
sh

#sh

Table of Contents

About 1

Chapter 1: Getting started with sh 2

Remarks 2

References 2

Examples 2

Hello, world! 2

Echo Portability 2

Chapter 2: Arithmetic Expansion 4

Remarks 4

Resources 4

Examples 4

Line Count 4

Parameter Expansion 4

Ternery Expressions 5

Is a Power of 2 5

Chapter 3: IO Redirection 7

Introduction 7

Syntax 7

Remarks 7

Resources 7

Examples 7

Output Redirection 7

Input Redirection 8

Chapter 4: Job Control 9

Examples 9

Pause, run in background, run in foreground 9

List, wait and stop processes 9

Chapter 5: Quoting 11

Remarks 11

References 11

Examples 11

Single-Quotes 11

Double-Quotes 11

Escaping 12

Chapter 6: Test 13

Syntax 13

Remarks 13

Reference 13

Examples 13

Multiple Expressions 13

Chapter 7: The `read` command 15

Examples 15

Read a line verbatim 15

Read a line, stripping leading and trailing whitespace 15

Credits 16

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: sh

It is an unofficial and free sh ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official sh.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/sh
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with sh

Remarks

sh is not a single shell. Rather, it is a specification with the POSIX operating system standard for
how a shell should work. A script that targets this specification can be executed by any POSIX-
compliant shell, such as

bash•
ksh•
ash and its derivatives, such as dash•
zsh•

In a POSIX-compliant operating system, the path /bin/sh refers to a POSIX-compliant shell. This
is usually a shell that has features not found in the POSIX standard, but when run as sh, will
restrict itself to the POSIX-compliant subset of its features.

References

Standard sh•
The FreeBSD sh(1) man-page•
The NetBSD sh(1) man-page•
The OpenBSD sh(1) man-page•
The Illumos sh(1) man-page (ksh93(1))•

Examples

Hello, world!

With echo:

$ echo Hello, world!
Hello, world!

With printf:

$ printf 'Hello, world!\n'
Hello, world!

As a file:

#!/bin/sh
printf '%s\n' 'Hello, world!'

Echo Portability

https://riptutorial.com/ 2

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/sh.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/sh.html
https://www.freebsd.org/cgi/man.cgi?query=sh
https://www.freebsd.org/cgi/man.cgi?query=sh
https://www.freebsd.org/cgi/man.cgi?query=sh
http://netbsd.gw.com/cgi-bin/man-cgi?sh++NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?sh++NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?sh++NetBSD-current
http://man.openbsd.org/?query=sh
http://man.openbsd.org/?query=sh
http://man.openbsd.org/?query=sh
https://illumos.org/man/1/sh
https://illumos.org/man/1/sh
https://illumos.org/man/1/sh
https://illumos.org/man/1/sh
https://illumos.org/man/1/sh

$ for shell in ash bash dash ksh ksh93 zsh; do
> $shell -c "echo '\\\\'$shell'\\\\'"
> done
\\ash\\
\\bash\\
\dash\
\pdksh\
\\ksh93\\
\zsh\

'echo' can only be used consistently, across implementations, if its arguments do not contain any
backslashes (reverse-solidi), and if the first argument does not start with a dash (hyphen-minus).
Many implementations allow additional options, such as -e, even though the only option allowed is
-n (see below).

From POSIX:

If the first operand is -n, or if any of the operands contain a character, the results are
implementation-defined.

Read Getting started with sh online: https://riptutorial.com/sh/topic/3300/getting-started-with-sh

https://riptutorial.com/ 3

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/echo.html
https://riptutorial.com/sh/topic/3300/getting-started-with-sh

Chapter 2: Arithmetic Expansion

Remarks

Numbers in arithmetic expansions must match the following ERE:

[-+]?(0[0-7]+|[1-9][0-9]*|0[Xx][0-9A-Fa-f]+)

Arithmetic expressions support signed integer operators, comparisons, Boolean expressions,
assignments, and ternary expressions from C.

Resources

Arithmetic expansion in POSIX•
Operator precedence•

Examples

Line Count

i=0
while read -r line; do
 i=$((i+1))
done < file
echo $i

With a file containing:

Alpha
Beta
Gamma
Delta
Epsilon

The above script prints: 5

Parameter Expansion

Loop n times:

while [$((i=${i:=0}+1)) -le "$n"]; do
 echo line $i
done

Output for n=5:

https://riptutorial.com/ 4

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_06_04
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap01.html#tag_17_01_02_01

line 1
line 2
line 3
line 4
line 5

Manipulating decimals:

$ i=3.14159; echo $((${i%.*}*2))
6
$ i=3.14159; echo $((${i#*.}*2))
28318

Ternery Expressions

Absolute value:

$ for n in -8 -2 0 3 4; do
> echo $((n<0?-n:n))
> done
8
2
0
3
4

Fix variable range:

$ min=2
$ max=4
$ for n in 1 2 3 4 5; do
> echo $((n<min?min:n>max?max:n))
> done
2
2
3
4
4

Is a Power of 2

$ ispow2() { return $((!($1!=0&&($1&$1-1)==0))); }
$ i=0
$ while [$i -lt 100]; do
> if ispow2 $((i=i+1)); then
> echo $i
> fi
> done
1
2
4
8
16
32

https://riptutorial.com/ 5

64

$1!=0 0 is not a power of 2.

($1&$1-1)==0 Unset the lowest bit. If it was the only bit then the number was a power of 2.

The additional ! was for correcting the value to what the shell expects, which is the opposite of the
conventional true/false values (zero for true and non-zero for false, vs zero for false and non-zero
for true).

Read Arithmetic Expansion online: https://riptutorial.com/sh/topic/6223/arithmetic-expansion

https://riptutorial.com/ 6

https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetKernighan
https://riptutorial.com/sh/topic/6223/arithmetic-expansion

Chapter 3: IO Redirection

Introduction

Generally a command takes inputs from terminal and outputs back to terminal. Normally a
command reads input from keyboard and outputs result to the screen. Here is the importance of
Input/Output Redirection

Syntax

[fd]<file•
[fd]<&fd•
[fd]<&-•
[fd]>file•
[fd]>&fd•
[fd]>&-•
[fd]>|file•
[fd]>>file•
[fd]<>file•
[fd]<<[-] word
...
word

•

Remarks

Resources

The POSIX 'Shell Command Language' section on 'Redirection'•

Examples

Output Redirection

Usually output of a command goes to the terminal. Using the concept of Output redirection, the
output of a command can be redirected to a file. So insted of displaying the output to the terminal it
can be send to a file. '>' character is used for output redirection.

$ pwd > file1
$ cat file1
/home/cg/root

In the above example, the command the output 'pwd' of the command is redirected to a file called
'file1'.

https://riptutorial.com/ 7

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_07

Input Redirection

The commands normally take their input from the standard input device keyboard. Using Input
redirection concept, we can have their input redirected from a file. To redirect standard input from
a file instead of the keyboard, the '<' character is used.

$ cat file1
monday
tuesday
wednsday
thursday
friday
saturday
sunday

The above is the content of file1

$ sort < file1
friday
monday
saturday
sunday
thursday
tuesday
wednsday

here insted of taking input from keyboard, we redirected it from the file1 and sort it in ascending
order.

Read IO Redirection online: https://riptutorial.com/sh/topic/9345/io-redirection

https://riptutorial.com/ 8

https://riptutorial.com/sh/topic/9345/io-redirection

Chapter 4: Job Control

Examples

Pause, run in background, run in foreground

Let's create a process which is rather long to complete :

$ sleep 1000

To pause the process, type Ctrl + Z :

^Z
[1]+ Stopped sleep 1000

You can use jobs to see the list of processes running or stopped in the current terminal :

$ jobs
[1]+ Stopped sleep 1000

To bring back a job on the foreground, use fg with the id written between brackets in the list
provided by jobs :

$ fg 1
sleep 1000

When a job is stopped, you can run it in background with the command bg with the same id :

$ bg 1
[1]+ sleep 1000 &

And then see it in the list of jobs in the current terminal :

$ jobs
[1]+ Running sleep 1000 &

To directly run a job in background, finish the command with & :

$ jobs
[1]+ Running sleep 1000 &
$ sleep 5000 &
[2] 6743
$ jobs
[1]- Running sleep 1000 &
[2]+ Running sleep 5000 &

List, wait and stop processes

https://riptutorial.com/ 9

To get a list of the processes running in the current terminal, you can use ps :

$ sleep 1000 &
$ ps -opid,comm
 PID COMMAND
 1000 sh
 1001 sleep
 1002 ps

To kill a running process, use kill with the process ID (PID) indicated by ps:

$ kill 1001
$ ps -opid,comm
 PID COMMAND
1000 sh
1004 ps

To wait for a process to terminate, use the wait command :

$ sleep 10 && echo End &
$ ps -opid,comm
 PID COMMAND
1000 sh
1005 sh
1006 sleep
1007 ps
$ wait 1005 && echo Stop waiting
End
Stop waiting

First, we run a process with PID 1005 in background which will print "End" before ending. Then,
we wait for this process to finish, and print "Stop waiting". The output shows "End", meaning the
process with PID 1005 is complete, then "Stop waiting", showing the wait command is complete.

Read Job Control online: https://riptutorial.com/sh/topic/6932/job-control

https://riptutorial.com/ 10

https://riptutorial.com/sh/topic/6932/job-control

Chapter 5: Quoting

Remarks

References

The POSIX 'Shell Command Language' section on 'Quoting'•

Examples

Single-Quotes

Single-quotes are literal strings, and the lack of escape characters means that the only character
that can not occur inside of a single-quoted string is a single-quote.

$ echo '$var \$var \\$var \\\$var'
$var \$var \\$var \\\$var
$ echo '"quoted string"'
"quoted string"
$ echo 'var=$(echo $var)'
var=$(echo $var)

Double-Quotes

Double-quotes preserve all characters other than " terminator, $ expansions, ` command
substitutions, and \ escapes of any of these characters (and newline removal). Note that the literal
\ is preserved unless followed by a special character.

General escapes:

$ printf "\"quoted string\"\\n"
"quoted string"
$ printf "\`\`quoted string''\n"
``quoted string''
$ printf "four\\\\nthree\\\ntwo\\none\n"
four\nthree\ntwo
one
$ echo "var=\`echo \$var\`"
var=`echo $var`
$ echo "var=\$(echo \$var)"
var=$(echo $var)

Variable expansion:

$ var=variable echo "$var \$var \\$var \\\$var"
variable $var \variable \$var

Command substitution:

https://riptutorial.com/ 11

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_02

$ var=variable echo "var=`echo $var`"
var=variable
$ var=variable echo "var=$(echo $var)"
var=variable

Removing newlines:

$ echo "multi\
> -line"
multi-line

Escaping

\ escapes preserve the following character value, unless the following character is a newline in
which case both the \ and the newline are removed.

Escaping special characters:

$ echo \"quoted text\"
"quoted text"
$ echo \`\`quoted text\'\'
``quoted text''
$ echo 'single-quotes inside of a '\''single-quoted'\'' string'
single-quotes inside of a 'single-quoted' string
$ printf format\ with\ %s spaces
format with spaces
$ printf %s\\n \$var
$var

Removing newlines:

$ echo multi\
> -line
multi-line

Read Quoting online: https://riptutorial.com/sh/topic/5947/quoting

https://riptutorial.com/ 12

https://riptutorial.com/sh/topic/5947/quoting

Chapter 6: Test

Syntax

test•
test [!] [-n | -z] string•
test [!] { -b | -c | -d | -e | -f | -g | -h | -L | -p | -r | -S | -s | -u | -w | -x } file•
test [!] -t fd•
test [!] string { = | != } string•
test [!] integer { -eq | -ne | -gt | -ge | -lt | -le } integer•
[]•
[[!] [-n | -z] string]•
[[!] { -b | -c | -d | -e | -f | -g | -h | -L | -p | -r | -S | -s | -u | -w | -x } file]•
[[!] -t fd]•
[[!] string { = | != } string]•
[[!] integer { -eq | -ne | -gt | -ge | -lt | -le } integer]•

Remarks

If test(1) is run without any arguments it returns false.

Reference

Standard test(1)•
The FreeBSD test(1) man-page•
The NetBSD test(1) man-page•
The OpenBSD test(1) man-page•
The Illumos test(1) man-page•
The GNU Coreutils online manual section on test(1)•

Examples

Multiple Expressions

Though it is an obsoleted part of the XSI standard, many implementations still support multiple
expressions with Boolean operators and parenthesis.

The (obsolete) operators are listed below with decreasing precedence.

(expression)
expression -a expression
expression -o expression

Using these (obsolete) operators, a complex shell expression:

https://riptutorial.com/ 13

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/test.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/test.html
https://www.freebsd.org/cgi/man.cgi?query=test
https://www.freebsd.org/cgi/man.cgi?query=test
https://www.freebsd.org/cgi/man.cgi?query=test
http://netbsd.gw.com/cgi-bin/man-cgi?test++NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?test++NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?test++NetBSD-current
http://man.openbsd.org/OpenBSD-current/man1/test.1
http://man.openbsd.org/OpenBSD-current/man1/test.1
http://man.openbsd.org/OpenBSD-current/man1/test.1
https://illumos.org/man/1/test
https://illumos.org/man/1/test
https://illumos.org/man/1/test
https://www.gnu.org/software/coreutils//manual/html_node/test-invocation.html#test-invocation
https://www.gnu.org/software/coreutils//manual/html_node/test-invocation.html#test-invocation
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/test.html#tag_20_128_05
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/test.html#tag_20_128_05
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/test.html#tag_20_128_05

if ["$a" -gt 0] && { ["$b" -ne 2] || ["$b" -e 0]; }
then ...
fi

Could be written with one invocation of test(1):

if ["$a" -gt 0 -a '(' "$b" -ne 2 -o "$c" -ne 0 ')']
then ...
fi

Read Test online: https://riptutorial.com/sh/topic/7683/test

https://riptutorial.com/ 14

https://riptutorial.com/sh/topic/7683/test

Chapter 7: The `read` command

Examples

Read a line verbatim

$ IFS= read -r foo <<EOF
> this is a \n line
>EOF
$ printf '%s\n' "$foo"
 this is a \n line

Read a line, stripping leading and trailing whitespace

$ read -r foo <<EOF
> this is a line
>EOF
$ printf '%s\n' "$foo"
this is a line

Read The `read` command online: https://riptutorial.com/sh/topic/3954/the--read--command

https://riptutorial.com/ 15

https://riptutorial.com/sh/topic/3954/the--read--command

Credits

S.
No

Chapters Contributors

1
Getting started with
sh

chepner, Community, Dunatotatos, kdhp

2 Arithmetic Expansion kdhp

3 IO Redirection Anand C, kdhp

4 Job Control Dunatotatos, kdhp

5 Quoting kdhp

6 Test kdhp

7 The `read` command chepner

https://riptutorial.com/ 16

https://riptutorial.com/contributor/1126841/chepner
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5512755/dunatotatos
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/7651631/anand-c
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/5512755/dunatotatos
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/1126841/chepner

	About
	Chapter 1: Getting started with sh
	Remarks
	References
	Examples
	Hello, world!
	Echo Portability

	Chapter 2: Arithmetic Expansion
	Remarks
	Resources
	Examples
	Line Count
	Parameter Expansion
	Ternery Expressions
	Is a Power of 2

	Chapter 3: IO Redirection
	Introduction
	Syntax
	Remarks
	Resources
	Examples
	Output Redirection
	Input Redirection

	Chapter 4: Job Control
	Examples
	Pause, run in background, run in foreground
	List, wait and stop processes

	Chapter 5: Quoting
	Remarks
	References
	Examples
	Single-Quotes
	Double-Quotes
	Escaping

	Chapter 6: Test
	Syntax
	Remarks
	Reference
	Examples
	Multiple Expressions

	Chapter 7: The `read` command
	Examples
	Read a line verbatim
	Read a line, stripping leading and trailing whitespace

	Credits

