functions-for-hive

Chapter 58: Var, Val, and Def

Remarks

As val are semantically static, they are initialized "in-place" wherever they appear in the code. This
can produce surprising and undesirable behavior when used in abstract classes and traits.

For example, let's say we would like to make a trait called PlusOne that defines an increment
operation on a wrapped Int. Since Ints are immutable, the value plus one is known at initialization
and will never be changed afterwards, so semantically it's a val. However, defining it this way will
produce an unexpected result.

trait PlusOne {
 val i:Int

 val incr = i + 1
}

class IntWrapper(val i: Int) extends PlusOne

No matter what value i you construct IntWrapper with, calling .incr on the returned object will
always return 1. This is because the val incr is initialized in the trait, before the extending class,
and at that time i only has the default value of 0. (In other conditions, it might be populated with
Nil, null, or a similar default.)

The general rule, then, is to avoid using val on any value that depends on an abstract field.
Instead, use lazy val, which does not evaluate until it is needed, or def, which evaluates every
time it is called. Note however that if the lazy val is forced to evaluate by a val before initialization
completes, the same error will occur.

A fiddle (written in Scala-Js, but the same behavior applies) can be found here.

Examples

Var, Val, and Def

var

A var is a reference variable, similar to variables in languages like Java. Different objects can be
freely assigned to a var, so long as the given object has the same type that the var was declared
with:

scala> var x = 1
x: Int = 1

scala> x = 2

https://riptutorial.com/ 181

http://www.scala-js-fiddle.com/gist/6013f97cf6052df5aa8961a4cb4ef2bc

x: Int = 2

scala> x = "foo bar"
<console>:12: error: type mismatch;
 found : String("foo bar")
 required: Int
 x = "foo bar"
 ^

Note in the example above the type of the var was inferred by the compiler given the first value
assignment.

val

A val is a constant reference. Thus, a new object cannot be assigned to a val that has already
been assigned.

scala> val y = 1
y: Int = 1

scala> y = 2
<console>:12: error: reassignment to val
 y = 2
 ^

However, the object that a val points to is not constant. That object may be modified:

scala> val arr = new Array[Int](2)
arr: Array[Int] = Array(0, 0)

scala> arr(0) = 1

scala> arr
res1: Array[Int] = Array(1, 0)

def

A def defines a method. A method cannot be re-assigned to.

scala> def z = 1
z: Int

scala> z = 2
<console>:12: error: value z_= is not a member of object $iw
 z = 2
 ^

In the above examples, val y and def z return the same value. However, a def is evaluated when
it is called, whereas a val or var is evaluated when it is assigned. This can result in differing
behavior when the definition has side effects:

https://riptutorial.com/ 182

scala> val a = {println("Hi"); 1}
Hi
a: Int = 1

scala> def b = {println("Hi"); 1}
b: Int

scala> a + 1
res2: Int = 2

scala> b + 1
Hi
res3: Int = 2

Functions

Because functions are values, they can be assigned to val/var/defs. Everything else works in the
same manner as above:

scala> val x = (x: Int) => s"value=$x"
x: Int => String = <function1>

scala> var y = (x: Int) => s"value=$x"
y: Int => String = <function1>

scala> def z = (x: Int) => s"value=$x"
z: Int => String

scala> x(1)
res0: String = value=1

scala> y(2)
res1: String = value=2

scala> z(3)
res2: String = value=3

Lazy val

lazy val is a language feature where the initialization of a val is delayed until it is accessed for the
first time. After that point, it acts just like a regular val.

To use it add the lazy keyword before val. For example, using the REPL:

scala> lazy val foo = {
 | println("Initializing")
 | "my foo value"
 | }
foo: String = <lazy>

scala> val bar = {
 | println("Initializing bar")
 | "my bar value"
 | }

https://riptutorial.com/ 183

Initializing bar
bar: String = my bar value

scala> foo
Initializing
res3: String = my foo value

scala> bar
res4: String = my bar value

scala> foo
res5: String = my foo value

This example demonstrates the execution order. When the lazy val is declared, all that is saved to
the foo value is a lazy function call that hasn't been evaluated yet. When the regular val is set, we
see the println call execute and the value is assigned to bar. When we evalute foo the first time
we see println execute - but not when it's evaluated the second time. Similarly, when bar is
evaluated we don't see println execute - only when it is declared.

When To Use 'lazy'

Initialization is computationally expensive and usage of val is rare.

lazy val tiresomeValue = {(1 to 1000000).filter(x => x % 113 == 0).sum}
if (scala.util.Random.nextInt > 1000) {
 println(tiresomeValue)
}

tiresomeValue takes a long time to calculate, and it's not always used. Making it a lazy val
saves unnecessary computation.

1.

Resolving cyclic dependencies

Let's look at an example with two objects that need to be declared at the same time during
instantiation:

object comicBook {
 def main(args:Array[String]): Unit = {
 gotham.hero.talk()
 gotham.villain.talk()
 }
}

class Superhero(val name: String) {
 lazy val toLockUp = gotham.villain
 def talk(): Unit = {
 println(s"I won't let you win ${toLockUp.name}!")
 }
}

class Supervillain(val name: String) {
 lazy val toKill = gotham.hero
 def talk(): Unit = {

2.

https://riptutorial.com/ 184

 println(s"Let me loosen up Gotham a little bit ${toKill.name}!")
 }
}

object gotham {
 val hero: Superhero = new Superhero("Batman")
 val villain: Supervillain = new Supervillain("Joker")
}

Without the keyword lazy, the respective objects can not be members of an object.
Execution of such a program would result in a java.lang.NullPointerException. By using lazy,
the reference can be assigned before it is initialized, without fear of having an uninitialized
value.

Overloading Def

You can overload a def if the signature is different:

def printValue(x: Int) {
 println(s"My value is an integer equal to $x")
}

def printValue(x: String) {
 println(s"My value is a string equal to '$x'")
}

printValue(1) // prints "My value is an integer equal to 1"
printValue("1") // prints "My value is a string equal to '1'"

This functions the same whether inside classes, traits, objects or not.

Named Parameters

When invoking a def, parameters may be assigned explicitly by name. Doing so means they
needn't be correctly ordered. For example, define printUs() as:

// print out the three arguments in order.
def printUs(one: String, two: String, three: String) =
 println(s"$one, $two, $three")

Now it can be called in these ways (amongst others):

printUs("one", "two", "three")
printUs(one="one", two="two", three="three")
printUs("one", two="two", three="three")
printUs(three="three", one="one", two="two")

This results in one, two, three being printed in all cases.

If not all arguments are named, the first arguments are matched by order. No positional (non-
named) argument may follow a named one:

https://riptutorial.com/ 185

printUs("one", two="two", three="three") // prints 'one, two, three'
printUs(two="two", three="three", "one") // fails to compile: 'positional after named
argument'

Read Var, Val, and Def online: https://riptutorial.com/scala/topic/3155/var--val--and-def

https://riptutorial.com/ 186

https://riptutorial.com/scala/topic/3155/var--val--and-def

Chapter 59: While Loops

Syntax

while (boolean_expression) { block_expression }•

do { block_expression } while (boolean_expression)•

Parameters

Parameter Details

boolean_expression Any expression that will evaluate to true or false.

block_expression
Any expression or set of expressions that will be evaluated if the
boolean_expression evaluates to true.

Remarks

The primary difference between while and do-while loops is whether they execute the
block_expression before they check to see if they should loop.

Because while and do-while loops rely on an expression to evaluate to false to terminate, they
often require mutable state to be declared outside the loop and then modified inside the loop.

Examples

While Loops

var line = 0
var maximum_lines = 5

while (line < maximum_lines) {
 line = line + 1
 println("Line number: " + line)
}

Do-While Loops

var line = 0
var maximum_lines = 5

do {
 line = line + 1
 println("Line number: " + line)
} while (line < maximum_lines)

https://riptutorial.com/ 187

The do/while loop is infrequently used in functional programming, but can be used to work around
the lack of support for the break/continue construct, as seen in other languages:

if(initial_condition) do if(filter) {
 ...
} while(continuation_condition)

Read While Loops online: https://riptutorial.com/scala/topic/650/while-loops

https://riptutorial.com/ 188

https://riptutorial.com/scala/topic/650/while-loops

Chapter 60: Working with data in immutable
style

Remarks

Value and variable names should be in lower camel case

Constant names should be in upper camel case. That is, if the member is final,
immutable and it belongs to a package object or an object, it may be considered a
constant

Method, Value and variable names should be in lower camel case

Source: http://docs.scala-lang.org/style/naming-conventions.html

This compile:

val (a,b) = (1,2)
// a: Int = 1
// b: Int = 2

but this doesn't:

val (A,B) = (1,2)
// error: not found: value A
// error: not found: value B

Examples

It is not just val vs. var

val and var

scala> val a = 123
a: Int = 123

scala> a = 456
<console>:8: error: reassignment to val
 a = 456

scala> var b = 123
b: Int = 123

scala> b = 321
b: Int = 321

val references are unchangeable: like a final variable in Java, once it has been initialized •

https://riptutorial.com/ 189

http://docs.scala-lang.org/style/naming-conventions.html

you cannot change it
var references are reassignable as a simple variable declaration in Java•

Immutable and Mutable collections

 val mut = scala.collection.mutable.Map.empty[String, Int]
 mut += ("123" -> 123)
 mut += ("456" -> 456)
 mut += ("789" -> 789)

 val imm = scala.collection.immutable.Map.empty[String, Int]
 imm + ("123" -> 123)
 imm + ("456" -> 456)
 imm + ("789" -> 789)

 scala> mut
 Map(123 -> 123, 456 -> 456, 789 -> 789)

 scala> imm
 Map()

scala> imm + ("123" -> 123) + ("456" -> 456) + ("789" -> 789)
 Map(123 -> 123, 456 -> 456, 789 -> 789)

The Scala standard library offers both immutable and mutable data structures, not the reference to
it. Each time an immutable data structure get "modified", a new instance is produced instead of
modifying the original collection in-place. Each instance of the collection may share significant
structure with another instance.

Mutable and Immutable Collection (Official Scala Documentation)

But I can't use immutability in this case!

Let's pick as an example a function that takes 2 Map and return a Map containing every element in ma
and mb:

def merge2Maps(ma: Map[String, Int], mb: Map[String, Int]): Map[String, Int]

A first attempt could be iterating through the elements of one of the maps using for ((k, v) <-
map) and somehow return the merged map.

def merge2Maps(ma: ..., mb: ...): Map[String, Int] = {

 for ((k, v) <- mb) {
 ???
 }

}

This very first move immediately add a constrain: a mutation outside that for is now needed.
This is more clear when de-sugaring the for:

https://riptutorial.com/ 190

http://docs.scala-lang.org/overviews/collections/overview.html

// this:
for ((k, v) <- map) { ??? }

// is equivalent to:
map.foreach { case (k, v) => ??? }

"Why we have to mutate?"

foreach relies on side-effects. Every time we want something to happen within a foreach we need
to "side-effect something", in this case we could mutate a variable var result or we can use a
mutable data structure.

Creating and filling the result map

Let's assume the ma and mb are scala.collection.immutable.Map, we could create the result Map
from ma:

val result = mutable.Map() ++ ma

Then iterate through mb adding its elements and if the key of the current element on ma already
exist, let's override it with the mb one.

mb.foreach { case (k, v) => result += (k -> v) }

Mutable implementation

So far so good, we "had to use mutable collections" and a correct implementation could be:

def merge2Maps(ma: Map[String, Int], mb: Map[String, Int]): Map[String, Int] = {
 val result = scala.collection.mutable.Map() ++ ma
 mb.foreach { case (k, v) => result += (k -> v) }
 result.toMap // to get back an immutable Map
}

As expected:

scala> merge2Maps(Map("a" -> 11, "b" -> 12), Map("b" -> 22, "c" -> 23))
 Map(a -> 11, b -> 22, c -> 23)

Folding to the rescue

How can we get rid of foreach in this scenario? If all we what to do is basically iterate over the
collection elements and apply a function while accumulating the result on option could be using
.foldLeft:

def merge2Maps(ma: Map[String, Int], mb: Map[String, Int]): Map[String, Int] = {
 mb.foldLeft(ma) { case (result, (k, v)) => result + (k -> v) }
 // or more concisely mb.foldLeft(ma) { _ + _ }
}

https://riptutorial.com/ 191

In this case our "result" is the accumulated value starting from ma, the zero of the .foldLeft.

Intermediate result

Obviously this immutable solution is producing and destroying many Map instances while folding,
but it is worth mentioning that those instances are not a full clone of the Map accumulated but
instead are sharing significant structure (data) with the existing instance.

Easier reasonability

It is easier to reason about the semantic if it is more declarative as the .foldLeft approach. Using
immutable data structures could help making our implementation easier to reason on.

Read Working with data in immutable style online: https://riptutorial.com/scala/topic/6298/working-
with-data-in-immutable-style

https://riptutorial.com/ 192

https://riptutorial.com/scala/topic/6298/working-with-data-in-immutable-style
https://riptutorial.com/scala/topic/6298/working-with-data-in-immutable-style

Chapter 61: Working With Gradle

Examples

Basic Setup

Create a file named SCALA_PROJECT/build.gradle with these contents:

group 'scala_gradle'
version '1.0-SNAPSHOT'

apply plugin: 'scala'

repositories {
 jcenter()
 mavenCentral()
 maven {
 url "https://repo.typesafe.com/typesafe/maven-releases"
 }
}

dependencies {
 compile group: 'org.scala-lang', name: 'scala-library', version: '2.10.6'
}

task "create-dirs" << {
 sourceSets*.scala.srcDirs*.each { it.mkdirs() }
 sourceSets*.resources.srcDirs*.each { it.mkdirs() }
}

1.

Run gradle tasks to see available tasks.2.

Run gradle create-dirs to create a src/scala, src/resources directory.3.

Run gradle build to build the project and download dependencies.4.

Create your own Gradle Scala plugin

After going through the Basic Setup example, you may find yourself repeating most part of it in
every single Scala Gradle project. Smells like boilerplate code...

What if, instead of applying the Scala plugin offered by Gradle, you could apply your own Scala
plugin, which would be responsible for handling all your common build logic, extending, at the
same time, the already existing plugin.

This example is going to transform the previous build logic into a reusable Gradle plugin.

Luckyly, in Gradle, you can easily write custom plugins with the help of the Gradle API, as outlined
in the documentation. As language of implementation, you can use Scala itself or even Java.

https://riptutorial.com/ 193

https://docs.gradle.org/current/userguide/scala_plugin.html
https://docs.gradle.org/current/userguide/custom_plugins.html

However, most of the examples you can find throughout the docs are written in Groovy. If you
need more code samples or you want to understand what lies behind the Scala plugin, for
instance, you can check the gradle github repo.

Writing the plugin

Requirements

The custom plugin will add the following functionality when applied to a project:

a scalaVersion property object, which will have two overridable default properties
major = "2.12"○

minor = "0"○

•

a withScalaVersion function, which applied to a dependency name, will add the scala major
version to ensure binary compatibility (sbt %% operator might ring a bell, otherwise go here
before proceeding)

•

a createDirs task to create the necessary directory tree, exactly as in the previous example•

Implementation guideline

create a new gradle project and add the following to build.gradle1.

apply plugin: 'scala'
apply plugin: 'maven'

repositories {
 mavenLocal()
 mavenCentral()
}

dependencies {
 compile gradleApi()
 compile "org.scala-lang:scala-library:2.12.0"
}

Notes:

the plugin implementation is written in Scala, thus we need the Gradle Scala Plugin•
in order to use the plugin from other projects, the Gradle Maven Plugin is used; this adds the
install task used for saving the project jar to the Maven Local Repository

•

compile gradleApi() adds the gradle-api-<gradle_version>.jar to the classpath•

create a new Scala class for the plugin implementation2.

package com.btesila.gradle.plugins

import org.gradle.api.{Plugin, Project}

class ScalaCustomPlugin extends Plugin[Project] {
 override def apply(project: Project): Unit = {
 project.getPlugins.apply("scala")

https://riptutorial.com/ 194

https://github.com/gradle/gradle
http://www.scala-sbt.org/0.13/docs/Library-Dependencies.html#Getting+the+right+Scala+version+with

 }
}

Notes:

in order to implement a Plugin, just extend Plugin trait of type Project and override the apply
method

•

within the apply method, you have access to the Project instance that the plugin is applied to
and you can use it for adding build logic to it

•

this plugin does nothing but apply the already existing Gradle Scala Plugin•

add the scalaVersion object property3.

Firstly, we create a ScalaVersion class, which will hold the two version properties

class ScalaVersion {
 var major: String = "2.12"
 var minor: String = "0"
}

One cool thing about Gradle plugins is the fact that you can always add or override specific
properties. A plugin receives this kind of user input via the ExtensionContainer attached to a gradle
Project instance. For more details, check this out.
By adding the following to the apply method, we are basically doing this:

if there is not a scalaVersion property defined in the project, we add one with the default
values

•

otherwise, we get the existing one as instance of ScalaVersion, to use it further•

var scalaVersion = new ScalaVersion
if (!project.getExtensions.getExtraProperties.has("scalaVersion"))
 project.getExtensions.getExtraProperties.set("scalaVersion", scalaVersion)
else
 scalaVersion =
project.getExtensions.getExtraProperties.get("scalaVersion").asInstanceOf[ScalaVersion]

This is equivalent to writing the following to the build file of the project that applies the plugin:

ext {
 scalaVersion.major = "2.12"
 scalaVersion.minor = "0"

}

add the scala-lang library to the project dependencies, using the scalaVersion4.

project.getDependencies.add("compile", s"org.scala-lang:scala-
library:${scalaVersion.major}.${scalaVersion.minor}")

https://riptutorial.com/ 195

https://docs.gradle.org/current/userguide/custom_plugins.html#sec:getting_input_from_the_build

This is equivalent to writing the following to the build file of the project that applies the plugin:

compile "org.scala-lang:scala-library:2.12.0"

add the withScalaVersion function5.

val withScalaVersion = (lib: String) => {
 val libComp = lib.split(":")
 libComp.update(1, s"${libComp(1)}_${scalaVersion.major}")
 libComp.mkString(":")
}
project.getExtensions.getExtraProperties.set("withScalaVersion", withScalaVersion)

finally, create the createDirs task and add it to the project
Implement a Gradle task by extending DefaultTask:

6.

class CreateDirs extends DefaultTask {
 @TaskAction
 def createDirs(): Unit = {
 val sourceSetContainer =
this.getProject.getConvention.getPlugin(classOf[JavaPluginConvention]).getSourceSets

 sourceSetContainer forEach { sourceSet =>
 sourceSet.getAllSource.getSrcDirs.forEach(file => if (!file.getName.contains("java"))
file.mkdirs())
 }
 }
}

Note: the SourceSetContainer has information about all source directories present in the project.
What the Gradle Scala Plugin does, is to add the extra source sets to the Java ones, as you can
see in theplugin docs.

Add the createDir task to the project by appending this to the apply method:

project.getTasks.create("createDirs", classOf[CreateDirs])

In the end, your ScalaCustomPlugin class should look like this:

class ScalaCustomPlugin extends Plugin[Project] {
 override def apply(project: Project): Unit = {
 project.getPlugins.apply("scala")

 var scalaVersion = new ScalaVersion
 if (!project.getExtensions.getExtraProperties.has("scalaVersion"))
 project.getExtensions.getExtraProperties.set("scalaVersion", scalaVersion)
 else
 scalaVersion =
project.getExtensions.getExtraProperties.get("scalaVersion").asInstanceOf[ScalaVersion]

 project.getDependencies.add("compile", s"org.scala-lang:scala-
library:${scalaVersion.major}.${scalaVersion.minor}")

https://riptutorial.com/ 196

https://docs.gradle.org/current/userguide/scala_plugin.html#sec:scala_source_set_properties

 val withScalaVersion = (lib: String) => {
 val libComp = lib.split(":")
 libComp.update(1, s"${libComp(1)}_${scalaVersion.major}")
 libComp.mkString(":")
 }
 project.getExtensions.getExtraProperties.set("withScalaVersion", withScalaVersion)

 project.getTasks.create("createDirs", classOf[CreateDirs])
 }
}

Installing the plugin project to the local Maven repository

This is done really easy by running gradle install
You can check the installation by going to local repository directory, usually found at
~/.m2/repository

How does Gradle find our new plugin?

Each Gradle plugin has an id which is used in the apply statement. For instance, by writing the
following to the build file, it translates to a trigger to Gradle to find and apply the plugin with id
scala.

apply plugin: 'scala'

In the same way, we would like to apply our new plugin in the following way,

apply plugin: "com.btesila.scala.plugin"

meaning that our plugin will have the com.btesila.scala.plugin id.

In order to set this id, add the following file:
src/main/resources/META-INF/gradle-plugin/com.btesil.scala.plugin.properties

implementation-class=com.btesila.gradle.plugins.ScalaCustomPlugin

Afterwards, run again gradle install.

Using the plugin

create a new empty Gradle project and add the following to the build file1.

buildscript {
 repositories {
 mavenLocal()
 mavenCentral()
 }

 dependencies {

https://riptutorial.com/ 197

 //modify this path to match the installed plugin project in your local repository
 classpath 'com.btesila:working-with-gradle:1.0-SNAPSHOT'
 }
}

repositories {
 mavenLocal()
 mavenCentral()
}

apply plugin: "com.btesila.scala.plugin"

run gradle createDirs - you should now have all the source directories generated2.
override the scala version by adding this to the build file:3.

ext {
 scalaVersion.major = "2.11"
 scalaVersion.minor = "8"

}
println(project.ext.scalaVersion.major)
println(project.ext.scalaVersion.minor)

add a dependency library that is binary compatible with the Scala version4.

dependencies {
 compile withScalaVersion("com.typesafe.scala-logging:scala-logging:3.5.0")
}

That's it! You can now use this plugin across all your projects without repeating the same old
boilerplate.

Read Working With Gradle online: https://riptutorial.com/scala/topic/3304/working-with-gradle

https://riptutorial.com/ 198

https://riptutorial.com/scala/topic/3304/working-with-gradle

Chapter 62: XML Handling

Examples

Beautify or Pretty-Print XML

The PrettyPrinter utility will 'pretty print' XML documents. The following code snippet pretty prints
unformatted xml:

import scala.xml.{PrettyPrinter, XML}
val xml = XML.loadString("<a>Alana<c>Beth</c><d>Catie</d>")
val formatted = new PrettyPrinter(150, 4).format(xml)
print(formatted)

This will output the content using a page width of 150 and an indentation constant of 4 white-space
characters:

<a>
 Alana

 <c>Beth</c>
 <d>Catie</d>

You can use XML.loadFile("nameoffile.xml") to load xml from a file instead of from a string.

Read XML Handling online: https://riptutorial.com/scala/topic/1453/xml-handling

https://riptutorial.com/ 199

http://www.scala-lang.org/api/2.11.8/scala-xml/#scala.xml.PrettyPrinter
https://riptutorial.com/scala/topic/1453/xml-handling

Credits

S.
No

Chapters Contributors

1
Getting started with
Scala Language

4444, Andy Hayden, Ani Menon, Community, David G., David
Portabella, dk14, Donald.McLean, Gabriele Petronella,
Grzegorz Oledzki, implicitdef, isaias-b, J Atkin, Jean, Jonathan,
mammothbane, marcospereira, Marek Skiba, mdarwin,
Nathaniel Ford, NeoWelkin, Nicofisi, Priya, rolve, Shoe, sschaef,
Thomas Andrews, Tyler James Harden, Ven, Vogon Jeltz

2 Annotations Gábor Bakos, Nathaniel Ford, Thomas Matecki

3 Best Practices
corvus_192, ipoteka, Nathaniel Ford, RamenChef, Sarvesh
Kumar Singh, Shuklaswag

4 Case Classes
Andy Hayden, Dan Simon, dk14, Gábor Bakos, HTNW, J
Cracknell, keegan, made raka teja, Marc Grue, Nathaniel Ford,
pedrorijo91, Rumoku, ScientiaEtVeritas, suj1th, Suma

5 Classes and Objects
Aamir, Gábor Bakos, mdarwin, mirosval, MSmedberg, Nathaniel
Ford, ScientiaEtVeritas, steve, Sudhir Singh, Tzach Zohar, vivek

6 Collections

Anton, Camilo Sampedro, deepkimo, Donald.McLean,
doub1ejack, EdgeCaseBerg, Filippo Vitale, George, implicitdef,
ipoteka, Jason, John Starich, Mr D, Nathaniel Ford, raam86,
Shastick, Suma, Tundebabzy, Vasiliy Levykin

7 Continuations Library dmitry, HTNW

8 Currying
Adamos Loizou, alphaloop, Amr Gawish, dimitrisli, Luka
Jacobowitz, Nathaniel Ford, rjsvaljean, Suma, vise890

9
Dependency
Injection

Hoang Ong

10 Dynamic Invocation HTNW

11 Enumerations
Andy Hayden, Cortwave, Daniel Schröter, Gábor Bakos,
implicitdef, ipoteka, Nathaniel Ford, phantomastray, Red
Mercury

12 Error Handling
Andy Hayden, Graham, John Starich, made raka teja,
mnoronha, Nathaniel Ford, Simon, Suma, tacos_tacos_tacos,
Tzach Zohar

https://riptutorial.com/ 200

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3838549/david-g-
https://riptutorial.com/contributor/280393/david-portabella
https://riptutorial.com/contributor/280393/david-portabella
https://riptutorial.com/contributor/1809978/dk14
https://riptutorial.com/contributor/1458638/donald-mclean
https://riptutorial.com/contributor/846273/gabriele-petronella
https://riptutorial.com/contributor/118587/grzegorz-oledzki
https://riptutorial.com/contributor/4686622/implicitdef
https://riptutorial.com/contributor/3165552/isaias-b
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/7898/jean
https://riptutorial.com/contributor/69875/jonathan
https://riptutorial.com/contributor/3205784/mammothbane
https://riptutorial.com/contributor/4600/marcospereira
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/1107537/mdarwin
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/6671085/neowelkin
https://riptutorial.com/contributor/4541480/nicofisi
https://riptutorial.com/contributor/4990460/priya
https://riptutorial.com/contributor/1374678/rolve
https://riptutorial.com/contributor/493122/shoe
https://riptutorial.com/contributor/2621536/sschaef
https://riptutorial.com/contributor/7061/thomas-andrews
https://riptutorial.com/contributor/3874219/tyler-james-harden
https://riptutorial.com/contributor/1737909/ven
https://riptutorial.com/contributor/2329773/vogon-jeltz
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/4238173/thomas-matecki
https://riptutorial.com/contributor/5530681/corvus-192
https://riptutorial.com/contributor/3744640/ipoteka
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1151929/sarvesh-kumar-singh
https://riptutorial.com/contributor/1151929/sarvesh-kumar-singh
https://riptutorial.com/contributor/3180238/shuklaswag
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/319084/dan-simon
https://riptutorial.com/contributor/1809978/dk14
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/5684257/htnw
https://riptutorial.com/contributor/927318/j-cracknell
https://riptutorial.com/contributor/927318/j-cracknell
https://riptutorial.com/contributor/4153882/keegan
https://riptutorial.com/contributor/4193067/made-raka-teja
https://riptutorial.com/contributor/1211032/marc-grue
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/4398050/pedrorijo91
https://riptutorial.com/contributor/3641023/rumoku
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/4077935/suj1th
https://riptutorial.com/contributor/16673/suma
https://riptutorial.com/contributor/3380023/aamir
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/1107537/mdarwin
https://riptutorial.com/contributor/169275/mirosval
https://riptutorial.com/contributor/2174845/msmedberg
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/128618/steve
https://riptutorial.com/contributor/4274119/sudhir-singh
https://riptutorial.com/contributor/5344058/tzach-zohar
https://riptutorial.com/contributor/867461/vivek
https://riptutorial.com/contributor/4200103/anton
https://riptutorial.com/contributor/4474204/camilo-sampedro
https://riptutorial.com/contributor/724195/deepkimo
https://riptutorial.com/contributor/1458638/donald-mclean
https://riptutorial.com/contributor/263900/doub1ejack
https://riptutorial.com/contributor/1808164/edgecaseberg
https://riptutorial.com/contributor/81444/filippo-vitale
https://riptutorial.com/contributor/64679/george
https://riptutorial.com/contributor/4686622/implicitdef
https://riptutorial.com/contributor/3744640/ipoteka
https://riptutorial.com/contributor/1343001/jason
https://riptutorial.com/contributor/1530494/john-starich
https://riptutorial.com/contributor/2180290/mr-d
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/1143013/raam86
https://riptutorial.com/contributor/1997056/shastick
https://riptutorial.com/contributor/16673/suma
https://riptutorial.com/contributor/806374/tundebabzy
https://riptutorial.com/contributor/2582880/vasiliy-levykin
https://riptutorial.com/contributor/978664/dmitry
https://riptutorial.com/contributor/5684257/htnw
https://riptutorial.com/contributor/1697733/adamos-loizou
https://riptutorial.com/contributor/352315/alphaloop
https://riptutorial.com/contributor/32704/amr-gawish
https://riptutorial.com/contributor/185723/dimitrisli
https://riptutorial.com/contributor/3795501/luka-jacobowitz
https://riptutorial.com/contributor/3795501/luka-jacobowitz
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/379768/rjsvaljean
https://riptutorial.com/contributor/16673/suma
https://riptutorial.com/contributor/439980/vise890
https://riptutorial.com/contributor/2759803/hoang-ong
https://riptutorial.com/contributor/5684257/htnw
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/3830108/cortwave
https://riptutorial.com/contributor/4461708/daniel-schroter
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/4686622/implicitdef
https://riptutorial.com/contributor/3744640/ipoteka
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/4404932/phantomastray
https://riptutorial.com/contributor/2133888/red-mercury
https://riptutorial.com/contributor/2133888/red-mercury
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/1107592/graham
https://riptutorial.com/contributor/1530494/john-starich
https://riptutorial.com/contributor/4193067/made-raka-teja
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/473181/simon
https://riptutorial.com/contributor/16673/suma
https://riptutorial.com/contributor/843477/tacos-tacos-tacos
https://riptutorial.com/contributor/5344058/tzach-zohar

13 Extractors
Andy Hayden, Dan Hulme, Dan Simon, Gábor Bakos, gilad
hoch, Idloj, J Cracknell, jwvh, knutwalker, Łukasz, Martin Seeler,
Michael Ahlers, Nathaniel Ford, Suma, W.P. McNeill

14 For Expressions
Andy Hayden, J Cracknell, jwvh, LivingRobot, Nathaniel Ford,
ScientiaEtVeritas

15 Functions

Aravindh S, Archeg, Camilo Sampedro, ches, corvus_192,
Dawny33, Gábor Bakos, Gabriele Petronella, implicitdef, ipoteka
, Jean, jwvh, michael_s, Nathaniel Ford, raam86, rjsvaljean,
ScientiaEtVeritas, Shastick, stefanobaghino, Sven Koschnicke,
vise890, wheaties

16 Futures isaias-b, kevin628, Nathaniel Ford, nukie, Shastick

17
Handling units
(measures)

Gábor Bakos

18
Higher Order
Function

acjay, ches, Nathaniel Ford, nukie, Rajat Jain, Srini

19 If Expressions corvus_192, Nathaniel Ford, ScientiaEtVeritas

20 Implicits
Andy Hayden, dimitrisli, Gábor Bakos, HTNW, implicitdef,
ipoteka, Jose Antonio Jimenez Saez, Michael Zajac, Nathaniel
Ford, nattyddubbs, Simon, spiffman, Suma, Timo, vsminkov

21 Java Interoperability
Andrzej Jozwik, Dan Hulme, Gábor Bakos, mvn, the21st,
thekingofkings

22 JSON
ipoteka, John, Muki, Nathaniel Ford, pedrorijo91, suj1th, void,
Wogan, zoitol

23 Macros gregghz, HTNW, Nathaniel Ford

24 Monads ipoteka, Nathaniel Ford

25
Operator
Overloading

corvus_192, implicitdef, inzi, mnoronha, Nathaniel Ford, Simon

26 Operators in Scala Gábor Bakos, Shaido, Suminda Sirinath S. Dharmasena

27 Option Class
Bruce Lowe, CPS, earldouglas, evan.oman, Governa, John
Starich, Matthew Scharley, Nathaniel Ford, R Pieters,
ScientiaEtVeritas, suj1th, Tzach Zohar, Vasiliy Levykin

28 Packages Alex Javarotti, Nathaniel Ford, NetanelRabinowitz

29 Parallel Collections Nathaniel Ford, Shuklaswag

https://riptutorial.com/ 201

https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/967945/dan-hulme
https://riptutorial.com/contributor/319084/dan-simon
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/896557/gilad-hoch
https://riptutorial.com/contributor/896557/gilad-hoch
https://riptutorial.com/contributor/6485786/idloj
https://riptutorial.com/contributor/927318/j-cracknell
https://riptutorial.com/contributor/4993128/jwvh
https://riptutorial.com/contributor/2996265/knutwalker
https://riptutorial.com/contributor/5123895/lukasz
https://riptutorial.com/contributor/1475346/martin-seeler
https://riptutorial.com/contributor/700420/michael-ahlers
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/16673/suma
https://riptutorial.com/contributor/1120370/w-p--mcneill
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/927318/j-cracknell
https://riptutorial.com/contributor/4993128/jwvh
https://riptutorial.com/contributor/5407287/livingrobot
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/4071245/aravindh-s
https://riptutorial.com/contributor/423839/archeg
https://riptutorial.com/contributor/4474204/camilo-sampedro
https://riptutorial.com/contributor/455009/ches
https://riptutorial.com/contributor/5530681/corvus-192
https://riptutorial.com/contributor/4993513/dawny33
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/846273/gabriele-petronella
https://riptutorial.com/contributor/4686622/implicitdef
https://riptutorial.com/contributor/3744640/ipoteka
https://riptutorial.com/contributor/7898/jean
https://riptutorial.com/contributor/4993128/jwvh
https://riptutorial.com/contributor/2056545/michael-s
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/1143013/raam86
https://riptutorial.com/contributor/379768/rjsvaljean
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/1997056/shastick
https://riptutorial.com/contributor/3314107/stefanobaghino
https://riptutorial.com/contributor/390808/sven-koschnicke
https://riptutorial.com/contributor/439980/vise890
https://riptutorial.com/contributor/178060/wheaties
https://riptutorial.com/contributor/3165552/isaias-b
https://riptutorial.com/contributor/425533/kevin628
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/4601349/nukie
https://riptutorial.com/contributor/1997056/shastick
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/807674/acjay
https://riptutorial.com/contributor/455009/ches
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/4601349/nukie
https://riptutorial.com/contributor/4773320/rajat-jain
https://riptutorial.com/contributor/5599912/srini
https://riptutorial.com/contributor/5530681/corvus-192
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/185723/dimitrisli
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/5684257/htnw
https://riptutorial.com/contributor/4686622/implicitdef
https://riptutorial.com/contributor/3744640/ipoteka
https://riptutorial.com/contributor/5152033/jose-antonio-jimenez-saez
https://riptutorial.com/contributor/2292812/michael-zajac
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/1154145/nattyddubbs
https://riptutorial.com/contributor/473181/simon
https://riptutorial.com/contributor/2275672/spiffman
https://riptutorial.com/contributor/16673/suma
https://riptutorial.com/contributor/543347/timo
https://riptutorial.com/contributor/3239417/vsminkov
https://riptutorial.com/contributor/651140/andrzej-jozwik
https://riptutorial.com/contributor/967945/dan-hulme
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/1607807/mvn
https://riptutorial.com/contributor/2761695/the21st
https://riptutorial.com/contributor/1287369/thekingofkings
https://riptutorial.com/contributor/3744640/ipoteka
https://riptutorial.com/contributor/1659569/john
https://riptutorial.com/contributor/709351/muki
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/4398050/pedrorijo91
https://riptutorial.com/contributor/4077935/suj1th
https://riptutorial.com/contributor/1029287/void
https://riptutorial.com/contributor/137902/wogan
https://riptutorial.com/contributor/6382782/zoitol
https://riptutorial.com/contributor/459950/gregghz
https://riptutorial.com/contributor/5684257/htnw
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/3744640/ipoteka
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/5530681/corvus-192
https://riptutorial.com/contributor/4686622/implicitdef
https://riptutorial.com/contributor/3806175/inzi
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/473181/simon
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/7579547/shaido
https://riptutorial.com/contributor/676644/suminda-sirinath-s--dharmasena
https://riptutorial.com/contributor/1304164/bruce-lowe
https://riptutorial.com/contributor/1978793/cps
https://riptutorial.com/contributor/406984/earldouglas
https://riptutorial.com/contributor/2661491/evan-oman
https://riptutorial.com/contributor/637754/governa
https://riptutorial.com/contributor/1530494/john-starich
https://riptutorial.com/contributor/1530494/john-starich
https://riptutorial.com/contributor/15537/matthew-scharley
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/5559685/r-pieters
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/4077935/suj1th
https://riptutorial.com/contributor/5344058/tzach-zohar
https://riptutorial.com/contributor/2582880/vasiliy-levykin
https://riptutorial.com/contributor/3941692/alex-javarotti
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/7354029/netanelrabinowitz
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/3180238/shuklaswag

30 Parser Combinators Nathaniel Ford

31 Partial Functions
acjay, Akash Sethi, David Leppik, dimitrisli, jwvh, Suma, Tzach
Zohar

32 Pattern Matching

Ali Dehghani, Andrzej Jozwik, Andy Hayden, CPS, Dan Simon,
Daniel Werner, Filippo Vitale, Gábor Bakos, implicitdef, insan-e,
jilen, jozic, JRomero, Justin Bailey, Louis F., mammothbane,
Matt, Nadim Bahadoor, Nathaniel Ford, Peter Neyens, Sergio,
Shastick, Shoe, Simon, Suma, T.Grottker, user6062072,
vdebergue, vsminkov, Yagüe

33 Quasiquotes gregghz

34 Recursion
Dmitry Bystritsky, Gábor Bakos, jilen, jwvh, michael_s,
ScientiaEtVeritas, teldosas

35 Reflection Sachin Janani

36 Regular Expressions dmitry, J Cracknell, Nathaniel Ford

37 Scala.js Camilo Sampedro

38 Scaladoc Camilo Sampedro, Gábor Bakos, Nathaniel Ford

39 scalaz chengpohi

40 Scope Camilo Sampedro

41 Self types Gábor Bakos, irundaia

42 Setting up Scala Hristo Iliev, Matas Vaitkevicius, Nathaniel Ford, Rjk

43
Single Abstract
Method Types (SAM
Types)

Gábor Bakos, Gabriele Petronella, Nathaniel Ford

44 Streams jwvh, Nathaniel Ford, Oleg Pyzhcov

45 String Interpolation
Andy Hayden, Ayberk, Brian, implicitdef, J Cracknell, Nadim
Bahadoor

46 Symbol Literals ZbyszekKr

47 synchronized Gábor Bakos

48
Testing with
ScalaCheck

Andrzej Jozwik

49
Testing with
ScalaTest

Nadim Bahadoor, Nathaniel Ford

https://riptutorial.com/ 202

https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/807674/acjay
https://riptutorial.com/contributor/7333785/akash-sethi
https://riptutorial.com/contributor/18078/david-leppik
https://riptutorial.com/contributor/185723/dimitrisli
https://riptutorial.com/contributor/4993128/jwvh
https://riptutorial.com/contributor/16673/suma
https://riptutorial.com/contributor/5344058/tzach-zohar
https://riptutorial.com/contributor/5344058/tzach-zohar
https://riptutorial.com/contributor/1393484/ali-dehghani
https://riptutorial.com/contributor/651140/andrzej-jozwik
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/1978793/cps
https://riptutorial.com/contributor/319084/dan-simon
https://riptutorial.com/contributor/241135/daniel-werner
https://riptutorial.com/contributor/81444/filippo-vitale
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/4686622/implicitdef
https://riptutorial.com/contributor/4496364/insan-e
https://riptutorial.com/contributor/712041/jilen
https://riptutorial.com/contributor/146932/jozic
https://riptutorial.com/contributor/552902/jromero
https://riptutorial.com/contributor/169359/justin-bailey
https://riptutorial.com/contributor/2352924/louis-f-
https://riptutorial.com/contributor/3205784/mammothbane
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/6449018/nadim-bahadoor
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/5020846/peter-neyens
https://riptutorial.com/contributor/1859528/sergio
https://riptutorial.com/contributor/1997056/shastick
https://riptutorial.com/contributor/493122/shoe
https://riptutorial.com/contributor/473181/simon
https://riptutorial.com/contributor/16673/suma
https://riptutorial.com/contributor/1374536/t-grottker
https://riptutorial.com/contributor/6062072/user6062072
https://riptutorial.com/contributor/1926897/vdebergue
https://riptutorial.com/contributor/3239417/vsminkov
https://riptutorial.com/contributor/2563749/yague
https://riptutorial.com/contributor/459950/gregghz
https://riptutorial.com/contributor/5428618/dmitry-bystritsky
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/712041/jilen
https://riptutorial.com/contributor/4993128/jwvh
https://riptutorial.com/contributor/2056545/michael-s
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/7411631/teldosas
https://riptutorial.com/contributor/1298454/sachin-janani
https://riptutorial.com/contributor/978664/dmitry
https://riptutorial.com/contributor/927318/j-cracknell
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/4474204/camilo-sampedro
https://riptutorial.com/contributor/4474204/camilo-sampedro
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/2882051/chengpohi
https://riptutorial.com/contributor/4474204/camilo-sampedro
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/3283181/irundaia
https://riptutorial.com/contributor/1374437/hristo-iliev
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/3513857/rjk
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/846273/gabriele-petronella
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/4993128/jwvh
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/2758343/oleg-pyzhcov
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/348194/ayberk
https://riptutorial.com/contributor/390708/brian
https://riptutorial.com/contributor/4686622/implicitdef
https://riptutorial.com/contributor/927318/j-cracknell
https://riptutorial.com/contributor/6449018/nadim-bahadoor
https://riptutorial.com/contributor/6449018/nadim-bahadoor
https://riptutorial.com/contributor/3629229/zbyszekkr
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/651140/andrzej-jozwik
https://riptutorial.com/contributor/6449018/nadim-bahadoor
https://riptutorial.com/contributor/442945/nathaniel-ford

50 Traits
André Laszlo, Andy Hayden, Donald.McLean, Louis F.,
Nathaniel Ford, Rumoku, Sudhir Singh, Vogon Jeltz

51 Tuples corvus_192, evan.oman, Lawsy, Nathaniel Ford

52 Type Classes
Arseniy Zhizhelev, Daniel C. Sobral, Gábor Bakos, gregghz,
Nathaniel Ford, TomTom, Yawar

53 Type Inference Gábor Bakos, Nathaniel Ford, suj1th

54
Type
Parameterization
(Generics)

akauppi, Andy Hayden, Eero Helenius, Nathaniel Ford, vivek

55 Type Variance acjay, J Cracknell, Reactormonk

56
Type-level
Programming

J Cracknell

57
User Defined
Functions for Hive

Camilo Sampedro

58 Var, Val, and Def
Aamir, John Starich, jwvh, linkhyrule5, Nathaniel Ford, Shastick,
Shuklaswag, stefanobaghino, ZbyszekKr

59 While Loops J Cracknell, Nathaniel Ford

60
Working with data in
immutable style

Filippo Vitale

61 Working With Gradle Bianca Tesila, Nathaniel Ford, Rjk

62 XML Handling Nathaniel Ford, Rockie Yang, vsnyc

https://riptutorial.com/ 203

https://riptutorial.com/contributor/98057/andre-laszlo
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/1458638/donald-mclean
https://riptutorial.com/contributor/2352924/louis-f-
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/3641023/rumoku
https://riptutorial.com/contributor/4274119/sudhir-singh
https://riptutorial.com/contributor/2329773/vogon-jeltz
https://riptutorial.com/contributor/5530681/corvus-192
https://riptutorial.com/contributor/2661491/evan-oman
https://riptutorial.com/contributor/4183232/lawsy
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/2646454/arseniy-zhizhelev
https://riptutorial.com/contributor/53013/daniel-c--sobral
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/459950/gregghz
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/3666302/tomtom
https://riptutorial.com/contributor/20371/yawar
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/4077935/suj1th
https://riptutorial.com/contributor/14455/akauppi
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/825783/eero-helenius
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/867461/vivek
https://riptutorial.com/contributor/807674/acjay
https://riptutorial.com/contributor/927318/j-cracknell
https://riptutorial.com/contributor/411944/reactormonk
https://riptutorial.com/contributor/927318/j-cracknell
https://riptutorial.com/contributor/4474204/camilo-sampedro
https://riptutorial.com/contributor/3380023/aamir
https://riptutorial.com/contributor/1530494/john-starich
https://riptutorial.com/contributor/4993128/jwvh
https://riptutorial.com/contributor/1152977/linkhyrule5
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/1997056/shastick
https://riptutorial.com/contributor/3180238/shuklaswag
https://riptutorial.com/contributor/3314107/stefanobaghino
https://riptutorial.com/contributor/3629229/zbyszekkr
https://riptutorial.com/contributor/927318/j-cracknell
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/81444/filippo-vitale
https://riptutorial.com/contributor/5341534/bianca-tesila
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/3513857/rjk
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/2015518/rockie-yang
https://riptutorial.com/contributor/2063026/vsnyc

	About
	Chapter 1: Getting started with Scala Language
	Remarks
	Versions
	Examples
	Hello World by Defining a 'main' Method
	Hello World by extending App

	Delayed Initialization
	Delayed Initialization
	Hello World as a script
	Using the Scala REPL
	Scala Quicksheet

	Chapter 2: Annotations
	Syntax
	Parameters
	Remarks
	Examples
	Using an Annotation
	Annotating the main constructor
	Creating Your Own Annotations

	Chapter 3: Best Practices
	Remarks
	Examples
	Keep it simple
	Don't pack too much in one expression.
	Prefer a Functional Style, Reasonably

	Chapter 4: Case Classes
	Syntax
	Examples
	Case Class Equality
	Generated Code Artifacts
	Case Class Basics
	Case Classes and Immutabilty
	Create a Copy of an Object with Certain Changes
	Single Element Case Classes for Type Safety

	Chapter 5: Classes and Objects
	Syntax
	Examples
	Instantiate Class Instances
	Instantiating class with no parameter: {} vs ()
	Singleton & Companion Objects

	Singleton Objects
	Companion Objects
	Objects
	Instance type checking
	Constructors

	Primary Constructor
	Auxiliary Constructors

	Chapter 6: Collections
	Examples
	Sort A List
	Create a List containing n copies of x
	List and Vector Cheatsheet
	Map Collection Cheatsheet
	Map and Filter Over A Collection

	Map
	Multiplying integer numbers by two

	Filter
	Checking pair numbers

	More Map and Filter examples
	Introduction to Scala Collections
	Traversable types
	Fold
	Foreach
	Reduce

	Chapter 7: Continuations Library
	Introduction
	Syntax
	Remarks
	Examples
	Callbacks are Continutations
	Creating Functions That Take Continuations

	Chapter 8: Currying
	Syntax
	Examples
	A configurable multiplier as a curried function
	Multiple parameter groups of different types, currying parameters of arbitrary positions
	Currying a function with a single parameter group
	Currying
	Currying
	When to use Currying
	A real world use of Currying.

	Chapter 9: Dependency Injection
	Examples
	Cake Pattern with inner implementation class.

	Chapter 10: Dynamic Invocation
	Introduction
	Syntax
	Remarks
	Examples
	Field Accesses
	Method Calls
	Interaction Between Field Access and Update Method

	Chapter 11: Enumerations
	Remarks
	Examples
	Days of the week using Scala Enumeration
	Using sealed trait and case objects
	Using sealed trait and case objects and allValues-macro

	Chapter 12: Error Handling
	Examples
	Try
	Either
	Option

	Pattern Matching
	Using map and getOrElse
	Using fold
	Converting to Java
	Handling Errors Originating in Futures
	Using try-catch clauses
	Convert Exceptions into Either or Option Types

	Chapter 13: Extractors
	Syntax
	Examples
	Tuple Extractors
	Case Class Extractors
	Unapply - Custom Extractors
	Extractor Infix notation
	Regex Extractors
	Transformative extractors

	Chapter 14: For Expressions
	Syntax
	Parameters
	Examples
	Basic For Loop
	Basic For Comprehension
	Nested For Loop
	Monadic for comprehensions
	Iterate Through Collections Using a For Loop
	Desugaring For Comprehensions

	Chapter 15: Functions
	Remarks

	Difference between functions and methods:
	Examples
	Anonymous Functions

	Underscores shorthand
	Anonymous Functions with No Parameters
	Composition
	Relationship to PartialFunctions

	Chapter 16: Futures
	Examples
	Creating a Future
	Consuming a Successful Future
	Consuming a Failed Future
	Putting the Future Together
	Sequencing and traversing Futures
	Combine Multiple Futures – For Comprehension

	Chapter 17: Handling units (measures)
	Syntax
	Remarks
	Examples
	Type aliases
	Value classes

	Chapter 18: Higher Order Function
	Remarks
	Examples
	Using methods as function values
	High Order Functions(Function as Parameter)
	Arguments lazy evaluation

	Chapter 19: If Expressions
	Examples
	Basic If Expressions

	Chapter 20: Implicits
	Syntax
	Remarks
	Examples
	Implicit Conversion
	Implicit Parameters
	Implicit Classes
	Resolving Implicit Parameters Using 'implicitly'
	Implicits in the REPL

	Chapter 21: Java Interoperability
	Examples
	Converting Scala Collections to Java Collections and vice versa
	Arrays
	Scala and Java type conversions
	Functional Interfaces for Scala functions - scala-java8-compat

	Chapter 22: JSON
	Examples
	JSON with spray-json

	Make the Library Available with SBT
	Import the Library

	Read JSON
	Write JSON
	DSL
	Read-Write to Case Classes
	Custom Format
	JSON with Circe
	JSON with play-json
	JSON with json4s

	Chapter 23: Macros
	Introduction
	Syntax
	Remarks
	Examples
	Macro Annotation
	Method Macros
	Errors in Macros

	Chapter 24: Monads
	Examples
	Monad Definition

	Chapter 25: Operator Overloading
	Examples
	Defining Custom Infix Operators
	Defining Custom Unary Operators

	Chapter 26: Operators in Scala
	Examples
	Built-in Operators
	Operator Overloading
	Operator Precedence

	Chapter 27: Option Class
	Syntax
	Examples
	Options as Collections
	Using Option Instead of Null
	Basics

	Example with Map
	Options in for comprehensions

	Chapter 28: Packages
	Introduction
	Examples
	Package structure
	Packages and files
	Package naming convension

	Chapter 29: Parallel Collections
	Remarks
	Examples
	Creating and Using Parallel Collections
	Pitfalls

	Chapter 30: Parser Combinators
	Remarks
	Examples
	Basic Example

	Chapter 31: Partial Functions
	Examples
	Composition
	Usage with `collect`
	Basic syntax
	Usage as a total function
	Usage to extract tuples in a map function

	Chapter 32: Pattern Matching
	Syntax
	Parameters
	Examples
	Simple Pattern Match
	Pattern Matching With Stable Identifier
	Pattern Matching on a Seq
	Guards (if expressions)
	Pattern Matching with Case Classes
	Matching on an Option
	Pattern Matching Sealed Traits
	Pattern Matching with Regex
	Pattern binder (@)
	Pattern Matching Types
	Pattern Matching compiled as tableswitch or lookupswitch
	Matching Multiple Patterns At Once
	Pattern Matching on tuples

	Chapter 33: Quasiquotes
	Examples
	Create a syntax tree with quasiquotes

	Chapter 34: Recursion
	Examples
	Tail Recursion

	Regular Recursion
	Tail Recursion
	Stackless recursion with trampoline(scala.util.control.TailCalls)

	Chapter 35: Reflection
	Examples
	Loading a class using reflection

	Chapter 36: Regular Expressions
	Syntax
	Examples
	Declaring regular expressions
	Repeating matching of a pattern in a string

	Chapter 37: Scala.js
	Introduction
	Examples
	console.log in Scala.js
	Fat arrow functions
	Simple Class
	Collections
	Manipulating DOM
	Using with SBT

	Sbt dependency
	Running
	Running with continous compilation:
	Compile to a single JavaScript file:

	Chapter 38: Scaladoc
	Syntax
	Parameters
	Examples
	Simple Scaladoc to method

	Chapter 39: scalaz
	Introduction
	Examples
	ApplyUsage
	FunctorUsage
	ArrowUsage

	Chapter 40: Scope
	Introduction
	Syntax
	Examples
	Public (default) scope
	A private scope
	A private package-specific scope
	Object private scope
	Protected scope
	Package protected scope

	Chapter 41: Self types
	Syntax
	Remarks
	Examples
	Simple self type example

	Chapter 42: Setting up Scala
	Examples
	On Linux via dpkg
	Ubuntu Installation via Manual Download and Configuration
	Mac OSX via Macports

	Chapter 43: Single Abstract Method Types (SAM Types)
	Remarks
	Examples
	Lambda Syntax

	Chapter 44: Streams
	Remarks
	Examples
	Using a Stream to Generate a Random Sequence
	Infinite Streams via Recursion
	Infinite self-referent stream

	Chapter 45: String Interpolation
	Remarks
	Examples
	Hello String Interpolation
	Formatted String Interpolation Using the f Interpolator
	Using expression in string literals
	Custom string interpolators
	String interpolators as extractors
	Raw String Interpolation

	Chapter 46: Symbol Literals
	Remarks
	Examples
	Replacing strings in case clauses

	Chapter 47: synchronized
	Syntax
	Examples
	synchronize on an object
	synchronize implicitly on this

	Chapter 48: Testing with ScalaCheck
	Introduction
	Examples
	Scalacheck with scalatest and error messages

	Chapter 49: Testing with ScalaTest
	Examples
	Hello World Spec Test
	Spec Test Cheatsheet
	Include the ScalaTest Library with SBT

	Chapter 50: Traits
	Syntax
	Examples
	Stackable Modification with Traits
	Trait Basics
	Solving the Diamond Problem
	Linearization

	Chapter 51: Tuples
	Remarks
	Examples
	Creating a new Tuple
	Tuples within Collections

	Chapter 52: Type Classes
	Remarks
	Examples
	Simple Type Class
	Extending a Type Class
	Add type class functions to types

	Chapter 53: Type Inference
	Examples
	Local Type Inference
	Type Inference And Generics
	Limitations to Inference
	Preventing inferring Nothing

	Chapter 54: Type Parameterization (Generics)
	Examples
	The Option type
	Parameterized Methods
	Generic collection

	Defining the list of Ints
	Defining generic list

	Chapter 55: Type Variance
	Examples
	Covariance
	Invariance
	Contravariance
	Covariance of a collection
	Covariance on an invariant trait

	Chapter 56: Type-level Programming
	Examples
	Introduction to type-level programming

	Chapter 57: User Defined Functions for Hive
	Examples
	A simple Hive UDF within Apache Spark

	Chapter 58: Var, Val, and Def
	Remarks
	Examples
	Var, Val, and Def

	var
	val
	def
	Functions
	Lazy val

	When To Use 'lazy'
	Overloading Def
	Named Parameters

	Chapter 59: While Loops
	Syntax
	Parameters
	Remarks
	Examples
	While Loops
	Do-While Loops

	Chapter 60: Working with data in immutable style
	Remarks
	Value and variable names should be in lower camel case
	Examples
	It is not just val vs. var
	val and var
	Immutable and Mutable collections
	But I can't use immutability in this case!
	"Why we have to mutate?"
	Creating and filling the result map
	Mutable implementation
	Folding to the rescue
	Intermediate result
	Easier reasonability

	Chapter 61: Working With Gradle
	Examples
	Basic Setup
	Create your own Gradle Scala plugin

	Writing the plugin
	Using the plugin

	Chapter 62: XML Handling
	Examples
	Beautify or Pretty-Print XML

	Credits

