
shiny

#shiny

Table of Contents

About 1

Chapter 1: Getting started with shiny 2

Remarks 2

Examples 2

Installation or Setup 2

When would I use shiny? 2

Simple App 2

Including plots 4

Including tables 4

Chapter 2: How to write MCVE (Minimal, Complete, and Verifiable example) Shiny apps 6

Introduction 6

Examples 6

Basic structure 6

Avoid unnecessary details 7

WRONG 7

RIGHT 7

Chapter 3: Javascript API 9

Syntax 9

Examples 9

Sending data from server to client 9

Sending data from client to server 9

Chapter 4: reactive, reactiveValue and eventReactive, observe and observeEvent in Shiny 11

Introduction 11

Examples 11

reactive 11

eventReactive 12

reactiveValues 13

observeEvent 13

observe 14

Chapter 5: Upload Data to shiny 16

Examples 16

Upload .RData Files to shiny with fileInput() 16

Uploading csv files to Shiny 16

Credits 18

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: shiny

It is an unofficial and free shiny ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official shiny.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/shiny
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with shiny

Remarks

This section provides an overview of what shiny is, and why a developer might want to use it.

It should also mention any large subjects within shiny, and link out to the related topics. Since the
Documentation for shiny is new, you may need to create initial versions of those related topics.

Examples

Installation or Setup

Shiny can run as a standalone application on your local computer, on a server that can provide
shiny apps to multiple users (using shiny server), or on shinyapps.io.

Installing Shiny on a local computer: in R/RStudio, run install.packages("shiny") if
installing from CRAN, or devtools::install_github("rstudio/shiny") if installing from the
RStudio Github repository. The Github repository hosts a development version of Shiny
which can possibly have more features when compared to the CRAN version, but it may also
be unstable.

1.

When would I use shiny?

I have some data analysis done on some data and have many 'non-coding' people on the
team, who have similar data like mine, and have similar analysis requirements. In such
cases, I can build a web application with shiny, which takes in user specific input data files,
and generate analyses.

1.

I need to share analyzed data or relevant plots with others in the team. Shiny web apps can
be useful in such situations.

2.

I don't have significant experience with web application programming, but need to quickly
assemble a simple interface. Shiny to the rescue with easy UI and server elements and
minimum coding.

3.

Interactive elements allow your users to explore what element of the data is relevant to them.
For example, you could have data for the whole company loaded, but have a dropdown per
department like "Sales", "Production", "Finance" that can summarise the data the way the
users want to view it. The alternative would be producing a huge report pack with analyses
for each department, but they only read their chapter and the total.

4.

Simple App

Each shiny app contains two parts: A user interface definition (UI) and a server script (server). This
example shows how you can print "Hello world" from UI or from server.

UI.R

https://riptutorial.com/ 2

http://shinyapps.io

In the UI you can place some view objects (div, inputs, buttons, etc).

library(shiny)

Define UI for application print "Hello world"
shinyUI(

 # Create bootstrap page
 fluidPage(

 # Paragraph "Hello world"
 p("Hello world"),

 # Create button to print "Hello world" from server
 actionButton(inputId = "Print_Hello", label = "Print_Hello World"),

 # Create position for server side text
 textOutput("Server_Hello")

)
)

Server.R

In the server script you can define methods which manipulate data or listen to actions.

Define server logic required to print "Hello World" when button is clicked
shinyServer(function(input, output) {

 # Create action when actionButton is clicked
 observeEvent(input$Print_Hello,{

 # Change text of Server_Hello
 output$Server_Hello = renderText("Hello world from server side")
 })

})

How to run?

You can run your app in several ways:

Create two different files and place them into one directory, then use runApp('your dir path')1.
You can define two variables (ui and server, for example) and then use shinyApp(ui,server)
to run your app

2.

Result

In this example you will see some text and a button:

https://riptutorial.com/ 3

And after button click the server responds:

Including plots

The simplest way to include plots in your shinyApp is to use plotOutput in the ui and renderPlot in
the server. This will work with base graphics as well as ggPlots

library(shiny)
library(ggplot2)

ui <- fluidPage(
 plotOutput('myPlot'),
 plotOutput('myGgPlot')
)

server <- function(input, output, session){
 output$myPlot = renderPlot({
 hist(rnorm(1000))
 })
 output$myGgPlot <- renderPlot({
 ggplot(iris, aes(Sepal.Length, Sepal.Width, color = Species)) + geom_point()
 })
}

shinyApp(ui, server)

Including tables

Tables are most easily included with the DT package, which is an R interface to the JavaScript
library DataTables.

library(shiny)
library(DT)

ui <- fluidPage(
 dataTableOutput('myTable')
)

server <- function(input, output, session){

https://riptutorial.com/ 4

https://i.stack.imgur.com/hbvN5.png
https://i.stack.imgur.com/hqx28.png
https://rstudio.github.io/DT/

 output$myTable <- renderDataTable({
 datatable(iris)
 })
}

shinyApp(ui, server)

Read Getting started with shiny online: https://riptutorial.com/shiny/topic/2667/getting-started-with-
shiny

https://riptutorial.com/ 5

https://riptutorial.com/shiny/topic/2667/getting-started-with-shiny
https://riptutorial.com/shiny/topic/2667/getting-started-with-shiny

Chapter 2: How to write MCVE (Minimal,
Complete, and Verifiable example) Shiny
apps

Introduction

If you are having issues with your Shiny apps, it is good practice to create an app that illustrates
your point. This app should be as simple as possible while still reflecting your problem. This
means using simple datasets, self-explanatory naming (especially for I/O IDs) and replacing plots
with simpler ones.

It is also advisable to create your MCVE in a way that as little non-standard libraries as possible
are required.

Examples

Basic structure

MCVE's should start the Shiny app when they are copied in the console. An easy way to do this is
using the shinyApp function. For example:

why is my checkbox not responding?

library(shiny)

ui <- fluidPage(
 checkboxInput('checkbox', 'click me'),
 verbatimTextOutput('text')
)

server <- function(input, output, session){
 output$text <- renderText({
 isolate(input$checkbox)
 })
}

shinyApp(ui, server)

Alternatively, you can also not assign variables to ui and server.

library(shiny)

shinyApp(
 fluidPage(
 checkboxInput('checkbox', 'click me'),
 verbatimTextOutput('text')
),

https://riptutorial.com/ 6

 function(input, output, session){
 output$text <- renderText({
 isolate(input$checkbox)
 })
 }
)

shinyApp(ui, server)

Avoid unnecessary details

In practice, shiny Apps are often very complicated and full of features that have been developed
over time. More often than not, those additional details are not necessary to reproduce your issue.
It is best if you skip such details when writing MCVE's.

WRONG

Why is my plot not showing?

library(shiny)
library(ggplot2)

ui <- fluidPage(
 plotOutput('plot')
)

server <- function(input, output, session){
 df <- data.frame(treatment = rep(letters[1:3], times = 3),
 context = rep(LETTERS[1:3], each = 3),
 effect = runif(9,0,1))
 df$treat.con <- paste(df$treatment,df$context, sep = ".")
 df$treat.con <- reorder(df$treat.con, -df$effect,)
 output$plot = renderPlot({
 myPlot <- ggplot(df, aes(x = treat.con, y = effect)) +
 geom_point() +
 facet_wrap(~context,
 scales = "free_x",
 ncol = 1)
 })
}

shinyApp(ui, server)

RIGHT

Why is my Plot not showing?

library(shiny)
library(ggplot2)

ui <- fluidPage(
 plotOutput('plot')

https://riptutorial.com/ 7

)

server <- function(input, output, session){
 output$plot = renderPlot({
 myPlot <- ggplot(mtcars, aes(mpg, wt)) + geom_point()
 })
}

shinyApp(ui, server)

Read How to write MCVE (Minimal, Complete, and Verifiable example) Shiny apps online:
https://riptutorial.com/shiny/topic/10653/how-to-write-mcve--minimal--complete--and-verifiable-
example--shiny-apps

https://riptutorial.com/ 8

https://riptutorial.com/shiny/topic/10653/how-to-write-mcve--minimal--complete--and-verifiable-example--shiny-apps
https://riptutorial.com/shiny/topic/10653/how-to-write-mcve--minimal--complete--and-verifiable-example--shiny-apps

Chapter 3: Javascript API

Syntax

session$sendCustomMessage(name,list of parameters)•
Shiny.addCustomMessageHandler(name, JS function that accepts list of parameters)•
Shiny.onInputChange(name,value)•

Examples

Sending data from server to client

In many instances, you will want to send data from the R server to the JS client. Here is a very
simple example:

library(shiny)
runApp(
 list(
 ui = fluidPage(
 tags$script(
 "Shiny.addCustomMessageHandler('message', function(params) { alert(params); });"
),
 actionButton("btn","Press Me")
),
 server = function(input, output, session) {
 observeEvent(input$btn,{
 randomNumber <- runif(1,0,100)
 session$sendCustomMessage("message",list(paste0(randomNumber," is a random number!")))
 })
 }
)
)

The workhorses here are the session$sendCustomMessage function in R and the
Shiny.addCustomMessageHandler function in javascript.

The session$sendCustomMessage function lets you send parameters from R to a javascript function,
and Shiny.addCustomMessageHandler let's you define the javascript function that accepts the
parameters from R.

Note: Lists are converted to JSON when they are passed from R to javascript

Sending data from client to server

In some instances, you will want to send data from JS client to the R server. Here is a basic
example using javascript's Shiny.onInputChange function:

library(shiny)
runApp(

https://riptutorial.com/ 9

 list(
 ui = fluidPage(
 # create password input
 HTML('<input type="password" id="passwordInput">'),
 # use jquery to write function that sends value to
 # server when changed
 tags$script(
 '$("#passwordInput").on("change",function() {
 Shiny.onInputChange("myInput",this.value);
 })'
),
 # show password
 verbatimTextOutput("test")
),
 server = function(input, output, session) {
 # read in then show password
 output$test <- renderPrint(
 input$myInput
)
 }
)
)

Here we create a password input with id passwordInput. We add a Javascript function on the UI that
reacts to changes in passwordInput, and sends the value to the server using Shiny.onInputChange.

Shiny.onInputChange takes two parameters, a name for the input$*name*, plus a value for
input$*name*

Then you can use input$*name* like any other Shiny input.

Read Javascript API online: https://riptutorial.com/shiny/topic/3149/javascript-api

https://riptutorial.com/ 10

https://riptutorial.com/shiny/topic/3149/javascript-api

Chapter 4: reactive, reactiveValue and
eventReactive, observe and observeEvent in
Shiny

Introduction

reactive, reactiveValue and eventReactive are various kinds of reactive expressions in Shiny.
They yield output which can be used as input in other expressions, which will in turn take a
dependency on the reactive expression.

observe and observeEvent are similar to reactive expressions. The big difference is that the
observers do not yield any output and thus they are only useful for their side effects.

Examples of their use are given in this document.

Examples

reactive

A reactive can be used to make output depend on another expression. In the example below, the
output$text element is dependent on text_reactive, which in turn is dependent on input$user_text.
Whenever input$user_text changes, output$text element and text_reactive become invalidated.
They are recalculated based on the new value for input$user_text.

library(shiny)

ui <- fluidPage(
 headerPanel("Example reactive"),

 mainPanel(

 # input field
 textInput("user_text", label = "Enter some text:", placeholder = "Please enter some
text."),

 # display text output
 textOutput("text"))
)

server <- function(input, output) {

 # reactive expression
 text_reactive <- reactive({
 input$user_text
 })

 # text output
 output$text <- renderText({

https://riptutorial.com/ 11

 text_reactive()
 })
}

shinyApp(ui = ui, server = server)

eventReactive

eventReactives are similar to reactives, they are constructed as follows:

eventReactive(event {
code to run
})

eventReactives are not dependent on all reactive expressions in their body ('code to run' in the
snippet above). Instead, they are only dependent on the expressions specified in the event
section.

In the example below, we have added a submit button, and created an eventReactive. Whenever
input$user_text changes, the eventReactive is not invalidated, since the eventReactive is only
dependent on the actionButton input$submit. Whenever that button is pressed, text_reactive and
subsequently output$text are invalidated, and will be recalulated based on the updated
input$user_text.

library(shiny)

ui <- fluidPage(
 headerPanel("Example eventReactive"),

 mainPanel(

 # input field
 textInput("user_text", label = "Enter some text:", placeholder = "Please enter some
text."),

 # submit button
 actionButton("submit", label = "Submit"),

 # display text output
 textOutput("text"))
)

server <- function(input, output) {

 # reactive expression
 text_reactive <- eventReactive(input$submit, {
 input$user_text
 })

 # text output
 output$text <- renderText({
 text_reactive()
 })
}

https://riptutorial.com/ 12

shinyApp(ui = ui, server = server)

reactiveValues

reactiveValues can be used to store objects, to which other expressions can take a dependency.

In the example below, a reactiveValues object is initialized with value "No text has been submitted
yet.". A separate observer is created to update the reactiveValues object whenever the submit
button is pressed. Note that the reactiveValues itself does not take a dependency on the
expressions in its body.

library(shiny)

ui <- fluidPage(
 headerPanel("Example reactiveValues"),

 mainPanel(

 # input field
 textInput("user_text", label = "Enter some text:", placeholder = "Please enter some
text."),
 actionButton("submit", label = "Submit"),

 # display text output
 textOutput("text"))
)

server <- function(input, output) {

 # observe event for updating the reactiveValues
 observeEvent(input$submit,
 {
 text_reactive$text <- input$user_text
 })

 # reactiveValues
 text_reactive <- reactiveValues(
 text = "No text has been submitted yet."
)

 # text output
 output$text <- renderText({
 text_reactive$text
 })
}

shinyApp(ui = ui, server = server)

observeEvent

An observeEvent object can be used to trigger a piece of code when a certain event occurs. It is
constructed as:

observeEvent(event {
code to run

https://riptutorial.com/ 13

})

The observeEvent will only be dependent on the 'event' section in the small piece of code above. It
will not be dependent on anything in the 'code to run' part. An example implementation can be
found below:

library(shiny)

ui <- fluidPage(
 headerPanel("Example reactive"),

 mainPanel(

 # action buttons
 actionButton("button1","Button 1"),
 actionButton("button2","Button 2")
)
)

server <- function(input, output) {

 # observe button 1 press.
 observeEvent(input$button1, {
 # The observeEvent takes no dependency on button 2, even though we refer to the input in
the following line.
 input$button2
 showModal(modalDialog(
 title = "Button pressed",
 "You pressed one of the buttons!"
))
 })
}

shinyApp(ui = ui, server = server)

observe

An observe expression is triggered every time one of its inputs changes. The major difference with
regards to a reactive expression is that it yields no output, and it should only be used for its side
effects (such as modifying a reactiveValues object, or triggering a pop-up).

Also, note that observe does not ignore NULL's, therefore it will fire even if its inputs are still
NULL. observeEvent by default does ignore NULL, as is almost always desirable.

library(shiny)

ui <- fluidPage(
 headerPanel("Example reactive"),

 mainPanel(

 # action buttons
 actionButton("button1","Button 1"),
 actionButton("button2","Button 2")
)
)

https://riptutorial.com/ 14

server <- function(input, output) {

 # observe button 1 press.
 observe({
 input$button1
 input$button2
 showModal(modalDialog(
 title = "Button pressed",
 "You pressed one of the buttons!"
))
 })
}

shinyApp(ui = ui, server = server)

Read reactive, reactiveValue and eventReactive, observe and observeEvent in Shiny online:
https://riptutorial.com/shiny/topic/10787/reactive--reactivevalue-and-eventreactive--observe-and-
observeevent-in-shiny

https://riptutorial.com/ 15

https://riptutorial.com/shiny/topic/10787/reactive--reactivevalue-and-eventreactive--observe-and-observeevent-in-shiny
https://riptutorial.com/shiny/topic/10787/reactive--reactivevalue-and-eventreactive--observe-and-observeevent-in-shiny

Chapter 5: Upload Data to shiny

Examples

Upload .RData Files to shiny with fileInput()

The example allows you to upload .RData files. The approach with load and get allows you to
assign the loaded data to a variable name of your choice. For the matter of the example being
"standalone" I inserted the top section that stores two vectors to your disk in order to load and plot
them later.

library(shiny)

Define two datasets and store them to disk
x <- rnorm(100)
save(x, file = "x.RData")
rm(x)
y <- rnorm(100, mean = 2)
save(y, file = "y.RData")
rm(y)

Define UI
ui <- shinyUI(fluidPage(
 titlePanel(".RData File Upload Test"),
 mainPanel(
 fileInput("file", label = ""),
 actionButton(inputId="plot","Plot"),
 plotOutput("hist"))
)
)

Define server logic
server <- shinyServer(function(input, output) {

 observeEvent(input$plot,{
 if (is.null(input$file)) return(NULL)
 inFile <- input$file
 file <- inFile$datapath
 # load the file into new environment and get it from there
 e = new.env()
 name <- load(file, envir = e)
 data <- e[[name]]

 # Plot the data
 output$hist <- renderPlot({
 hist(data)
 })
 })
})

Run the application
shinyApp(ui = ui, server = server)

Uploading csv files to Shiny

https://riptutorial.com/ 16

It is also possible to have an user upload csv's to your Shiny app. The code below shows a small
example on how this can be achieved. It also includes a radioButton input so the user can
interactively choose the separator to be used.

library(shiny)
library(DT)

Define UI
ui <- shinyUI(fluidPage(

 fileInput('target_upload', 'Choose file to upload',
 accept = c(
 'text/csv',
 'text/comma-separated-values',
 '.csv'
)),
 radioButtons("separator","Separator: ",choices = c(";",",",":"), selected=";",inline=TRUE),
 DT::dataTableOutput("sample_table")
)
)

Define server logic
server <- shinyServer(function(input, output) {

 df_products_upload <- reactive({
 inFile <- input$target_upload
 if (is.null(inFile))
 return(NULL)
 df <- read.csv(inFile$datapath, header = TRUE,sep = input$separator)
 return(df)
 })

 output$sample_table<- DT::renderDataTable({
 df <- df_products_upload()
 DT::datatable(df)
 })

}
)

Run the application
shinyApp(ui = ui, server = server)

Read Upload Data to shiny online: https://riptutorial.com/shiny/topic/7576/upload-data-to-shiny

https://riptutorial.com/ 17

https://riptutorial.com/shiny/topic/7576/upload-data-to-shiny

Credits

S.
No

Chapters Contributors

1
Getting started with
shiny

Batanichek, Bogdan Rau, chrki, Community, Florian, Gregor de
Cillia, jsb, Mathias711, micstr, sigmabeta

2

How to write MCVE
(Minimal, Complete,
and Verifiable
example) Shiny apps

Florian, Gregor de Cillia

3 Javascript API Carl, Tomás Barcellos

4

reactive,
reactiveValue and
eventReactive,
observe and
observeEvent in
Shiny

Florian

5 Upload Data to shiny Florian, symbolrush

https://riptutorial.com/ 18

https://riptutorial.com/contributor/5018792/batanichek
https://riptutorial.com/contributor/1881148/bogdan-rau
https://riptutorial.com/contributor/1781026/chrki
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/8037249/florian
https://riptutorial.com/contributor/4357017/gregor-de-cillia
https://riptutorial.com/contributor/4357017/gregor-de-cillia
https://riptutorial.com/contributor/5664891/jsb
https://riptutorial.com/contributor/2781698/mathias711
https://riptutorial.com/contributor/4606130/micstr
https://riptutorial.com/contributor/5362163/sigmabeta
https://riptutorial.com/contributor/8037249/florian
https://riptutorial.com/contributor/4357017/gregor-de-cillia
https://riptutorial.com/contributor/4564432/carl
https://riptutorial.com/contributor/6167055/tomas-barcellos
https://riptutorial.com/contributor/8037249/florian
https://riptutorial.com/contributor/8037249/florian
https://riptutorial.com/contributor/4706952/symbolrush

	About
	Chapter 1: Getting started with shiny
	Remarks
	Examples
	Installation or Setup
	When would I use shiny?
	Simple App
	Including plots
	Including tables

	Chapter 2: How to write MCVE (Minimal, Complete, and Verifiable example) Shiny apps
	Introduction
	Examples
	Basic structure
	Avoid unnecessary details

	WRONG
	RIGHT
	Chapter 3: Javascript API
	Syntax
	Examples
	Sending data from server to client
	Sending data from client to server

	Chapter 4: reactive, reactiveValue and eventReactive, observe and observeEvent in Shiny
	Introduction
	Examples
	reactive
	eventReactive
	reactiveValues
	observeEvent
	observe

	Chapter 5: Upload Data to shiny
	Examples
	Upload .RData Files to shiny with fileInput()
	Uploading csv files to Shiny

	Credits

