
sed

#sed

Table of Contents

About 1

Chapter 1: Getting started with sed 2

Remarks 2

References 2

Versions 2

Examples 2

Hello World 2

Chapter 2: Additional Options 3

Syntax 3

Remarks 3

Examples 3

Delay Creation/Truncation of Files 3

'l' Line-Wrapping 4

Chapter 3: Address and address range 5

Introduction 5

Examples 5

Specific line 5

Specific range of lines 5

Lines matching regular expression pattern 6

Specifying range using both number and pattern 7

Negating address range 8

Chapter 4: Advanced sed commands 10

Examples 10

Insert a new line before matching pattern - using eXchange 10

Chapter 5: Append command 11

Examples 11

Insert line after first match 11

Chapter 6: Branching Operation 12

Introduction 12

Examples 12

Do multiple line regexp replacing with unconditional branch 12

Chapter 7: BSD/macOS Sed vs. GNU Sed vs. the POSIX Sed specification 13

Introduction 13

Remarks 13

Examples 17

Replace all newlines with tabs 17

Append literal text to a line with function 'a' 18

Chapter 8: Delete command 19

Examples 19

Delete one line containing a pattern 19

Chapter 9: In-Place Editing 20

Syntax 20

Parameters 20

Remarks 20

Don't forget the mighty ed 20

Examples 21

Replacing strings in a file in-place 21

Portable Use 21

Why a backup file is required 22

In-place editing without specifying a backup file overrides read-only permissions 22

Chapter 10: Regular expressions 24

Examples 24

Using different delimiters 24

Chapter 11: Substitution 25

Examples 25

Substitution Using Shell Variables 25

Backreference 25

Using different delimiters 26

Pattern flags - occurrence replacement 26

Credits 28

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: sed

It is an unofficial and free sed ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official sed.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/sed
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with sed

Remarks

References

FreeBSD sed man-page•
NetBSD sed man-page•
OpenBSD sed man-page•
Illumos sed man-page•
macOS (OS X) man-page•
Plan9 sed man-page•
GNU sed online manual•

Versions

Name Initial Release Version Release Date

POSIX sed 1992 IEEE Std 1003.1, 2013 Edition 2013-04-19

BSD sed 1992 FreeBSD 10.3 / NetBSD 7.0 / OpenBSD 5.9 2016-04-04

GNU sed 1989 4.2.2 2012-12-22

Examples

Hello World

One of the most common use of Sed is text substitution that can be achieved with the s command.

In a terminal, type echo "Hello sed" | sed 's/sed/World/' and press Enter:

$ echo "Hello sed" | sed 's/sed/World/'
Hello World

"Hello World" should be output to the terminal.

The string "Hello, sed" is sent via pipe as input to the sed command that replace the word sed with
World.

The syntax of a basic substitution command is s followed by the string or pattern to be searched
and the substitution text. s command and strings are separated with a default / delimiter.

Read Getting started with sed online: https://riptutorial.com/sed/topic/934/getting-started-with-sed

https://riptutorial.com/ 2

https://www.freebsd.org/cgi/man.cgi?query=sed
http://netbsd.gw.com/cgi-bin/man-cgi?sed++NetBSD-current
http://man.openbsd.org/OpenBSD-current/man1/sed.1
https://illumos.org/man/1/sed
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/sed.1.html
http://9p.io/magic/man2html?man=sed§=1
https://www.gnu.org/software/sed/manual/html_node/index.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/sed.html
http://www.opengroup.org/austin/
https://riptutorial.com/sed/topic/934/getting-started-with-sed

Chapter 2: Additional Options

Syntax

-a - (BSD sed) Create / Truncate all files written to before processing•
-E | -r - Use Extended Regular Expressions•
-i | -I - Refer to the topic on In-Place Editing•
-l - (BSD sed) Use line-buffered output•
-l length - (GNU sed) Specify the length for l command line-wrapping•
-s - (GNU sed) Treat files as separate streams•
-u - Do not buffer the output•
-z - (GNU sed) Use the NUL character to separate records•
--quiet | --silent - (GNU sed) Synonyms for -n•
--expression=command - (GNU sed) Synonym for -e•
--file=command_file - (GNU sed) Synonym for -f•
--follow-symlinks - (GNU sed) Follow symlinks•
--in-place[=extension] - (GNU sed) Synonym for -i•
--line-length=length - (GNU sed) Synonym for -l•
--separate - (GNU sed) Synonym for -s•
--unbuffered - (GNU sed) Synonym for -u•
--null-data - (GNU sed) Synonym for -z•
--help - (GNU sed) Print usage•
--version - (GNU sed) Print version•

Remarks

The -E option is to be standardized in the next major version, see the relevant issue.

Examples

Delay Creation/Truncation of Files

Files written to with the w command are created/truncated before any commands are run.

$ sed 'w created-file' < /dev/null && ls created-file && rm created-file
created-file

From the standard:

Each wfile shall be created before processing begins. Implementations shall support at
least ten wfile arguments in the script; the actual number (greater than or equal to 10)
that is supported by the implementation is unspecified. The use of the wfile parameter
shall cause that file to be initially created, if it does not exist, or shall replace the
contents of an existing file.

https://riptutorial.com/ 3

http://www.riptutorial.com/sed/topic/3640/in-place-editing
http://austingroupbugs.net/view.php?id=528

BSD sed provides the -a option to delay creating/truncating files until they are written to with the w
command.

$ if sed -a 'w created-file' < /dev/null && [! -e created-file]; then
> echo The file was not created
> fi
The file was not created

'l' Line-Wrapping

The length of line-wrapping when using the l command is implementation defined.

From the standard:

Long lines shall be folded, with the point of folding indicated by writing a followed by a ;
the length at which folding occurs is unspecified, but should be appropriate for the
output device.

GNU sed provides the -l option to specify the length at which to split long lines when printing with
the l command, defaulting to seventy characters.

$ yes | head -c100 | tr '\n' ' ' | sed -n l | head -n1 | wc -c
 71
$ yes | head -c100 | tr '\n' ' ' | sed -nl50 l | head -n1 | wc -c
 51

BSD sed splits long lines at the number provided by the environment variable COLUMNS, if COLUMNS is
not provided then it splits at the terminal width, and if COULMNS is not provided and the output is not
a terminal then it defaults to sixty characters.

$ yes | head -c100 | tr '\n' ' ' | sed -n l | head -n1 | wc -c
 61
$ yes | head -c100 | tr '\n' ' ' | COLUMNS=50 sed -n l | head -n1 | wc -c
 51
$ yes | head -c100 | tr '\n' ' ' | sed -n l | head -n1
y y\
 y y y y y y y y y y $

Read Additional Options online: https://riptutorial.com/sed/topic/7922/additional-options

https://riptutorial.com/ 4

https://riptutorial.com/sed/topic/7922/additional-options

Chapter 3: Address and address range

Introduction

Sed commands can be specified to act only on certain lines by using addresses or address ranges
.

Examples

Specific line

$ cat ip.txt
address
range
substitution
pattern
sample

Nth line

$ sed -n '2p' ip.txt
range

$ sed '3d' ip.txt
address
range
pattern
sample

•

Last line

$ sed -n '$p' ip.txt
sample

•

Specific range of lines

$ cat ip.txt
address
range
substitution
pattern
sample

Range specified is inclusive of those line numbers

$ sed -n '2,4p' ip.txt
range
substitution

•

https://riptutorial.com/ 5

pattern

$ can be used to specify last line. Space can be used between address and command for
clarity

$ sed -n '3,$ s/[aeiou]//gp' ip.txt
sbstttn
pttrn
smpl

•

GNU sed

ith line to i+jth line

$ sed '2,+2d' ip.txt
address
sample

•

ith line and i+j, i+2j, i+3j, etc.

$ sed -n '1~2p' ip.txt
address
substitution
sample

•

Lines matching regular expression pattern

$ cat ip.txt
address
range
substitution
pattern
sample
Add Sub Mul Div

Lines matching a pattern

$ sed '/add/d' ip.txt
range
substitution
pattern
sample
Add Sub Mul Div

$ sed -n '/t/p' ip.txt
substitution
pattern

$ sed -n '/[A-Z]/ s| |/|gp' ip.txt
Add/Sub/Mul/Div

•

https://riptutorial.com/ 6

Range of patterns

$ sed -n '/add/,/sub/p' ip.txt
address
range
substitution

$ sed -n '/a/,/e/p' ip.txt
address
range
pattern
sample

•

Note

In the second example, it matched two ranges - lines 1,2 and lines 4,5•
See Using different delimiters on how to use other characters instead of / for specifying the
pattern

•

GNU sed

Case-insensitive match

$ sed -n '/add/Ip' ip.txt
address
Add Sub Mul Div

$ sed -n '/add/I,/sub/p' ip.txt
address
range
substitution
Add Sub Mul Div

•

Specifying range using both number and pattern

$ cat ip.txt
address
range
substitution
pattern
sample
Add Sub Mul Div

Line number to line matching pattern

$ sed -n '2,/pat/p' ip.txt
range
substitution
pattern

•

https://riptutorial.com/ 7

http://www.riptutorial.com/sed/example/25336/using-different-delimiters

Line matching pattern to line number

$ sed '/pat/,$d' ip.txt
address
range
substitution

•

GNU sed

Line matching pattern plus number of lines following it

$ sed -n '/add/I,+1p' ip.txt
address
range
Add Sub Mul Div

•

0 can be used as starting line number to signal end of range when pattern matches first line
of input

$ sed -n '0,/r/p' ip.txt
address

$ sed -n '1,/r/p' ip.txt
address
range

$ sed -n '0,/u/p' ip.txt
address
range
substitution

•

Negating address range

$ cat ip.txt
address
range
substitution
1234
search pattern
sample
Add Sub Mul Div

Deleting lines other than address specified

$ sed '/[0-9]/!d' ip.txt
1234

$ sed -n '/[0-9]/p' ip.txt
1234

$ sed '$!d' ip.txt
Add Sub Mul Div

•

https://riptutorial.com/ 8

$ sed -n '$p' ip.txt
Add Sub Mul Div

Search and replace on lines not matching a pattern

$ sed '/ /! s/^/#/' ip.txt
#address
#range
#substitution
#1234
search pattern
#sample
Add Sub Mul Div

$ sed '/add/,/sub/! s/[aeiou]//gi' ip.txt
address
range
substitution
1234
srch pttrn
smpl
dd Sb Ml Dv

•

Read Address and address range online: https://riptutorial.com/sed/topic/3120/address-and-
address-range

https://riptutorial.com/ 9

https://riptutorial.com/sed/topic/3120/address-and-address-range
https://riptutorial.com/sed/topic/3120/address-and-address-range

Chapter 4: Advanced sed commands

Examples

Insert a new line before matching pattern - using eXchange

Given a file file.txt with the following content:

line 1
line 2
line 3

You can add a new line using below command

sed '/line 2/{x;p;x;}' file.txt

The above command will output

line 1

line 2
line 3

Explanation:

x command is eXchange. sed has a buffer that you can use to store some lines. This command
exchanges this buffer with current line (so current line goes to this buffer and buffer content
becomes current line).

p command prints current line.

Read Advanced sed commands online: https://riptutorial.com/sed/topic/3946/advanced-sed-
commands

https://riptutorial.com/ 10

https://riptutorial.com/sed/topic/3946/advanced-sed-commands
https://riptutorial.com/sed/topic/3946/advanced-sed-commands

Chapter 5: Append command

Examples

Insert line after first match

Given a file file.txt with the following content:

line 1
line 2
line 3

You can add a new line after first matching line with the a command.

For portable use the a command must be followed immediately by an escaped newline, with the
text-to-append on its own line or lines.

sed '
/line 2/a\
new line 2.2
' file.txt

GNU sed

Some versions of sed allow the text-to-append to be inline with the a command:

sed '/line 2/a new line 2.2' file.txt

The above commands will output:

line 1
line 2
new line 2.2
line 3

Read Append command online: https://riptutorial.com/sed/topic/2835/append-command

https://riptutorial.com/ 11

https://riptutorial.com/sed/topic/2835/append-command

Chapter 6: Branching Operation

Introduction

The branching operation of sed can help control the flow of the program.

Examples

Do multiple line regexp replacing with unconditional branch

Assume that I have a file named in.txt:

$ cat in.txt
a
b
a
c
a
d

I only want to replace the a\nc with deleted, but not a\nb or a\nd.

$ sed -e ':loop # create a branch/label named `loop`
 $!{
 N # append the next line of input into the pattern space
 /\n$/!b loop # If it is not the last line go to the `loop` branch again
 }
 s/a\nc/"deleted"/' in.txt # do replacing in the pattern space

a
b
"deleted" # see! succeed
a
d

Read Branching Operation online: https://riptutorial.com/sed/topic/8821/branching-operation

https://riptutorial.com/ 12

https://riptutorial.com/sed/topic/8821/branching-operation

Chapter 7: BSD/macOS Sed vs. GNU Sed vs.
the POSIX Sed specification

Introduction

To quote from @SnoringFrog's topic-creation request:

"One of the biggest gotchas using sed is scripts that fail (or succeed in an unexpected way)
because they were written for one and not the other. Simple run-down of the more major
differences would be good."

Remarks

macOS uses the BSD version of sed[1], which differs in many respects from the GNU sed
version that comes with Linux distros.

Their common denominator is the functionality decreed by POSIX: see the POSIX sed spec.

The most portable approach is to use POSIX features only, which, however, limits
functionality:

Notably, POSIX specifies support only for basic regular expressions, which have many
limitations (e.g., no support for | (alternation) at all, no direct support for + and ?) and
different escaping requirements.

Caveat: GNU sed (without -r), does support \|, \+ and \?, which is NOT POSIX-
compliant; use --posix to disable (see below).

○

•

To use POSIX features only:

(both versions): use only the -n and -e options (notably, do not use -E or -r to turn on
support for extended regular expressions)

○

GNU sed: add option --posix to ensure POSIX-only functionality (you don't strictly need
this, but without it you could end up inadvertently using non-POSIX features without
noticing; caveat: --posix itself is not POSIX-compliant)

○

Using POSIX-only features means stricter formatting requirements (forgoing many
conveniences available in GNU sed):

Control-character sequences such as \n and \t are generally NOT supported.○

Labels and branching commands (e.g., b) must be followed by an actual newline
or continuation via a separate -e option.

○

See below for details.○

○

•

However, both versions implement extensions to the POSIX standard:

https://riptutorial.com/ 13

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/sed.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/sed.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/sed.html

what extensions they implement differs (GNU sed implements more).•
even those extensions they both implement partially differ in syntax.•

If you need to support BOTH platforms (discussion of differences):

Incompatible features:

Use of the -i option without an argument (in-place updating without backup) is
incompatible:

BSD sed: MUST use -i ''○

GNU sed: MUST use just -i (equivalent: -i'') - using -i '' does NOT work.○

○

-i sensibly turns on per-input-file line numbering in GNU sed and recent versions
of BSD sed (e.g., on FreeBSD 10), but does NOT on macOS as of 10.12.
Note that in the absence of -i all versions number lines cumulatively across input files.

○

If the last input line does not have a trailing newline (and is printed):

BSD sed: always appends a newline on output, even if the input line doesn't end
in one.

○

GNU sed: preserves the trailing-newline status, i.e., it appends a newline only if
the input line ended in one.

○

○

•

Common features:

If you restrict your sed scripts to what BSD sed supports, they will generally work in
GNU sed too - with the notable exception of using platform-specific extended regex
features with -E. Obviously, you'll also forgo extensions that are specific to the GNU
version. See next section.

○

•

Guidelines for cross-platform support (OS X/BSD, Linux), driven by the stricter
requirements of the BSD version:

Note that that the shorthands macOS and Linux are occasionally used below to refer to the BSD and GNU versions of
sed, respectively, because they are the stock versions on each platform. However, it is possible to install GNU sed on
macOS, for instance, using Homebrew with brew install gnu-sed.

Note: Except when the -r and -E flags are used (extended regexes), the instructions below
amount to writing POSIX-compliant sed scripts.

For POSIX compliance, you must restrict yourself to POSIX BREs (basic regular
expressions), which are, unfortunately, as the name suggests, quite basic.
Caveat: do not assume that \|, \+ and \? are supported: While GNU sed supports them
(unless --posix is used), BSD sed does not - these features are not POSIX-compliant.
While \+ and \? can be emulated in POSIX-compliant fashion :
\{1,\} for \+,
\{0,1\} for \?,
\| (alternation) cannot, unfortunately.

•

https://riptutorial.com/ 14

http://brew.sh/
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_03
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_03
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_03
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_03

For more powerful regular expressions, use -E (rather than -r) to support EREs (extended
regular expressions) (GNU sed doesn't document -E, but it does work there as an alias of -r
; newer version of BSD sed, such as on FreeBSD 10, now also support -r, but the macOS
version as of 10.12 does not).
Caveat: Even though use of -r / -E means that your command is by definition not POSIX-
compliant, you must still restrict yourself to POSIX EREs (extended regular expressions)
. Sadly, this means that you won't be able to use several useful constructs, notably:

word-boundary assertions, because they're platform-specific (e.g., \< on Linux, [[:<]]
on OS X).

○

back-references inside regular expressions (as opposed to the "back-references" to
capture-group matches in the replacement string of s function calls), because BSD sed
doesn't support them in extended regexes (but, curiously, does so in basic ones, where
they are POSIX-mandated).

○

•

Control-character escape sequences such as \n and \t:

In regexes (both in patterns for line selection and the first argument to the s function),
assume that only \n is recognized as an escape sequence (rarely used, since the
pattern space is usually a single line (without terminating \n), but not inside a character
class, so that, e.g., [^\n] doesn't work; (if your input contains no control chars. other
than \t, you can emulate [^\n] with [[:print:][:blank:]]; otherwise, splice control
chars. in as literals[2]) - generally, include control characters as literals, either via
spliced-in ANSI C-quoted strings (e.g., $'\t') in shells that support it (bash,ksh,
zsh), or via command substitutions using printf (e.g., "$(printf '\t')").

Linux only:
sed 's/\t/-/' <<<$'a\tb' # -> 'a-b'

○

OSX and Linux:
sed 's/'$'\t''/-/' <<<$'a\tb' # ANSI C-quoted string
sed 's/'"$(printf '\t')"'/-/' <<<$'a\tb' # command subst. with printf

○

○

In replacement strings used with the s command, assume that NO control-
character escape sequences are supported, so, again, include control chars. as
literals, as above.

Linux only:
sed 's/-/\t/' <<<$'a-b' # -> 'a<tab>b'

○

macOS and Linux:
sed 's/-/'$'\t''/' <<<'a-b'
sed 's/-/'"$(printf '\t')"'/' <<<'a-b'

○

○

Ditto for the text arguments to the i and a functions: do not use control-character
sequences - see below.

○

•

Labels and branching: labels as well as the label-name argument to the b and t functions
must be followed by either by a literal newline or a spliced-in $'\n'. Alternatively, use
multiple -e options and terminate each right after the label name.

Linux only:
sed -n '/a/ bLBL; d; :LBL p' <<<$'a\nb' # -> 'a'

○

•

https://riptutorial.com/ 15

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_04

macOS and Linux:
EITHER (actual newlines):
sed -n '/a/ bLBL d; :LBL p' <<<$'a\nb'

○

OR (spliced-in $\n instances):
sed -n '/a/ bLBL'$'\n''d; :LBL'$'\n''p' <<<$'a\nb'

○

OR (multiple -e options):
sed -n -e '/a/ bLBL' -e 'd; :LBL' -e 'p' <<<$'a\nb'

○

○

Functions i and a for inserting/appending text: follow the function name by \, followed
either by a literal newline or a spliced-in $'\n' before specifying the text argument.

Linux only:
sed '1 i new first line' <<<$'a\nb' # -> 'new first line<nl>a<nl>b'

○

OSX and Linux:
sed -e '1 i\'$'\n''new first line' <<<$'a\nb'

○

Note:
Without -e, the text argument is inexplicably not newline-terminated on output on
macOS (bug?).

○

Do not use control-character escapes such as \n and \t in the text argument,
as they're only supported on Linux.

○

If the text argument therefore has actual interior newlines, \-escape them.○

If you want to place additional commands after the text argument, you must
terminate it with an (unescaped) newline (whether literal or spliced in), or
continue with a separate -e option (this is a general requirement that applies to all
versions).

○

○

•

Inside function lists (multiple function calls enclosed in {...}), be sure to also terminate
the last function, before the closing }, with ;.

Linux only:
sed -n '1 {p;q}' <<<$'a\nb' # -> 'a'○

○

macOS and Linux:
sed -n '1 {p;q;}' <<<$'a\nb'○

○

•

GNU sed-specific features missing from BSD sed altogether:

GNU features you'll miss out on if you need to support both platforms:

Various regex-matching and substitution options (both in patterns for line selection and
the first argument to the s function):

The I option for case-INsensitive regex matching (incredibly, BSD sed doesn't
support this at all).

○

The M option for multi-line matching (where ^ / $ match the start / end of each line)○

For additional options that are specific to the s function, see
https://www.gnu.org/software/sed/manual/sed.html#The-_0022s_0022-Command

○

•

Escape sequences

Substitution-related escape sequences such as \u in the replacement argument of the ○

•

https://riptutorial.com/ 16

https://www.gnu.org/software/sed/manual/sed.html#The-_0022s_0022-Command

s/// function that allow substring manipulation, within limits; e.g., sed 's/^./\u&/'
<<<'dog' # -> 'Dog' - see http://www.gnu.org/software/sed/manual/sed.html#The-
_0022s_0022-Command

Control-character escape sequences: in addition to \n, \t, ..., codepoint-based
escapes; for instance, all of the following escapes (hex., octal, decimal) represent a
single quote ('): \x27, \o047, \d039 - see
https://www.gnu.org/software/sed/manual/sed.html#Escapes

○

Address extensions, such as first~step to match every step-th line, addr, +N to match N
lines following addr, ... - see http://www.gnu.org/software/sed/manual/sed.html#Addresses

•

[1] The macOS sed version is older than the version on other BSD-like systems such as FreeBSD and PC-BSD.
Unfortunately, this means that you cannot assume that features that work in FreeBSD, for instance, will work [the
same] on macOS.

[2] The ANSI C-quoted string
$'\001\002\003\004\005\006\007\010\011\013\014\015\016\017\020\021\022\023\024\025\026\027\030\031\032\033\034\035\036\037\177'
contains all ASCII control characters except \n (and NUL), so you can use it in combination with [:print:] for a
pretty robust emulation of [^\n]:

'[[:print:]'$'\001\002\003\004\005\006\007\010\011\013\014\015\016\017\020\021\022\023\024\025\026\027\030\031\032\033\034\035\036\037\177'']

Examples

Replace all newlines with tabs

Note: For brevity, the commands use here-strings (<<<) and ANSI C-quoted strings ($'...'). Both these shell
features work in bash, ksh, and zsh.

GNU Sed
$ sed ':a;$!{N;ba}; s/\n/\t/g' <<<$'line_1\nline_2\nline_3'
line_1 line_2 line_3

BSD Sed equivalent (multi-line form)
sed <<<$'line_1\nline_2\nline_3' '
:a
$!{N;ba
}; s/\n/'$'\t''/g'

BSD Sed equivalent (single-line form, via separate -e options)
sed -e ':a' -e '$!{N;ba' -e '}; s/\n/'$'\t''/g' <<<$'line 1\nline 2\nline 3'

BSD Sed notes:

Note the need to terminate labels (:a) and branching commands (ba) either with actual
newlines or with separate -e options.

•

Since control-character escape sequences such as \t aren't supported in the replacement
string, an ANSI C-quoted tab literal is spliced into the replacement string.
(In the regex part, BSD Sed only recognizes \n as an escape sequence).

•

https://riptutorial.com/ 17

http://www.gnu.org/software/sed/manual/sed.html#The-_0022s_0022-Command
http://www.gnu.org/software/sed/manual/sed.html#The-_0022s_0022-Command
https://www.gnu.org/software/sed/manual/sed.html#Escapes
http://www.gnu.org/software/sed/manual/sed.html#Addresses
http://mywiki.wooledge.org/HereDocument?action=show&redirect=HereString
http://mywiki.wooledge.org/HereDocument?action=show&redirect=HereString
http://mywiki.wooledge.org/HereDocument?action=show&redirect=HereString
http://www.gnu.org/software/bash/manual/bash.html#ANSI_002dC-Quoting
http://www.gnu.org/software/bash/manual/bash.html#ANSI_002dC-Quoting
http://www.gnu.org/software/bash/manual/bash.html#ANSI_002dC-Quoting

Append literal text to a line with function 'a'

Note: For brevity, the commands use here-strings (<<<) and ANSI C-quoted strings ($'...'). Both these shell
features work in bash, ksh, and zsh.

 # GNU Sed
 $ sed '1 a appended text' <<<'line 1'
 line 1
 appended text

 # BSD Sed (multi-line form)
 sed '1 a\
 appended text' <<<'line 1'

 # BSD Sed (single-line form via a Bash/Ksh/Zsh ANSI C-quoted string)
 sed $'1 a\\\nappended text' <<<'line 1'

Note how BSD Seed requires a \ followed by an actual newline to pass the text to append.
The same applies to the related i (insert) and c (delete and insert) functions.

Read BSD/macOS Sed vs. GNU Sed vs. the POSIX Sed specification online:
https://riptutorial.com/sed/topic/9436/bsd-macos-sed-vs--gnu-sed-vs--the-posix-sed-specification

https://riptutorial.com/ 18

http://mywiki.wooledge.org/HereDocument?action=show&redirect=HereString
http://mywiki.wooledge.org/HereDocument?action=show&redirect=HereString
http://mywiki.wooledge.org/HereDocument?action=show&redirect=HereString
http://www.gnu.org/software/bash/manual/bash.html#ANSI_002dC-Quoting
http://www.gnu.org/software/bash/manual/bash.html#ANSI_002dC-Quoting
http://www.gnu.org/software/bash/manual/bash.html#ANSI_002dC-Quoting
https://riptutorial.com/sed/topic/9436/bsd-macos-sed-vs--gnu-sed-vs--the-posix-sed-specification

Chapter 8: Delete command

Examples

Delete one line containing a pattern

Given a file file.txt with the following content:

line 1
line 2
line 3

You can delete a line from file content with the d command.

The pattern to match is surrounded with default / delimiter and the d command follows the pattern:

sed '/line 2/d' file.txt

The above command will output:

line 1
line 3

To edit the file in place, use the -i option:

sed -i '/line 2/d' file.txt

Read Delete command online: https://riptutorial.com/sed/topic/2177/delete-command

https://riptutorial.com/ 19

https://riptutorial.com/sed/topic/2177/delete-command

Chapter 9: In-Place Editing

Syntax

sed -I extension - FreeBSD sed (continuous line-counter)•
sed -I[extension] - NetBSD and Illumos sed (continuous line-counter)•
sed -i extension - FreeBSD sed•
sed -i[extension] - NetBSD, OpenBSD, Illumos, BusyBox and GNU sed•
sed --in-place[=extension] - Illumos, BusyBox, and GNU sed•

Parameters

Parameter Details

extension
Save a backup file with the specified extension, or no backup file when
extension is a zero-length string.

Remarks

In-place editing is a common but non-standard extension present in the majority of recent
systems.

From a BSD sed manual

(a section like this appears in all current BSD sed manuals, and those of their derivatives)

It is not recommended to give a zero length extension when in place editing files, as it
risks corruption or partial content in situations where disk space is exhausted, etc.

Don't forget the mighty ed

There is definitely a use for sed and for in-place editing features of sed, but when the UNIX
standard is extended, we should always ask why the old UNIX standard did not include that
feature. Though UNIX is not perfect, the orthogonality and completeness of the tools has been
developed to be quite near to perfection, at least for purposes that where visible around 1970:
Text editing and automated text editing was surely visible around that time.

Actually, the idea of sed is not to edit a file in place, but to edit a stream. That's why the name sed
is a short form of stream editor. Take away the s, and you get the tool that was actually designed
for file editing: ed:

printf 'g/what to replace/s//with what to replace/g\nw\nq\n' | ed file

https://riptutorial.com/ 20

http://man.openbsd.org/OpenBSD-current/man1/sed.1
http://man.openbsd.org/OpenBSD-current/man1/sed.1
http://man.openbsd.org/OpenBSD-current/man1/sed.1

or cat file_edit_commands | ed file.

Examples

Replacing strings in a file in-place

sed -i s/"what to replace"/"with what to replace"/g $file

We use -i to select in-place editing on the $file file. In some systems it is required to add suffix
after -i flag which will be used to create backup of original file. You can add empty string like -i ''
to omit the backup creation. Look at Remarks in this topic about -i option.

The g terminator means do a global find/replace in each line.

$ cat example
one
two
three
total
$ sed -i s/"t"/"g"/g example
$ cat example
one
gwo
ghree
gogal

Portable Use

In-place editing, while common, is a non-standard feature. A viable alternative would be to use an
intermediate file to either store the original, or the output.

sed 'sed commands' > file.out && mv file.out file
or
mv file file.orig && sed 'sed commands' file.orig > file

To use the -i option with both the GNU and FreeBSD syntax an extension must be specified and
appended to the -i option. The following will be accepted by both, and produce two files, the
original version at file.orig and the edited version at file:

sed -i.orig 'sed commands' file

See a basic example given a file file:

$ cat file
one
two
three
$ sed -i.orig 's/one/XX/' file
$ cat file # the original file has changed its content
XX

https://riptutorial.com/ 21

two
three
$ cat file.orig # the original content is now in file.orig
one
two
three

A more complex example, replacing each line with line number:

$ printf 'one\ntwo\n' | tee file1 | tr a-z A-Z > file2
$ sed -ni.orig = file1 file2
$ cat file1.orig file2.orig
one
two
ONE
TWO
$ cat file1 file2
1
2
1
2

Why a backup file is required

In order to use in-place editing without a backup file, -i must be given a zero-length argument and
FreeBSD sed requires an argument to -i, either appended or separate, while the GNU optional
argument extension requires the argument be appended to -i. Both support appending the
argument to -i, but without it being required -i'' command is indistinguishable from -i extension,
and so a zero-length argument can not be appended to -i.

In-place editing without specifying a backup file overrides read-only
permissions

sed -i -e cmd file will modify file even if its permissions are set to read-only.

This command behaves similarly to

sed -e cmd file > tmp; mv -f tmp file

rather than

sed -e cmd file > tmp; cat tmp > file; rm tmp

The following example uses gnu sed:

$ echo 'Extremely important data' > input
$ chmod 400 input # Protect that data by removing write access
$ echo 'data destroyed' > input
-bash: input: Permission denied
$ cat input
Extremely important data (#phew! Data is intact)
$ sed -i s/important/destroyed/ input
$ cat input

https://riptutorial.com/ 22

Extremely destroyed data (#see, data changed)

This can be mitigated by creating a backup by specifying a SUFFIX with the i option:

$ sed -i.bak s/important/destroyed/ input
$ cat input
Extremely destroyed data
$ cat input.bak
Extremely important data

Read In-Place Editing online: https://riptutorial.com/sed/topic/3640/in-place-editing

https://riptutorial.com/ 23

https://riptutorial.com/sed/topic/3640/in-place-editing

Chapter 10: Regular expressions

Examples

Using different delimiters

Given a file like this:

$ cat file
hello/how/are/you
i am fine

You can use /pattern/ to match specific lines:

$ sed -n '/hello/p' file
hello/how/are/you

If the pattern contains slashes itself, you can use another delimiter using \cBREc:

$ sed -n '\#hello/how#p' file
hello/how/are/you
$ sed -n '_hello/how_p' file
hello/how/are/you

As defined by POSIX in:

Regular Expressions in sed
In a context address, the construction \cBREc, where c is any character other than
backslash or , shall be identical to /BRE/. If the character designated by c appears
following a backslash, then it shall be considered to be that literal character, which
shall not terminate the BRE. For example, in the context address "\xabc\xdefx", the
second x stands for itself, so that the BRE is "abcxdef".

Read Regular expressions online: https://riptutorial.com/sed/topic/7720/regular-expressions

https://riptutorial.com/ 24

http://pubs.opengroup.org/onlinepubs/009695399/utilities/sed.html#tag_04_126_13_02
https://riptutorial.com/sed/topic/7720/regular-expressions

Chapter 11: Substitution

Examples

Substitution Using Shell Variables

Variables inside single quotes ' don't get expanded by POSIX compatible shells, so using a shell
variable in a sed substitution requires the use of double quotes " instead of single quotes ':

$ var="he"
$ echo "hello" | sed "s/$var/XX/"
XXllo

$ var="he"
$ echo "hello" | sed 's/$var/XX/'
hello

Be careful of command injection when evaluating variables:

$ var='./&/;x;w/etc/passwd
> x;s/he'
$ echo "hello" | sed "s/$var/XX/"
sed: /etc/passwd: Permission denied

If the above was run as root the output would have been indistinguishable from the first example,
and the contents of /etc/passwd would be destroyed.

Backreference

Using escaped brackets, you can define a capturing group in a pattern that can be backreferenced
in the substitution string with \1:

$ echo Hello world! | sed 's/\(Hello\) world!/\1 sed/'
Hello sed

With multiple groups:

$ echo one two three | sed 's/\(one\) \(two\) \(three\)/\3 \2 \1/'
three two one

BSD sedGNU sed

When using extended regular expressions (see Additional Options) parenthesis perform grouping
by default, and do not have to be escaped:

$ echo one two three | sed -E 's/(one) (two) (three)/\3 \2 \1/'
three two one

https://riptutorial.com/ 25

http://www.riptutorial.com/sed/topic/7922/additional-options

Words consisting of letter, digits and underscores can be matched using the expression
[[:alnum:]_]\{1,\}:

$ echo Hello 123 reg_exp | sed 's/\([[:alnum:]_]\{1,\}\) \([[:alnum:]_]\{1,\}\)
\([[:alnum:]_]\{1,\}\)/\3 \2 \1/'
reg_exp 123 Hello

GNU sed

The sequence \w is equivalent to [[:alnum:]_]

$ echo Hello 123 reg_exp | sed 's/\(\w\w*\) \(\w\w*\) \(\w\w*\)/\3 \2 \1/'
reg_exp 123 Hello

Using different delimiters

POSIX/IEEE Open Group Base Specification says:

[2addr] s/BRE/replacement/flags

Substitute the replacement string for instances of the BRE in the pattern space. Any
character other than backslash or newline can be used instead of a slash to delimit
the BRE and the replacement. Within the BRE and the replacement, the BRE delimiter
itself can be used as a literal character if it is preceded by a backslash.

There are cases when the delimiter / for sed replacement is in the BRE or replacement, triggering
errors like:

$ echo "2/3/4" | sed "s/2/3/X/"
sed: -e expression #1, char 7: unknown option to `s'

For this, we can use different delimiters such as # or _ or even a space:

$ echo "2/3/4" | sed "s#2/3#X#"
X/4
$ echo "2/3/4" | sed "s_2/3_X_"
X/4
$ echo "2/3/4" | sed "s 2/3 X "
X/4

Pattern flags - occurrence replacement

If we want to replace only the first occurrence in a line, we use sed as usual:

$ cat example
aaaaabbbbb
aaaaaccccc
aaaaaddddd
$ sed 's/a/x/' example
xaaaabbbbb
xaaaaccccc

https://riptutorial.com/ 26

http://pubs.opengroup.org/onlinepubs/009604599/utilities/sed.html

xaaaaddddd

But what if we want to replace all occurrences?

We just add the g pattern flag at the end:

$ sed 's/a/x/g' example
xxxxxbbbbb
xxxxxccccc
xxxxxddddd

And if we want to replace one specific occurrence, we can actually specify which one:

$ sed 's/a/x/3' example
aaxaabbbbb
aaxaaccccc
aaxaaddddd

/3 being the 3rd occurrence.

GNU sed

From info sed, see GNU sed manual for online version

the POSIX standard does not specify what should happen when you mix the g and
NUMBER modifiers, and currently there is no widely agreed upon meaning across sed
implementations. For GNU sed, the interaction is defined to be: ignore matches before
the NUMBERth, and then match and replace all matches from the NUMBERth on.

$ sed 's/b/y/2g' example
aaaaabyyyy
aaaaaccccc
aaaaaddddd

$ sed 's/c/z/g3' example
aaaaabbbbb
aaaaacczzz
aaaaaddddd

Read Substitution online: https://riptutorial.com/sed/topic/1096/substitution

https://riptutorial.com/ 27

https://www.gnu.org/software/sed/manual/sed.html#The-_0022s_0022-Command
https://riptutorial.com/sed/topic/1096/substitution

Credits

S.
No

Chapters Contributors

1
Getting started with
sed

Community, fedorqui, kdhp, SLePort

2 Additional Options kdhp, mklement0

3
Address and address
range

Benjamin W., Sundeep

4
Advanced sed
commands

Raju

5 Append command kdhp, Slawomir Jaranowski

6 Branching Operation Ekeyme Mo

7

BSD/macOS Sed vs.
GNU Sed vs. the
POSIX Sed
specification

mklement0

8 Delete command SLePort

9 In-Place Editing
AstraSerg, Ekeyme Mo, Emil Burzo, fedorqui, ghostarbeiter,
ikrabbe, kdhp, mklement0, Oleg Arkhipov, William Pursell

10 Regular expressions fedorqui

11 Substitution Emil Burzo, fedorqui, kdhp, SLePort, Sundeep, thanasisp

https://riptutorial.com/ 28

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1983854/fedorqui
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/1344961/sleport
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/45375/mklement0
https://riptutorial.com/contributor/3266847/benjamin-w-
https://riptutorial.com/contributor/4082052/sundeep
https://riptutorial.com/contributor/5832518/raju
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/3149528/slawomir-jaranowski
https://riptutorial.com/contributor/4988506/ekeyme-mo
https://riptutorial.com/contributor/45375/mklement0
https://riptutorial.com/contributor/1344961/sleport
https://riptutorial.com/contributor/2733113/astraserg
https://riptutorial.com/contributor/4988506/ekeyme-mo
https://riptutorial.com/contributor/1075653/emil-burzo
https://riptutorial.com/contributor/1983854/fedorqui
https://riptutorial.com/contributor/6274563/ghostarbeiter
https://riptutorial.com/contributor/5022759/ikrabbe
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/45375/mklement0
https://riptutorial.com/contributor/2725901/oleg-arkhipov
https://riptutorial.com/contributor/140750/william-pursell
https://riptutorial.com/contributor/1983854/fedorqui
https://riptutorial.com/contributor/1075653/emil-burzo
https://riptutorial.com/contributor/1983854/fedorqui
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/1344961/sleport
https://riptutorial.com/contributor/4082052/sundeep
https://riptutorial.com/contributor/7589636/thanasisp

	About
	Chapter 1: Getting started with sed
	Remarks
	References
	Versions
	Examples
	Hello World

	Chapter 2: Additional Options
	Syntax
	Remarks
	Examples
	Delay Creation/Truncation of Files
	'l' Line-Wrapping

	Chapter 3: Address and address range
	Introduction
	Examples
	Specific line
	Specific range of lines
	Lines matching regular expression pattern
	Specifying range using both number and pattern
	Negating address range

	Chapter 4: Advanced sed commands
	Examples
	Insert a new line before matching pattern - using eXchange

	Chapter 5: Append command
	Examples
	Insert line after first match

	Chapter 6: Branching Operation
	Introduction
	Examples
	Do multiple line regexp replacing with unconditional branch

	Chapter 7: BSD/macOS Sed vs. GNU Sed vs. the POSIX Sed specification
	Introduction
	Remarks
	Examples
	Replace all newlines with tabs
	Append literal text to a line with function 'a'

	Chapter 8: Delete command
	Examples
	Delete one line containing a pattern

	Chapter 9: In-Place Editing
	Syntax
	Parameters
	Remarks

	Don't forget the mighty ed
	Examples
	Replacing strings in a file in-place
	Portable Use

	Why a backup file is required
	In-place editing without specifying a backup file overrides read-only permissions

	Chapter 10: Regular expressions
	Examples
	Using different delimiters

	Chapter 11: Substitution
	Examples
	Substitution Using Shell Variables
	Backreference
	Using different delimiters
	Pattern flags - occurrence replacement

	Credits

