
scikit-learn

#scikit-learn

Table of Contents

About 1

Chapter 1: Getting started with scikit-learn 2

Remarks 2

Examples 2

Installation of scikit-learn 2

Train a classifier with cross-validation 2

Creating pipelines 3

Interfaces and conventions: 4

Sample datasets 4

Chapter 2: Classification 6

Examples 6

Using Support Vector Machines 6

RandomForestClassifier 6

Analyzing Classification Reports 7

GradientBoostingClassifier 8

A Decision Tree 8

Classification using Logistic Regression 9

Chapter 3: Dimensionality reduction (Feature selection) 11

Examples 11

Reducing The Dimension With Principal Component Analysis 11

Chapter 4: Feature selection 13

Examples 13

Low-Variance Feature Removal 13

Chapter 5: Model selection 15

Examples 15

Cross-validation 15

K-Fold Cross Validation 15

K-Fold 16

ShuffleSplit 16

Chapter 6: Receiver Operating Characteristic (ROC) 17

Examples 17

Introduction to ROC and AUC 17

ROC-AUC score with overriding and cross validation 18

Chapter 7: Regression 20

Examples 20

Ordinary Least Squares 20

Credits 22

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: scikit-learn

It is an unofficial and free scikit-learn ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official scikit-learn.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/scikit-learn
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with scikit-learn

Remarks

scikit-learn is a general-purpose open-source library for data analysis written in python. It is
based on other python libraries: NumPy, SciPy, and matplotlib

scikit-learncontains a number of implementation for different popular algorithms of machine
learning.

Examples

Installation of scikit-learn

The current stable version of scikit-learn requires:

Python (>= 2.6 or >= 3.3),•
NumPy (>= 1.6.1),•
SciPy (>= 0.9).•

For most installation pip python package manager can install python and all of its dependencies:

pip install scikit-learn

However for linux systems it is recommended to use conda package manager to avoid possible
build processes

conda install scikit-learn

To check that you have scikit-learn, execute in shell:

python -c 'import sklearn; print(sklearn.__version__)'

Windows and Mac OSX Installation:

Canopy and Anaconda both ship a recent version of scikit-learn, in addition to a large set of
scientific python library for Windows, Mac OSX (also relevant for Linux).

Train a classifier with cross-validation

Using iris dataset:

import sklearn.datasets
iris_dataset = sklearn.datasets.load_iris()

https://riptutorial.com/ 2

http://scikit-learn.org/stable/install.html
https://www.enthought.com/products/canopy/
https://www.continuum.io/downloads

X, y = iris_dataset['data'], iris_dataset['target']

Data is split into train and test sets. To do this we use the train_test_split utility function to split
both X and y (data and target vectors) randomly with the option train_size=0.75 (training sets
contain 75% of the data).

Training datasets are fed into a k-nearest neighbors classifier. The method fit of the classifier will
fit the model to the data.

from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.75)
from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(n_neighbors=3)
clf.fit(X_train, y_train)

Finally predicting quality on test sample:

clf.score(X_test, y_test) # Output: 0.94736842105263153

By using one pair of train and test sets we might get a biased estimation of the quality of the
classifier due to the arbitrary choice the data split. By using cross-validation we can fit of the
classifier on different train/test subsets of the data and make an average over all accuracy results.
The function cross_val_score fits a classifier to the input data using cross-validation. It can take as
input the number of different splits (folds) to be used (5 in the example below).

from sklearn.cross_validation import cross_val_score
scores = cross_val_score(clf, X, y, cv=5)
print(scores)
Output: array([0.96666667, 0.96666667, 0.93333333, 0.96666667, 1.])
print "Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() / 2)
Output: Accuracy: 0.97 (+/- 0.03)

Creating pipelines

Finding patterns in data often proceeds in a chain of data-processing steps, e.g., feature selection,
normalization, and classification. In sklearn, a pipeline of stages is used for this.

For example, the following code shows a pipeline consisting of two stages. The first scales the
features, and the second trains a classifier on the resulting augmented dataset:

from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier

pipeline = make_pipeline(StandardScaler(), KNeighborsClassifier(n_neighbors=4))

Once the pipeline is created, you can use it like a regular stage (depending on its specific steps).
Here, for example, the pipeline behaves like a classifier. Consequently, we can use it as follows:

fitting a classifier

https://riptutorial.com/ 3

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

pipeline.fit(X_train, y_train)
getting predictions for the new data sample
pipeline.predict_proba(X_test)

Interfaces and conventions:

Different operations with data are done using special classes.

Most of the classes belong to one of the following groups:

classification algorithms (derived from sklearn.base.ClassifierMixin) to solve classification
problems

•

regression algorithms (derived from sklearn.base.RegressorMixin) to solve problem of
reconstructing continuous variables (regression problem)

•

data transformations (derived from sklearn.base.TransformerMixin) that preprocess the data•

Data is stored in numpy.arrays (but other array-like objects like pandas.DataFrames are accepted if
those are convertible to numpy.arrays)

Each object in the data is described by set of features the general convention is that data sample
is represented with array, where first dimension is data sample id, second dimension is feature id.

import numpy
data = numpy.arange(10).reshape(5, 2)
print(data)

Output:
[[0 1]
 [2 3]
 [4 5]
 [6 7]
 [8 9]]

In sklearn conventions dataset above contains 5 objects each described by 2 features.

Sample datasets

For ease of testing, sklearn provides some built-in datasets in sklearn.datasets module. For
example, let's load Fisher's iris dataset:

import sklearn.datasets
iris_dataset = sklearn.datasets.load_iris()
iris_dataset.keys()
['target_names', 'data', 'target', 'DESCR', 'feature_names']

You can read full description, names of features and names of classes (target_names). Those are
stored as strings.

We are interested in the data and classes, which stored in data and target fields. By convention
those are denoted as X and y

https://riptutorial.com/ 4

X, y = iris_dataset['data'], iris_dataset['target']
X.shape, y.shape
((150, 4), (150,))

numpy.unique(y)
array([0, 1, 2])

Shapes of X and y say that there are 150 samples with 4 features. Each sample belongs to one of
following classes: 0, 1 or 2.

X and y can now be used in training a classifier, by calling the classifier's fit() method.

Here is the full list of datasets provided by the sklearn.datasets module with their size and
intended use:

Load with Description Size Usage

load_boston() Boston house-prices dataset 506 regression

load_breast_cancer() Breast cancer Wisconsin dataset 569 classification (binary)

load_diabetes() Diabetes dataset 442 regression

load_digits(n_class) Digits dataset 1797 classification

load_iris() Iris dataset 150 classification (multi-class)

load_linnerud() Linnerud dataset 20 multivariate regression

Note that (source: http://scikit-learn.org/stable/datasets/):

These datasets are useful to quickly illustrate the behavior of the various algorithms
implemented in the scikit. They are however often too small to be representative of real
world machine learning tasks.

In addition to these built-in toy sample datasets, sklearn.datasets also provides utility functions for
loading external datasets:

load_mlcomp for loading sample datasets from the mlcomp.org repository (note that the
datasets need to be downloaded before). Here is an example of usage.

•

fetch_lfw_pairs and fetch_lfw_people for loading Labeled Faces in the Wild (LFW) pairs
dataset from http://vis-www.cs.umass.edu/lfw/, used for face verification (resp. face
recognition). This dataset is larger than 200 MB. Here is an example of usage.

•

Read Getting started with scikit-learn online: https://riptutorial.com/scikit-learn/topic/1035/getting-
started-with-scikit-learn

https://riptutorial.com/ 5

http://scikit-learn.org/stable/datasets/)
http://mlcomp.org
http://scikit-learn.org/stable/auto_examples/text/mlcomp_sparse_document_classification.html
http://vis-www.cs.umass.edu/lfw/
http://scikit-learn.org/stable/datasets/labeled_faces.html
https://riptutorial.com/scikit-learn/topic/1035/getting-started-with-scikit-learn
https://riptutorial.com/scikit-learn/topic/1035/getting-started-with-scikit-learn

Chapter 2: Classification

Examples

Using Support Vector Machines

Support vector machines is a family of algorithms attempting to pass a (possibly high-dimension)
hyperplane between two labelled sets of points, such that the distance of the points from the plane
is optimal in some sense. SVMs can be used for classification or regression (corresponding to
sklearn.svm.SVC and sklearn.svm.SVR, respectively.

Example:

Suppose we work in a 2D space. First, we create some data:

import numpy as np

Now we create x and y:

x0, x1 = np.random.randn(10, 2), np.random.randn(10, 2) + (1, 1)
x = np.vstack((x0, x1))

y = [0] * 10 + [1] * 10

Note that x is composed of two Gaussians: one centered around (0, 0), and one centered around
(1, 1).

To build a classifier, we can use:

from sklearn import svm

svm.SVC(kernel='linear').fit(x, y)

Let's check the prediction for (0, 0):

>>> svm.SVC(kernel='linear').fit(x, y).predict([[0, 0]])
array([0])

The prediction is that the class is 0.

For regression, we can similarly do:

svm.SVR(kernel='linear').fit(x, y)

RandomForestClassifier

A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-

https://riptutorial.com/ 6

https://en.wikipedia.org/wiki/Support_vector_machine
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

samples of the dataset and use averaging to improve the predictive accuracy and control over-
fitting.

A simple usage example:

Import:

from sklearn.ensemble import RandomForestClassifier

Define train data and target data:

train = [[1,2,3],[2,5,1],[2,1,7]]
target = [0,1,0]

The values in target represent the label you want to predict.

Initiate a RandomForest object and perform learn (fit):

rf = RandomForestClassifier(n_estimators=100)
rf.fit(train, target)

Predict:

test = [2,2,3]
predicted = rf.predict(test)

Analyzing Classification Reports

Build a text report showing the main classification metrics, including the precision and recall, f1-
score (the harmonic mean of precision and recall) and support (the number of observations of that
class in the training set).

Example from sklearn docs:

from sklearn.metrics import classification_report
y_true = [0, 1, 2, 2, 2]
y_pred = [0, 0, 2, 2, 1]
target_names = ['class 0', 'class 1', 'class 2']
print(classification_report(y_true, y_pred, target_names=target_names))

Output -

 precision recall f1-score support

class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3

avg / total 0.70 0.60 0.61 5

https://riptutorial.com/ 7

https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/Harmonic_mean
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html

GradientBoostingClassifier

Gradient Boosting for classification. The Gradient Boosting Classifier is an additive ensemble of a
base model whose error is corrected in successive iterations (or stages) by the addition of
Regression Trees which correct the residuals (the error of the previous stage).

Import:

from sklearn.ensemble import GradientBoostingClassifier

Create some toy classification data

from sklearn.datasets import load_iris

iris_dataset = load_iris()

X, y = iris_dataset.data, iris_dataset.target

Let us split this data into training and testing set.

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.2, random_state=0)

Instantiate a GradientBoostingClassifier model using the default params.

gbc = GradientBoostingClassifier()
gbc.fit(X_train, y_train)

Let us score it on the test set

We are using the default classification accuracy score
>>> gbc.score(X_test, y_test)
1

By default there are 100 estimators built

>>> gbc.n_estimators
100

This can be controlled by setting n_estimators to a different value during the initialization time.

A Decision Tree

A decision tree is a classifier which uses a sequence of verbose rules (like a>7) which can be
easily understood.

The example below trains a decision tree classifier using three feature vectors of length 3, and
then predicts the result for a so far unknown fourth feature vector, the so called test vector.

https://riptutorial.com/ 8

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html

from sklearn.tree import DecisionTreeClassifier

Define training and target set for the classifier
train = [[1,2,3],[2,5,1],[2,1,7]]
target = [10,20,30]

Initialize Classifier.
Random values are initialized with always the same random seed of value 0
(allows reproducible results)
dectree = DecisionTreeClassifier(random_state=0)
dectree.fit(train, target)

Test classifier with other, unknown feature vector
test = [2,2,3]
predicted = dectree.predict(test)

print predicted

Output can be visualized using:

import pydot
import StringIO

dotfile = StringIO.StringIO()
tree.export_graphviz(dectree, out_file=dotfile)
(graph,)=pydot.graph_from_dot_data(dotfile.getvalue())
graph.write_png("dtree.png")
graph.write_pdf("dtree.pdf")

Classification using Logistic Regression

In LR Classifier, he probabilities describing the possible outcomes of a single trial are modeled
using a logistic function. It is implemented in the linear_model library

from sklearn.linear_model import LogisticRegression

The sklearn LR implementation can fit binary, One-vs- Rest, or multinomial logistic regression with
optional L2 or L1 regularization. For example, let us consider a binary classification on a sample
sklearn dataset

from sklearn.datasets import make_hastie_10_2

X,y = make_hastie_10_2(n_samples=1000)

Where X is a n_samples X 10 array and y is the target labels -1 or +1.

Use train-test split to divide the input data into training and test sets (70%-30%)

from sklearn.model_selection import train_test_split
#sklearn.cross_validation in older scikit versions

data_train, data_test, labels_train, labels_test = train_test_split(X,y, test_size=0.3)

https://riptutorial.com/ 9

Using the LR Classifier is similar to other examples

Initialize Classifier.
LRC = LogisticRegression()
LRC.fit(data_train, labels_train)

Test classifier with the test data
predicted = LRC.predict(data_test)

Use Confusion matrix to visualise results

from sklearn.metrics import confusion_matrix

confusion_matrix(predicted, labels_test)

Read Classification online: https://riptutorial.com/scikit-learn/topic/2468/classification

https://riptutorial.com/ 10

https://riptutorial.com/scikit-learn/topic/2468/classification

Chapter 3: Dimensionality reduction (Feature
selection)

Examples

Reducing The Dimension With Principal Component Analysis

Principal Component Analysis finds sequences of linear combinations of the features. The first
linear combination maximizes the variance of the features (subject to a unit constraint). Each of
the following linear combinations maximizes the variance of the features in the subspace
orthogonal to that spanned by the previous linear combinations.

A common dimension reduction technique is to use only the k first such linear combinations.
Suppose the features are a matrix X of n rows and m columns. The first k linear combinations form
a matrix βk of m rows and k columns. The product X β has n rows and k columns. Thus, the

resulting matrix β k can be considered a reduction from m to k dimensions, retaining the high-
variance parts of the original matrix X.

In scikit-learn, PCA is performed with sklearn.decomposition.PCA. For example, suppose we start
with a 100 X 7 matrix, constructed so that the variance is contained only in the first two columns
(by scaling down the last 5 columns):

import numpy as np
np.random.seed(123) # we'll set a random seed so that our results are reproducible
X = np.hstack((np.random.randn(100, 2) + (10, 10), 0.001 * np.random.randn(100, 5)))

Let's perform a reduction to 2 dimensions:

from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca.fit(X)

Now let's check the results. First, here are the linear combinations:

pca.components_
array([[-2.84271217e-01, -9.58743893e-01, -8.25412629e-05,
1.96237855e-05, -1.25862328e-05, 8.27127496e-05,
-9.46906600e-05],
[-9.58743890e-01, 2.84271223e-01, -7.33055823e-05,
-1.23188872e-04, -1.82458739e-05, 5.50383246e-05,
1.96503690e-05]])

Note how the first two components in each vector are several orders of magnitude larger than the
others, showing that the PCA recognized that the variance is contained mainly in the first two
columns.

https://riptutorial.com/ 11

https://en.wikipedia.org/wiki/Dimensionality_reduction#Principal_component_analysis
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA

To check the ratio of the variance explained by this PCA, we can examine
pca.explained_variance_ratio_:

pca.explained_variance_ratio_
array([0.57039059, 0.42960728])

Read Dimensionality reduction (Feature selection) online: https://riptutorial.com/scikit-
learn/topic/4829/dimensionality-reduction--feature-selection-

https://riptutorial.com/ 12

https://riptutorial.com/scikit-learn/topic/4829/dimensionality-reduction--feature-selection-
https://riptutorial.com/scikit-learn/topic/4829/dimensionality-reduction--feature-selection-

Chapter 4: Feature selection

Examples

Low-Variance Feature Removal

This is a very basic feature selection technique.

Its underlying idea is that if a feature is constant (i.e. it has 0 variance), then it cannot be used for
finding any interesting patterns and can be removed from the dataset.

Consequently, a heuristic approach to feature elimination is to first remove all features whose
variance is below some (low) threshold.

Building off the example in the documentation, suppose we start with

X = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [0, 1, 0], [0, 1, 1]]

There are 3 boolean features here, each with 6 instances. Suppose we wish to remove those that
are constant in at least 80% of the instances. Some probability calculations show that these
features will need to have variance lower than 0.8 * (1 - 0.8). Consequently, we can use

from sklearn.feature_selection import VarianceThreshold
sel = VarianceThreshold(threshold=(.8 * (1 - .8)))
sel.fit_transform(X)
Output: array([[0, 1],
 [1, 0],
 [0, 0],
 [1, 1],
 [1, 0],
 [1, 1]])

Note how the first feature was removed.

This method should be used with caution because a low variance doesn't necessarily mean that a
feature is “uninteresting”. Consider the following example where we construct a dataset that
contains 3 features, the first two consisting of randomly distributed variables and the third of
uniformly distributed variables.

from sklearn.feature_selection import VarianceThreshold
import numpy as np

generate dataset
np.random.seed(0)

feat1 = np.random.normal(loc=0, scale=.1, size=100) # normal dist. with mean=0 and std=.1
feat2 = np.random.normal(loc=0, scale=10, size=100) # normal dist. with mean=0 and std=10
feat3 = np.random.uniform(low=0, high=10, size=100) # uniform dist. in the interval [0,10)
data = np.column_stack((feat1,feat2,feat3))

https://riptutorial.com/ 13

http://scikit-learn.org/stable/modules/feature_selection.html

data[:5]
Output:
array([[0.17640523, 18.83150697, 9.61936379],
[0.04001572, -13.47759061, 2.92147527],
[0.0978738 , -12.70484998, 2.4082878],
[0.22408932, 9.69396708, 1.00293942],
[0.1867558 , -11.73123405, 0.1642963]])

np.var(data, axis=0)
Output: array([1.01582662e-02, 1.07053580e+02, 9.07187722e+00])

sel = VarianceThreshold(threshold=0.1)
sel.fit_transform(data)[:5]
Output:
array([[18.83150697, 9.61936379],
[-13.47759061, 2.92147527],
[-12.70484998, 2.4082878],
[9.69396708, 1.00293942],
[-11.73123405, 0.1642963]])

Now the first feature has been removed because of its low variance, while the third feature (that's
the most uninteresting) has been kept. In this case it would have been more appropriate to
consider a coefficient of variation because that's independent of scaling.

Read Feature selection online: https://riptutorial.com/scikit-learn/topic/4909/feature-selection

https://riptutorial.com/ 14

https://riptutorial.com/scikit-learn/topic/4909/feature-selection

Chapter 5: Model selection

Examples

Cross-validation

Learning the parameters of a prediction function and testing it on the same data is a
methodological mistake: a model that would just repeat the labels of the samples that it has just
seen would have a perfect score but would fail to predict anything useful on yet-unseen data. This
situation is called overfitting. To avoid it, it is common practice when performing a (supervised)
machine learning experiment to hold out part of the available data as a test set X_test, y_test.
Note that the word “experiment” is not intended to denote academic use only, because even in
commercial settings machine learning usually starts out experimentally.

In scikit-learn a random split into training and test sets can be quickly computed with the
train_test_split helper function. Let’s load the iris data set to fit a linear support vector machine on
it:

>>> import numpy as np
>>> from sklearn import cross_validation
>>> from sklearn import datasets
>>> from sklearn import svm

>>> iris = datasets.load_iris()
>>> iris.data.shape, iris.target.shape
((150, 4), (150,))

We can now quickly sample a training set while holding out 40% of the data for testing (evaluating)
our classifier:

>>> X_train, X_test, y_train, y_test = cross_validation.train_test_split(
... iris.data, iris.target, test_size=0.4, random_state=0)

>>> X_train.shape, y_train.shape
((90, 4), (90,))
>>> X_test.shape, y_test.shape
((60, 4), (60,))

Now, after we have train and test sets, lets use it:

>>> clf = svm.SVC(kernel='linear', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)

K-Fold Cross Validation

K-fold cross-validation is a systematic process for repeating the train/test split procedure multiple
times, in order to reduce the variance associated with a single trial of train/test split. You
essentially split the entire dataset into K equal size "folds", and each fold is used once for testing

https://riptutorial.com/ 15

http://scikit-learn.org/stable/index.html
http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.train_test_split.html#sklearn.cross_validation.train_test_split

the model and K-1 times for training the model.

Multiple folding techniques are available with the scikit library. Their usage is dependent on the
input data characteristics. Some examples are

K-Fold

You essentially split the entire dataset into K equal size "folds", and each fold is used once for
testing the model and K-1 times for training the model.

from sklearn.model_selection import KFold
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
y = np.array([1, 2, 1, 2])
cv = KFold(n_splits=3, random_state=0)

for train_index, test_index in cv.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)

TRAIN: [2 3] TEST: [0 1]
TRAIN: [0 1 3] TEST: [2]
TRAIN: [0 1 2] TEST: [3]

StratifiedKFold is a variation of k-fold which returns stratified folds: each set contains
approximately the same percentage of samples of each target class as the complete set

ShuffleSplit

Used to generate a user defined number of independent train / test dataset splits. Samples are
first shuffled and then split into a pair of train and test sets.

from sklearn.model_selection import ShuffleSplit
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
y = np.array([1, 2, 1, 2])
cv = ShuffleSplit(n_splits=3, test_size=.25, random_state=0)

for train_index, test_index in cv.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)

TRAIN: [3 1 0] TEST: [2]
TRAIN: [2 1 3] TEST: [0]
TRAIN: [0 2 1] TEST: [3]

StratifiedShuffleSplit is a variation of ShuffleSplit, which returns stratified splits, i.e which creates
splits by preserving the same percentage for each target class as in the complete set.

Other folding techniques such as Leave One/p Out, and TimeSeriesSplit (a variation of K-fold) are
available in the scikit model_selection library.

Read Model selection online: https://riptutorial.com/scikit-learn/topic/4901/model-selection

https://riptutorial.com/ 16

https://riptutorial.com/scikit-learn/topic/4901/model-selection

Chapter 6: Receiver Operating Characteristic
(ROC)

Examples

Introduction to ROC and AUC

Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality.

ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis.
This means that the top left corner of the plot is the “ideal” point - a false positive rate of zero, and
a true positive rate of one. This is not very realistic, but it does mean that a larger area under the
curve (AUC) is usually better.

The “steepness” of ROC curves is also important, since it is ideal to maximize the true positive
rate while minimizing the false positive rate.

A simple example:

import numpy as np
from sklearn import metrics
import matplotlib.pyplot as plt

Arbitrary y values - in real case this is the predicted target values (model.predict(x_test)):

y = np.array([1,1,2,2,3,3,4,4,2,3])

Scores is the mean accuracy on the given test data and labels (model.score(X,Y)):

scores = np.array([0.3, 0.4, 0.95,0.78,0.8,0.64,0.86,0.81,0.9, 0.8])

Calculate the ROC curve and the AUC:

fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)
roc_auc = metrics.auc(fpr, tpr)

Plotting:

plt.figure()
plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")

https://riptutorial.com/ 17

plt.show()

Output:

Note: the sources were taken from these link1 and link2

ROC-AUC score with overriding and cross validation

One needs the predicted probabilities in order to calculate the ROC-AUC (area under the curve)
score. The cross_val_predict uses the predict methods of classifiers. In order to be able to get the
ROC-AUC score, one can simply subclass the classifier, overriding the predict method, so that it
would act like predict_proba.

from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import cross_val_predict
from sklearn.metrics import roc_auc_score

class LogisticRegressionWrapper(LogisticRegression):

https://riptutorial.com/ 18

http://i.stack.imgur.com/CYShh.jpg
http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html

 def predict(self, X):
 return super(LogisticRegressionWrapper, self).predict_proba(X)

X, y = make_classification(n_samples = 1000, n_features=10, n_classes = 2, flip_y = 0.5)

log_reg_clf = LogisticRegressionWrapper(C=0.1, class_weight=None, dual=False,
 fit_intercept=True)

y_hat = cross_val_predict(log_reg_clf, X, y)[:,1]

print("ROC-AUC score: {}".format(roc_auc_score(y, y_hat)))

output:

ROC-AUC score: 0.724972396025

Read Receiver Operating Characteristic (ROC) online: https://riptutorial.com/scikit-
learn/topic/5945/receiver-operating-characteristic--roc-

https://riptutorial.com/ 19

https://riptutorial.com/scikit-learn/topic/5945/receiver-operating-characteristic--roc-
https://riptutorial.com/scikit-learn/topic/5945/receiver-operating-characteristic--roc-

Chapter 7: Regression

Examples

Ordinary Least Squares

Ordinary Least Squares is a method for finding the linear combination of features that best fits the
observed outcome in the following sense.

If the vector of outcomes to be predicted is y, and the explanatory variables form the matrix X,
then OLS will find the vector β solving

minβ|y^ - y|22,

where y^ = X β is the linear prediction.

In sklearn, this is done using sklearn.linear_model.LinearRegression.

Application Context

OLS should only be applied to regression problems, it is generally unsuitable for classification
problems: Contrast

Is an email spam? (Classfication)•
What is the linear relationship between upvotes depend on the length of answer?
(Regression)

•

Example

Let's generate a linear model with some noise, then see if LinearRegression Manages to
reconstruct the linear model.

First we generate the X matrix:

import numpy as np

X = np.random.randn(100, 3)

Now we'll generate the y as a linear combination of X with some noise:

beta = np.array([[1, 1, 0]])
y = (np.dot(x, beta.T) + 0.01 * np.random.randn(100, 1))[:, 0]

Note that the true linear combination generating y is given by `beta.

To try to reconstruct this from X and y alone, let's do:

>>> linear_model.LinearRegression().fit(x, y).coef_

https://riptutorial.com/ 20

https://en.wikipedia.org/wiki/Ordinary_least_squares
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression

array([9.97768469e-01, 9.98237634e-01, 7.55016533e-04])

Note that this vector is very similar to beta.

Read Regression online: https://riptutorial.com/scikit-learn/topic/5190/regression

https://riptutorial.com/ 21

https://riptutorial.com/scikit-learn/topic/5190/regression

Credits

S.
No

Chapters Contributors

1
Getting started with
scikit-learn

Alleo, Ami Tavory, Community, Gabe, Gal Dreiman, panty,
Sean Easter, user2314737

2 Classification
Ami Tavory, Drew, Gal Dreiman, hashcode55, Mechanic,
Raghav RV, Sean Easter, tfv, user6903745, Wayne Werner

3
Dimensionality
reduction (Feature
selection)

Ami Tavory, DataSwede, Gal Dreiman, Sean Easter,
user2314737

4 Feature selection Ami Tavory, user2314737

5 Model selection Gal Dreiman, Mechanic

6
Receiver Operating
Characteristic (ROC)

Gal Dreiman, Gorkem Ozkaya

7 Regression Ami Tavory, draco_alpine

https://riptutorial.com/ 22

https://riptutorial.com/contributor/498892/alleo
https://riptutorial.com/contributor/3510736/ami-tavory
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/220997/gabe
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/5499014/panty
https://riptutorial.com/contributor/1876158/sean-easter
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/3510736/ami-tavory
https://riptutorial.com/contributor/6897018/drew
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/5540305/hashcode55
https://riptutorial.com/contributor/833530/mechanic
https://riptutorial.com/contributor/3109769/raghav-rv
https://riptutorial.com/contributor/1876158/sean-easter
https://riptutorial.com/contributor/4352930/tfv
https://riptutorial.com/contributor/6903745/user6903745
https://riptutorial.com/contributor/344286/wayne-werner
https://riptutorial.com/contributor/3510736/ami-tavory
https://riptutorial.com/contributor/3325052/dataswede
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/1876158/sean-easter
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/3510736/ami-tavory
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/833530/mechanic
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/1929082/gorkem-ozkaya
https://riptutorial.com/contributor/3510736/ami-tavory
https://riptutorial.com/contributor/5243047/draco-alpine

	About
	Chapter 1: Getting started with scikit-learn
	Remarks
	Examples
	Installation of scikit-learn
	Train a classifier with cross-validation
	Creating pipelines
	Interfaces and conventions:
	Sample datasets

	Chapter 2: Classification
	Examples
	Using Support Vector Machines
	RandomForestClassifier
	Analyzing Classification Reports
	GradientBoostingClassifier
	A Decision Tree
	Classification using Logistic Regression

	Chapter 3: Dimensionality reduction (Feature selection)
	Examples
	Reducing The Dimension With Principal Component Analysis

	Chapter 4: Feature selection
	Examples
	Low-Variance Feature Removal

	Chapter 5: Model selection
	Examples
	Cross-validation
	K-Fold Cross Validation

	K-Fold
	ShuffleSplit
	Chapter 6: Receiver Operating Characteristic (ROC)
	Examples
	Introduction to ROC and AUC
	ROC-AUC score with overriding and cross validation

	Chapter 7: Regression
	Examples
	Ordinary Least Squares

	Credits

