
scipy

#scipy

Table of Contents

About 1

Chapter 1: Getting started with scipy 2

Remarks 2

Versions 2

Examples 4

Installation or Setup 4

Convert a sparse matrix to a dense matrix using SciPy 4

Versions 5

Image Manipulation using Scipy (Basic Image resize) 5

Basic Hello World 6

Chapter 2: Fitting functions with scipy.optimize curve_fit 8

Introduction 8

Examples 8

Fitting a function to data from a histogram 8

Chapter 3: How to write a Jacobian function for optimize.minimize 11

Syntax 11

Remarks 11

Examples 11

Optimization Example (golden) 11

Optimization Example (Brent) 12

Rosenbrock function 13

Chapter 4: rv_continuous for Distribution with Parameters 15

Examples 15

Negative binomial on positive reals 15

Chapter 5: Smoothing a signal 16

Examples 16

Using a Savitzky–Golay filter 16

Credits 18

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: scipy

It is an unofficial and free scipy ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official scipy.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/scipy
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with scipy

Remarks

About Scipy

SciPy is a collection of mathematical algorithms and convenience functions built on the Numpy
extension of Python. It adds significant power to the interactive Python session by providing the
user with high-level commands and classes for manipulating and visualizing data. With SciPy an
interactive Python session becomes a data-processing and system-prototyping environment
rivaling systems such as MATLAB, IDL, Octave, R-Lab, and SciLab.

The additional benefit of basing SciPy on Python is that this also makes a powerful programming
language available for use in developing sophisticated programs and specialized applications.
Scientific applications using SciPy benefit from the development of additional modules in
numerous niches of the software landscape by developers across the world. Everything from
parallel programming to web and data-base subroutines and classes have been made available to
the Python programmer. All of this power is available in addition to the mathematical libraries in
SciPy.

Versions

Version Release Date

0.19.0 2017-03-09

0.18.0 2016-07-25

0.17.0 2016-01-22

0.16.1 2015-10-24

0.16.0 2015-07-23

0.16b2 2015-05-24

0.16b1 2015-05-12

0.15.1 2015-01-18

0.15.0 2015-01-11

0.14.1 2014-12-30

0.14.1rc1 2014-12-14

0.14.0 2014-05-03

https://riptutorial.com/ 2

http://docs.scipy.org/doc/scipy/reference/tutorial/general.html

Version Release Date

0.14.0rc2 2014-04-23

0.14.0rc1 2014-04-02

0.14.0b1 2014-03-15

0.13.3 2014-02-04

0.13.2 2013-12-07

0.13.1 2013-11-16

0.13.0 2013-10-19

0.13.0rc1 2013-10-10

0.12.1 2013-10-08

0.12.0 2013-04-06

0.12.0rc1 2013-03-29

0.12.0b1 2013-02-16

0.11.0 2012-09-24

0.11.0rc2 2012-08-12

0.11.0rc1 2012-07-17

0.11.0b1 2012-06-12

0.10.1 2012-02-26

0.10.1rc2 2012-02-19

0.10.1rc1 2012-02-10

0.10.0 2011-11-13

0.10.0rc1 2011-11-03

0.10.0b2 2011-09-16

0.10.0b1 2011-09-11

0.9.0 2011-02-27

https://riptutorial.com/ 3

Examples

Installation or Setup

Scipy contains parts written in C, C++, and Fortran that need to be compiled before use. Therefore
make sure the necessary compilers and Python development headers are installed. Having
compiled code also means that Scipy needs additional steps to import from development sources,
which are explained below.

Fork a copy of the main Scipy repository in Github onto your own account, then create your local
repository via:

$ git clone git@github.com:YOURUSERNAME/scipy.git scipy
$ cd scipy
$ git remote add upstream git://github.com/scipy/scipy.git

To build the development version of Scipy and run tests, spawn interactive shells with the Python
import paths properly set up, and so on. Do one of the following:

$ python runtests.py -v
$ python runtests.py -v -s optimize
$ python runtests.py -v -t scipy/special/tests/test_basic.py:test_xlogy
$ python runtests.py --ipython
$ python runtests.py --python somescript.py
$ python runtests.py --bench

This builds Scipy first, so it may take a while the first time. Specifying -n will run the tests against
the version of Scipy (if any) found on the current PYTHONPATH.

Using runtests.py is the recommended approach to running tests. There are also a number of
alternatives to it, for example in-place build or installing to a virtual environment. Some tests are
very slow and need to be separately enabled.

Link to API

Ubuntu & Debian

Run command

sudo apt-get install python-numpy python-scipy python-matplotlib ipython ipython-notebook
python-pandas python-sympy python-nose

The versions in Ubuntu 12.10 or newer and Debian 7.0 or newer meet the current SciPy stack
specification. Users might also want to add the NeuroDebian repository for extra SciPy packages.

Convert a sparse matrix to a dense matrix using SciPy

 from scipy.sparse import csr_matrix
 A = csr_matrix([[1,0,2],[0,3,0]])

https://riptutorial.com/ 4

https://docs.scipy.org/doc/scipy/reference/api.html
http://neuro.debian.net/

 >>>A
 <2x3 sparse matrix of type '<type 'numpy.int64'>'
 with 3 stored elements in Compressed Sparse Row format>
 >>> A.todense()
 matrix([[1, 0, 2],
 [0, 3, 0]])
 >>> A.toarray()
 array([[1, 0, 2],
 [0, 3, 0]])

Versions

The first release of SciPy, vsn 0.10, was released on August 14th 2001. The current release of
SciPy (correct at 26th July 2016) is v 0.17 (stable) with v .18 forthcoming soon. Details of former
releases are listed here

Image Manipulation using Scipy (Basic Image resize)

SciPy provides basic image manipulation functions. These include functions to read images from
disk into numpy arrays, to write numpy arrays to disk as images, and to resize images.

In the following code, only one image is used. It is tinted, resized, and saved. Both original and
resulting images are shown below:

import numpy as np //scipy is numpy-dependent

from scipy.misc import imread, imsave, imresize //image resizing functions

Read an JPEG image into a numpy array
img = imread('assets/cat.jpg')
print img.dtype, img.shape # Prints "uint8 (400, 248, 3)"

We can tint the image by scaling each of the color channels
by a different scalar constant. The image has shape (400, 248, 3);
we multiply it by the array [1, 0.95, 0.9] of shape (3,);
numpy broadcasting means that this leaves the red channel unchanged,
and multiplies the green and blue channels by 0.95 and 0.9
respectively.
img_tinted = img * [1, 0.95, 0.9]

Resize the tinted image to be 300 by 300 pixels.
img_tinted = imresize(img_tinted, (300, 300))

Write the tinted image back to disk
imsave('assets/cat_tinted.jpg', img_tinted)

https://riptutorial.com/ 5

https://github.com/scipy/scipy/releases

Reference

Basic Hello World

Create a file (e.g. hello_world.py) in a text editor or a python editor if you have one installed (pick
one if you don't - SublimeText, Eclipse, NetBeans, SciTe... there's many!)

hwld = 'Hello world'
print(hwld)

Note that python variables do not need to be explicitly declared; the declaration happens when
you assign a value with the equal (=) sign to a variable.

The output of the above two lines of code is that the string "Hello World" will be displayed.

Functions written in Python can be used in iPython also.

In this instance, you can use run your saved file 'hello_world.py' in IPython like so:

In [1]: %run hello_world.py
#run file to get output below
Hello world
In [2]: wld
#show what value of wld var is
Out[2]: 'Hello world'
In [3]: %whowld
#display info on variable wld (name/type/value)

Variable Type Data/Info

https://riptutorial.com/ 6

https://i.stack.imgur.com/K16nx.jpg
https://i.stack.imgur.com/RP5UX.jpg
http://cs231n.github.io/python-numpy-tutorial/#scipy
https://wiki.python.org/moin/PythonEditors
https://wiki.python.org/moin/PythonEditors

wld str Hello world

If you wish you can use two variables, e.g one for hello and one for world and concatenate them
using the plus (+) sign:

 h = 'Hello '
 w = "world!'
 print(h+w)

 #this will also output Hello World, only this time with an exclamation mark..

Read Getting started with scipy online: https://riptutorial.com/scipy/topic/2128/getting-started-with-
scipy

https://riptutorial.com/ 7

https://riptutorial.com/scipy/topic/2128/getting-started-with-scipy
https://riptutorial.com/scipy/topic/2128/getting-started-with-scipy

Chapter 2: Fitting functions with
scipy.optimize curve_fit

Introduction

Fitting a function which describes the expected occurence of data points to real data is often
required in scientific applications. A possible optimizer for this task is curve_fit from scipy.optimize.
In the following, an example of application of curve_fit is given.

Examples

Fitting a function to data from a histogram

Suppose there is a peak of normally (gaussian) distributed data (mean: 3.0, standard deviation:
0.3) in an exponentially decaying background. This distribution can be fitted with curve_fit within a
few steps:

1.) Import the required libraries.

2.) Define the fit function that is to be fitted to the data.

3.) Obtain data from experiment or generate data. In this example, random data is generated in
order to simulate the background and the signal.

4.) Add the signal and the background.

5.) Fit the function to the data with curve_fit.

6.) (Optionally) Plot the results and the data.

In this example, the observed y values are the heights of the histogram bins, while the observed x
values are the centers of the histogram bins (binscenters). It is necessary to pass the name of the
fit function, the x values and the y values to curve_fit. Furthermore, an optional argument
containing rough estimates for the fit parameters can be given with p0. curve_fit returns popt and
pcov, where popt contains the fit results for the parameters, while pcov is the covariance matrix, the
diagonal elements of which represent the variance of the fitted parameters.

1.) Necessary imports.
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

2.) Define fit function.
def fit_function(x, A, beta, B, mu, sigma):
 return (A * np.exp(-x/beta) + B * np.exp(-1.0 * (x - mu)**2 / (2 * sigma**2)))

3.) Generate exponential and gaussian data and histograms.

https://riptutorial.com/ 8

data = np.random.exponential(scale=2.0, size=100000)
data2 = np.random.normal(loc=3.0, scale=0.3, size=15000)
bins = np.linspace(0, 6, 61)
data_entries_1, bins_1 = np.histogram(data, bins=bins)
data_entries_2, bins_2 = np.histogram(data2, bins=bins)

4.) Add histograms of exponential and gaussian data.
data_entries = data_entries_1 + data_entries_2
binscenters = np.array([0.5 * (bins[i] + bins[i+1]) for i in range(len(bins)-1)])

5.) Fit the function to the histogram data.
popt, pcov = curve_fit(fit_function, xdata=binscenters, ydata=data_entries, p0=[20000, 2.0,
2000, 3.0, 0.3])
print(popt)

6.)
Generate enough x values to make the curves look smooth.
xspace = np.linspace(0, 6, 100000)

Plot the histogram and the fitted function.
plt.bar(binscenters, data_entries, width=bins[1] - bins[0], color='navy', label=r'Histogram
entries')
plt.plot(xspace, fit_function(xspace, *popt), color='darkorange', linewidth=2.5,
label=r'Fitted function')

Make the plot nicer.
plt.xlim(0,6)
plt.xlabel(r'x axis')
plt.ylabel(r'Number of entries')
plt.title(r'Exponential decay with gaussian peak')
plt.legend(loc='best')
plt.show()
plt.clf()

https://riptutorial.com/ 9

Read Fitting functions with scipy.optimize curve_fit online:
https://riptutorial.com/scipy/topic/10133/fitting-functions-with-scipy-optimize-curve-fit

https://riptutorial.com/ 10

https://i.stack.imgur.com/8R4AY.png
https://riptutorial.com/scipy/topic/10133/fitting-functions-with-scipy-optimize-curve-fit

Chapter 3: How to write a Jacobian function
for optimize.minimize

Syntax

import numpy as np1.
from scipy.optimize import _minimize2.
from scipy import special3.
import matplotlib.pyplot as plt4.

Remarks

Note the underscore before 'minimize' when importing from scipy.optimize; '_minimize' Also, i
tested the functions from this link before doing this section, and found I had less trouble/it worked
faster, if I imported 'special' separately. The Rosenbrock function on the linked page was incorrect
- you have to configure the colorbar first; I've posted alternate code but think it could be better.

Further examples to come.

See here for an explanation of Hessian Matrix

Examples

Optimization Example (golden)

The 'Golden' method minimizes a unimodal function by narrowing the range in the extreme values

import numpy as np
from scipy.optimize import _minimize
from scipy import special
import matplotlib.pyplot as plt

x = np.linspace(0, 10, 500)
y = special.j0(x)
optimize.minimize_scalar(special.j0, method='golden')
plt.plot(x, y)
plt.show()

Resulting image

https://riptutorial.com/ 11

http://blog.mmast.net/optimization-scipy
http://mathworld.wolfram.com/Hessian.html

Optimization Example (Brent)

Brent's method is a more complex algorithm combination of other root-finding algorithms;
however, the resulting graph isn't much different from the graph generated from the golden
method.

import numpy as np
import scipy.optimize as opt
from scipy import special
import matplotlib.pyplot as plt

x = np.linspace(0, 10, 500)
y = special.j0(x)
j0 is the Bessel function of 1st kind, 0th order
minimize_result = opt.minimize_scalar(special.j0, method='brent')
the_answer = minimize_result['x']
minimized_value = minimize_result['fun']
Note: minimize_result is a dictionary with several fields describing the optimizer,
whether it was successful, etc. The value of x that gives us our minimum is accessed
with the key 'x'. The value of j0 at that x value is accessed with the key 'fun'.
plt.plot(x, y)
plt.axvline(the_answer, linestyle='--', color='k')
plt.show()
print("The function's minimum occurs at x = {0} and y = {1}".format(the_answer,
minimized_value))

Resulting graph

https://riptutorial.com/ 12

http://i.stack.imgur.com/nRwaf.jpg

Outputs:

The function's minimum occurs at x = 3.8317059554863437 and y = -0.4027593957025531

Rosenbrock function

Think this could example could be better but you get the gist

import numpy as np
from scipy.optimize import _minimize
from scipy import special
import matplotlib.pyplot as plt
from matplotlib import cm
from numpy.random import randn

x, y = np.mgrid[-2:2:100j, -2:2:100j]
plt.pcolor(x, y, optimize.rosen([x, y]))
plt.plot(1, 1, 'xw')

Make plot with vertical (default) colorbar
data = np.clip(randn(100, 100), -1, 1)
cax = plt.imshow(data, cmap=cm.coolwarm)

Add colorbar, make sure to specify tick locations to match desired ticklabels
cbar = plt.colorbar(cax, ticks=[-2, 0, 2]) # vertically oriented colorbar
plt.axis([-2, 2, -2, 2])
plt.title('Rosenbrock function') #add title if desired
plt.xlabel('x')
plt.ylabel('y')

plt.show() #generate

https://riptutorial.com/ 13

http://i.stack.imgur.com/ZZgZa.jpg

Read How to write a Jacobian function for optimize.minimize online:
https://riptutorial.com/scipy/topic/4493/how-to-write-a-jacobian-function-for-optimize-minimize

https://riptutorial.com/ 14

http://i.stack.imgur.com/MoXbX.png
https://riptutorial.com/scipy/topic/4493/how-to-write-a-jacobian-function-for-optimize-minimize

Chapter 4: rv_continuous for Distribution
with Parameters

Examples

Negative binomial on positive reals

from scipy.stats import rv_continuous
import numpy

class Neg_exp(rv_continuous):
 def _cdf(self, x, lamda):
 return 1-numpy.exp(-lamda*x)

neg_exp = Neg_exp(name="Negative exponential", a=0)

print (neg_exp.pdf(0,.5))
print (neg_exp.pdf(5,.5))
print (neg_exp.cdf(5,.5))
print (neg_exp.stats(0.5))
print (neg_exp.rvs(0.5))

It's essential to define either _pdf or _cdf because scipy infers the parameters of the other function
(that you do not define), and the order of these parameters in any functions calls that you make,
from the your definition. In this case there is only one distribution parameter, lambda. The variable
representing the random variable value appears first in the definition of _pdf or _cdf.

When you define just one of these functions scipy will calculate the other numerically. For possible
greater efficiency, define both. Similarly, define _stats in terms of known parameters for best
efficiency; otherwise scipy uses numerical methods.

Notice that the distribution's support is defined when the class is instantiated (variable a is set to
zero and b is set to infinity by default), rather then when it is subclassed. Notice too that the
distribution's parameters are set only when one of the class instances are called, as in the final
five lines of code.

Read rv_continuous for Distribution with Parameters online:
https://riptutorial.com/scipy/topic/6873/rv-continuous-for-distribution-with-parameters

https://riptutorial.com/ 15

https://riptutorial.com/scipy/topic/6873/rv-continuous-for-distribution-with-parameters

Chapter 5: Smoothing a signal

Examples

Using a Savitzky–Golay filter

Given a noisy signal:

import numpy as np
import matplotlib.pyplot as plt
np.random.seed(1)

x = np.linspace(0,2*np.pi,100)
y = np.sin(x) + np.random.random(100) * 0.2

plt.plot(x,y)
plt.show()

https://riptutorial.com/ 16

http://i.stack.imgur.com/DPSSa.png

one can smooth it using a Savitzky–Golay filter using the scipy.signal.savgol_filter() method:

import scipy.signal
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(1)

x = np.linspace(0,2*np.pi,100)
y = np.sin(x) + np.random.random(100) * 0.2
yhat = scipy.signal.savgol_filter(y, 51, 3) # window size 51, polynomial order 3

plt.plot(x,y)
plt.plot(x,yhat, color='red')
plt.show()

Read Smoothing a signal online: https://riptutorial.com/scipy/topic/4535/smoothing-a-signal

https://riptutorial.com/ 17

https://en.wikipedia.org/wiki/Savitzky%E2%80%93Golay_filter
http://scipy.github.io/devdocs/generated/scipy.signal.savgol_filter.html#scipy.signal.savgol_filter
http://i.stack.imgur.com/ZOHNf.png
https://riptutorial.com/scipy/topic/4535/smoothing-a-signal

Credits

S.
No

Chapters Contributors

1
Getting started with
scipy

4444, AIB, Community, edwinksl, Rachel Gallen

2
Fitting functions with
scipy.optimize
curve_fit

ml4294

3
How to write a
Jacobian function for
optimize.minimize

Rachel Gallen, Richard Fitzhugh

4
rv_continuous for
Distribution with
Parameters

Bill Bell

5 Smoothing a signal Bill Bell, Franck Dernoncourt

https://riptutorial.com/ 18

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/53288/aib
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/486919/edwinksl
https://riptutorial.com/contributor/1675954/rachel-gallen
https://riptutorial.com/contributor/7847518/ml4294
https://riptutorial.com/contributor/1675954/rachel-gallen
https://riptutorial.com/contributor/5050683/richard-fitzhugh
https://riptutorial.com/contributor/131187/bill-bell
https://riptutorial.com/contributor/131187/bill-bell
https://riptutorial.com/contributor/395857/franck-dernoncourt

	About
	Chapter 1: Getting started with scipy
	Remarks
	Versions
	Examples
	Installation or Setup
	Convert a sparse matrix to a dense matrix using SciPy
	Versions
	Image Manipulation using Scipy (Basic Image resize)
	Basic Hello World

	Chapter 2: Fitting functions with scipy.optimize curve_fit
	Introduction
	Examples
	Fitting a function to data from a histogram

	Chapter 3: How to write a Jacobian function for optimize.minimize
	Syntax
	Remarks
	Examples
	Optimization Example (golden)
	Optimization Example (Brent)
	Rosenbrock function

	Chapter 4: rv_continuous for Distribution with Parameters
	Examples
	Negative binomial on positive reals

	Chapter 5: Smoothing a signal
	Examples
	Using a Savitzky–Golay filter

	Credits

