
silverstripe

#silverstripe



Table of Contents

About 1

Chapter 1: Getting started with silverstripe 2

Remarks 2

Versions 2

Examples 2

Installation 2

Customising the CMS / White Labeling 2

Chapter 2: Add Ons and Modules 4

Remarks 4

Examples 4

SilverStripe Grid Field Extensions Module 4

Better Buttons for GridField 4

UserForms 5

Display Logic 5

Grouped CMS Menu 5

Dashboard 5

Chapter 3: DataExtensions 7

Examples 7

Adding fields to a DataObject 7

Adding methods to a DataObject 7

Applying a DataExtension to a Class 7

Chapter 4: Forms 9

Syntax 9

Examples 9

Creating a Form 9

Creating a simple AJAX Form 10

Adding the form to our controller 10

Customising out templates for easy content replacement 12

Creating the javascript form listener 12

For advanced users: 13



Chapter 5: LeftAndMain 14

Introduction 14

Examples 14

1. Getting Started 14

Requirements 14

Preparation 14

Structure 15

2. Configuring HelloWorldLeftAndMain.php 15

Configure 15

Adding Stylesheets and Javascript 15

Complete Code 16

3. The Template (HelloWorldLeftAndMain_Content.ss) 16

There are 3 sections worth noting for this guide: 17

Complete Code 17

Chapter 6: ModelAdmin 18

Examples 18

Simple Example 18

Control the DataObject name displayed in the UI 18

DataObjects can be sorted by default 18

Control columns displayed for the DataObject 18

Using searchable_fields to control the filters for that Object in ModelAdmin 19

Remove scaffolded GridField for relationships 19

To remove the export button from ModelAdmin 20

Chapter 7: The autoloader 21

Remarks 21

Examples 21

MyClass.php 21

Chapter 8: The Config System 22

Remarks 22

What is the config system 22

How it works 22



Examples 22

Setting config values 22

Setting with private statics 22

Setting with YAML 23

Setting at runtime 23

Chapter 9: Using the ORM 24

Examples 24

Reading and writing DataObjects 24

Credits 25



About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version 
from: silverstripe

It is an unofficial and free silverstripe ebook created for educational purposes. All the content is 
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at 
Stack Overflow. It is neither affiliated with Stack Overflow nor official silverstripe.

The content is released under Creative Commons BY-SA, and the list of contributors to each 
chapter are provided in the credits section at the end of this book. Images may be copyright of 
their respective owners unless otherwise specified. All trademarks and registered trademarks are 
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor 
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/silverstripe
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com


Chapter 1: Getting started with silverstripe

Remarks

Silverstripe is an open source PHP content management system. A developer might want to use it 
because

BSD License - meaning it can be rebranded as your own application•
Clean Object Oriented code very easy to understand and use - along with extend and 
customise

•

Simple and powerful template engine making themes very easy to create•

It can use most databases, primarily MySQL

Versions

Version Release Date

3.4.0 2016-06-03

Examples

Installation

SilverStripe can be installed via composer or through the extraction of downloaded zip file.

To install through composer we run the following command

composer create-project silverstripe/installer /path/to/project 3.4.0

A download zip file can be found on the download page of the SilverStripe website. Once 
downloaded, this file needs to be extracted into the root directory of the desired project.

Upon visiting the website for the first time an installation wizard will be presented to configure and 
set up the SilverStripe install.

Customising the CMS / White Labeling

The SilverStripe CMS can be customised to change the CMS logo, link and application name.

This can be achieved with the following config.yml settings

LeftAndMain: 
  application_name: 'My Application' 
  application_link: 'http://www.example.com/' 

https://riptutorial.com/ 2

http://www.silverstripe.org/download


  extra_requirements_css: 
    - mysite/css/cms.css

mysite/css/cms.css

.ss-loading-screen { 
    background: #fff; 
} 
.ss-loading-screen .loading-logo { 
    background: transparent url('../images/my-logo-loading.png') no-repeat 50% 50%; 
} 
.cms-logo a { 
    background: transparent url('../images/my-logo-small.png') no-repeat left center; 
}

Read Getting started with silverstripe online: https://riptutorial.com/silverstripe/topic/1771/getting-
started-with-silverstripe

https://riptutorial.com/ 3

https://riptutorial.com/silverstripe/topic/1771/getting-started-with-silverstripe
https://riptutorial.com/silverstripe/topic/1771/getting-started-with-silverstripe


Chapter 2: Add Ons and Modules

Remarks

Addons and modules are encouraged to be registered with Packagist which then means they are 
found and registered with the SilverStripe add-on repository

Installation of modules is recommended through use of Composer

Examples

SilverStripe Grid Field Extensions Module

The SilverStripe Grid Field Extensions Module has some very nice features to enhance the basic 
GridField...

GridFieldAddExistingSearchButton - a more advanced search form for adding items•
GridFieldAddNewInlineButton - builds on GridFieldEditableColumns to allow inline creation of 
records.

•

GridFieldAddNewMultiClass - lets the user select from a list of classes to create a new record 
from

•

GridFieldEditableColumns - allows inline editing of records•
GridFieldOrderableRows - drag and drop re-ordering of rows•
GridFieldRequestHandler - a basic utility class which can be used to build custom grid field 
detail views including tabs, breadcrumbs and other CMS features

•

GridFieldTitleHeader - a simple header which displays column titles•

More documentation is found within the module here.

Better Buttons for GridField

The module Better Buttons for GridField adds new form actions and buttons to the GridField detail 
form.

Save and add another: Create a record, and go right to adding another one, without having 
to click the back button, and then add again

•

Save and close: Save the record and go back to list view•
User-friendly delete: Extracted from the tray of constructive actions and moved away so is 
less likely to be clicked accidentally. Includes inline confirmation of action instead of browser 
alert box

•

Cancel: Same as the back button, but in a more convenient location•
Previous/Next record: Navigate to the previous or next record in the list without returning to 
list view

•

and many more...•

https://riptutorial.com/ 4

http://addons.silverstripe.org/
https://docs.silverstripe.org/en/3.4/getting_started/composer/
https://github.com/silverstripe-australia/silverstripe-gridfieldextensions
https://github.com/silverstripe-australia/silverstripe-gridfieldextensions/blob/master/docs/en/index.md
http://%20https://github.com/unclecheese/silverstripe-gridfield-betterbuttons


More documentation (and images) on the documentation for the module

UserForms

The module UserForms enables CMS users to create dynamic forms via a drag and drop interface 
and without getting involved in any PHP code.

Main Features

Construct a form using all major form fields (text, email, dropdown, radio, checkbox..)•
Ability to extend userforms from other modules to provide extra fields.•
Ability to email multiple people the form submission•
View submitted submissions and export them to CSV•
Define custom error messages and validation settings•
Optionally display and hide fields using javascript based on users input•
Displays a confirmation message when navigating away from a partially completed form•

More documentation links can be found here in the github repository

Display Logic

The Display Logic module allows you to add conditions for displaying or hiding certain form fields 
based on client-side behavior. This module is incredibly useful to make forms much more 
professional by showing only the appropriate fields and without adding a lot of custom JavaScript.

Example usage...

$products->displayIf("HasProducts")->isChecked(); 
 
$sizes->hideUnless("ProductType")->isEqualTo("t-shirt") 
      ->andIf("Price")->isGreaterThan(10); 
 
$payment->hideIf("Price")->isEqualTo(0); 
 
$shipping->displayIf("ProductType")->isEqualTo("furniture") 
           ->andIf() 
              ->group() 
                ->orIf("RushShipping")->isChecked() 
                ->orIf("ShippingAddress")->isNotEmpty() 
              ->end();

There are many more examples on the module readme.md

Grouped CMS Menu

The Grouped CMS Menu Module allows you to group CMS menu items into nested lists which 
expand when hovered over. This is useful when there are so many CMS menu items that screen 
space becomes an issue.

Dashboard

https://riptutorial.com/ 5

https://github.com/unclecheese/silverstripe-gridfield-betterbuttons/blob/master/README.md
https://github.com/silverstripe/silverstripe-userforms
https://github.com/silverstripe/silverstripe-userforms/tree/master/docs/en
https://github.com/unclecheese/silverstripe-display-logic
https://github.com/unclecheese/silverstripe-display-logic/blob/master/README.md
https://github.com/silverstripe-australia/silverstripe-grouped-cms-menu


The Dashboard module provides a splash page for the CMS in SilverStripe 3 with configurable 
widgets that display relevant information. Panels can be created and extended easily. The goal of 
the Dashboard module is to provide users with a launchpad for common CMS actions such as 
creating specific page types or browsing new content.

There are Images and videos about this module can be found in this blog post.

There are some included Panels by default...

Recently edited pages•
Recently uploaded files•
RSS Feed•
Quick links•
Section editor•
Google Analytics•
Weather•

When you have this module installed it creates a dashboard per member, so if you have a large 
amount of members which will never use the admin and performance becomes an issue I 
recommend creating the members with these extra settings before writing it...

Member::create(array( 
   'HasConfiguredDashboard' => 1 
));

There is much more documentation in the modules readme.md

Read Add Ons and Modules online: https://riptutorial.com/silverstripe/topic/4339/add-ons-and-
modules

https://riptutorial.com/ 6

https://github.com/unclecheese/silverstripe-dashboard
https://www.silverstripe.org/blog/the-dashboard-module-make-a-splash-in-silverstripe-3/
https://github.com/unclecheese/silverstripe-dashboard/blob/master/README.md
https://riptutorial.com/silverstripe/topic/4339/add-ons-and-modules
https://riptutorial.com/silverstripe/topic/4339/add-ons-and-modules


Chapter 3: DataExtensions

Examples

Adding fields to a DataObject

You can use the DataExtension mechanism to add extra database fields to an existing DataObject:

class MyMemberExtension extends DataExtension 
{ 
    private static $db = [ 
        'HairColour' => 'Varchar' 
    ]; 
}

And apply the extension:

# File: mysite/_config/app.yml 
Member: 
  extensions: 
    - MyMemberExtension

This will add HairColour as a field to Member objects.

Adding methods to a DataObject

You can add public methods to a DataObject using the extension mechanism, for example:

class MyMemberExtension extends DataExtension 
{ 
    public function getHashId() 
    { 
        return sha1($this->owner->ID); 
    } 
}

When applied to the Member class, the example above would return the sha1 hash of the Member ID 
by accessing the Member via the protected property $this->owner. Eg:

$member = Member::get()->byId(123); 
var_dump($member->getHashId()); // string(40) "40bd001563085fc35165329ea1ff5c5ecbdbbeef"

Applying a DataExtension to a Class

The most common way is to apply the extension via Config. Example:

# File: mysite/_config/config.yml 
Member: 

https://riptutorial.com/ 7



  extensions: 
    - MyMemberExtension

The extensions config variable is of type "array", so you can add multiple extensions like this:

# File: mysite/_config/config.yml 
Member: 
  extensions: 
    - MyMemberExtension 
    - MyOtherMemberExtension

If you wrote the class that is to be extended, you can define the extension(s) as static variable:

<?php 
class MyClass extends DataObject 
{ 
    private static $extensions = ['MyCustomExtension']; 
}

Read DataExtensions online: https://riptutorial.com/silverstripe/topic/3519/dataextensions

https://riptutorial.com/ 8

https://riptutorial.com/silverstripe/topic/3519/dataextensions


Chapter 4: Forms

Syntax

Form::create($this, __FUNCTION__, $fields, $actions, $validator) // standard form creation•
Form::create(...)->addExtraClass('my-css-class another-class') // add CSS classes to your 
Form

•

Form::create(...)->loadDataFrom(Member::get()->byID(1)); // populate a form with the details 
of an object

•

Examples

Creating a Form

Here is a basic example form with one required text field and one submit button, which submits to 
a custom function:

class Page_Controller extends ContentController { 
 
    private static $allowed_actions = array( 
        'ExampleForm' 
    ); 
 
    public function ExampleForm() { 
        $fields = FieldList::create( 
            TextField::create('Name', 'Your Name') 
        ); 
 
        $actions = FieldList::create( 
            FormAction::create('doExampleFormAction', 'Go') 
        ); 
 
        $requiredFields = RequiredFields::create('Name'); 
 
        $form = Form::create( 
            $this, 
            'ExampleForm', 
            $fields, 
            $actions, 
            $requiredFields 
        ); 
 
        return $form; 
    } 
 
    public function doExampleFormAction($data, Form $form) { 
        $form->sessionMessage('Hello '. $data['Name'], 'success'); 
 
        return $this->redirectBack(); 
    } 
}

https://riptutorial.com/ 9



To display this form we add $ExampleForm to our page template:

$ExampleForm

Creating a simple AJAX Form

SilverStripe has reasonably good support for submitting form data using AJAX requests. Below is 
example code of how to set up a basic Form that accepts submissions by both AJAX and 
traditional default browser behaviour (as is good practice).

Adding the form to our controller

First we need to define our form; your Page_Controller should look something like this:

class Page_Controller extends ContentController { 
 
    /** 
     * A list of "actions" (functions) that are allowed to be called from a URL 
     * 
     * @var array 
     * @config 
     */ 
    private static $allowed_actions = array( 
        'Form', 
        'complete', 
    ); 
 
    /** 
     * A method to return a Form object to display in a template and to accept form 
submissions 
     * 
     * @param $request SS_HTTPRequest 
     * @return Form 
     */ 
    public function Form($request) { 
        // include our javascript in the page to enable our AJAX behaviour 
        Requirements::javascript('framework/thirdparty/jquery/jquery.js'); 
        Requirements::javascript('mysite/javascript/ajaxforms.js'); 
        //create the fields we want 
        $fields = FieldList::create( 
            TextField::create('Name'), 
            EmailField::create('Email'), 
            TextareaField::create('Message') 
        ); 
        //create the button(s) we want 
        $buttons = FieldList::create( 
            FormAction::create('doForm', 'Send') 
        ); 
        //add a validator to make sure the fields are submitted with values 
        $validator = RequiredFields::create(array( 
            'Name', 
            'Email', 
            'Message', 
        )); 
        //construct the Form 
        $form = Form::create( 

https://riptutorial.com/ 10



            $this, 
            __FUNCTION__, 
            $fields, 
            $buttons, 
            $validator 
        ); 
 
        return $form; 
    } 
 
    /** 
     * The form handler, this runs after a form submission has been successfully validated 
     * 
     * @param $data array RAW form submission data - don't use 
     * @param $form Form The form object, populated with data 
     * @param $request SS_HTTPRequest The current request object 
     */ 
    public function doForm($data, $form, $request) { 
        // discard the default $data because it is raw submitted data 
        $data = $form->getData(); 
 
        // Do something with the data (eg: email it, save it to the DB, etc 
 
        // send the user back to the "complete" action 
        return $this->redirect($this->Link('complete')); 
    } 
 
    /** 
     * The "complete" action to send users to upon successful submission of the Form. 
     * 
     * @param $request SS_HTTPRequest The current request object 
     * @return string The rendered response 
     */ 
    public function complete($request) { 
        //if the request is an ajax request, then only render the include 
        if ($request->isAjax()) { 
            return $this->renderWith('Form_complete'); 
        } 
        //otherwise, render the full HTML response 
        return $this->renderWith(array( 
            'Page_complete', 
            'Page', 
        )); 
    } 
 
}

Adding these functions to Page_Controller will make them available on all page types - 
this may not be desired and you should consider if it would be more appropriate to 
create a new page type (such as ContactPage) to have this form on

Here we've defined methods to:

Create the Form•
A form handler (to save or send the submissions somewhere, this runs after the Form has 
successfully validated it's data)

•

A complete action, which the user will be sent to after successfully completing the form 
submission.

•

https://riptutorial.com/ 11



Customising out templates for easy content replacement

Next we need to set up our templates - modify your Layout/Page.ss file:

<% include SideBar %> 
<div class="content-container unit size3of4 lastUnit"> 
    <article> 
        <h1>$Title</h1> 
        <div class="content">$Content</div> 
    </article> 
    <div class="form-holder"> 
        $Form 
    </div> 
        $CommentsForm 
</div>

This is taken from the default simple theme, with a minor addition that the form is now wrapped in 
a <div class="form-holder"> so that we can easily replace the form with a success message.

We also need to create a Layout/Page_complete.ss template - this will be the same as above except 
the form-holder div will be:

<div class="form-holder"> 
    <% include Form_complete %> 
</div>

Next create the Includes/Form_complete include - it's important to use an include so that we can 
render just this section of the page for our responses to AJAX requests:

<h2>Thanks, we've received your form submission!</h2> 
<p>We'll be in touch as soon as we can.</p>

Creating the javascript form listener

Finally, we need to write our javascript to send the form by AJAX instead of the default browser 
behaviour (place this in mysite/javascript/ajaxform.js):

(function($) { 
    $(window).on('submit', '.js-ajax-form', function(e) { 
        var $form = $(this); 
        var formData = $form.serialize(); 
        var formAction = $form.prop('action'); 
        var formMethod = $form.prop('method'); 
        var encType = $form.prop('enctype'); 
 
        $.ajax({ 
            beforeSend: function(jqXHR,settings) { 
                if ($form.prop('isSending')) { 
                    return false; 
                } 
                $form.prop('isSending',true); 

https://riptutorial.com/ 12



            }, 
            complete: function(jqXHR,textStatus) { 
                $form.prop('isSending',false); 
            }, 
            contentType: encType, 
            data: formData, 
            error: function(jqXHR, textStatus, errorThrown) { 
                window.location = window.location; 
            }, 
            success: function(data, textStatus, jqXHR) { 
                var $holder = $form.parent(); 
                $holder.fadeOut('normal',function() { 
                    $holder.html(data).fadeIn(); 
                }); 
            }, 
            type: formMethod, 
            url: formAction 
        }); 
        e.preventDefault(); 
    }); 
})(jQuery);

This javascript will submit the form using AJAX and on completion it will fade the form out and 
replace it with the response and fade it back in.

For advanced users:

With this example all forms on your site will be "ajaxified", this may be acceptable, but sometimes 
you need some control over this (for example, search forms wouldn't work well like this). Instead, 
you can modify the code slightly to only look for forms with a certain class.

Amend the Form method on Page_Controller like so:

public function Form() { 
    ... 
    $form->addExtraClass('js-ajax-form'); 
    return $form; 
}

Amend the javascript like so:

$(window).on('submit', '.js-ajax-form', function(e) { 
    ... 
})(jQuery);

Only forms with the class js-ajax-form will now act in this way.

Read Forms online: https://riptutorial.com/silverstripe/topic/4126/forms

https://riptutorial.com/ 13

https://riptutorial.com/silverstripe/topic/4126/forms


Chapter 5: LeftAndMain

Introduction

LeftAndMain is more of a lower-level API and not often required due to the existence of ModelAdmin. 
However if you wanted to create a custom user interface that did not necessarily require the 
functionality of ModelAdmin in the administration panel for your module, than LeftAndMain is where 
you would want to start.

Examples

1. Getting Started

This guide is intended to get you started on creating your own User Interface by subclassing the 
LeftAndMain class.

By the end of this guide, you will have created your first Hello World interface in the Administration 
Panel.

Requirements

This guide requires you to have at least version 3.* of the framework AND CMS but less than 
version 4.*.

If you wish to use this guide, then you will need to swap out any class references with the Fully 
Quality Class Name (FQCN) as defined in the SS4 upgrade guide.

Preparation

tl;dr Ignore the following steps and simply create the structure below them

Create a folder with a name of anything you choose in the root directory for your SilverStripe 
project, for this example we'll be using /helloworld/ and create an empty file within that folder 
named _config.php. A _config.php at the very minimum is required in every module directory 
for SilverStripe to detect its existence.

1. 

Within your new folder, create a sub folder named exactly /code/ and within that folder, for 
organisation purposes; create another folder called /admin/

2. 

Create /helloworld/code/admin/HelloWorldLeftAndMain.php and place the following code into it 
for now.

 class HelloWorldLeftAndMain extends LeftAndMain { 

3. 

https://riptutorial.com/ 14

https://github.com/silverstripe/silverstripe-framework
https://github.com/silverstripe/silverstripe-cms


 
 }

Create the template file that will be used with this class called 
/helloworld/templates/Includes/HelloWorldLeftAndMain.ss

4. 

Structure

/framework/ 
/cms/ 
/helloworld/ 
    + _config.php 
    + /code/ 
        + /admin/ 
            + /HelloWorldLeftAndMain.php 
    + /templates/ 
        + /Includes/ 
            + /HelloWorldLeftAndMain_Content.ss

2. Configuring HelloWorldLeftAndMain.php

If you haven't already lets simply start this file of with:

class HelloWorldLeftAndMain extends LeftAndMain { 
 
}

Configure

The first thing you should do, is define the $url_segment that will be used to access the interface, 
and the title ($menu_title) that will appear in the side navigation menu of the administration panel:

private static $url_segment = 'helloworld'; 
private static $menu_title  = 'Hello World';

The following configuration variable(s) are optional and not used in this guide:

private static $menu_icon   = 'helloworld/path/to/my/icon.png'; 
private static $url_rule    = '/$Action/$ID/$OtherID';

Adding Stylesheets and Javascript

LeftAndMain allows you to override the init method in it's parent, we can use this to require specific 
files for our interface. Undoubtedly you should always need to require a CSS stylesheet that will 
style the elements for your user interface.

https://riptutorial.com/ 15



As a tip, it's recommended to never rely on the CSS classes provided by the CMS as these are 
subject to change without notice and will subsequently destroy the Look & Feel of your UI (for 
example, 3.* to 4.* has seen a complete makeover of the interface therefore any CSS classes you 
relied on in 3.* need to be restyled for conversion to 4.*)

So lets add our helloworld/css/styles.css file:

public function init() { 
    parent::init(); 
 
    Requirements::css('helloworld/css/styles.css'); 
    //Requirements::javascript('helloworld/javascript/script.min.js'); 
}

We don't need any Javascript functionality for this example but in the above I have included how 
one would achieve adding Javascript a file using the Requirements class.

After which you can adopt what you have been used to when dealing Page_Controller such as 
$allowed_actions etc with one notable difference, however

You CANNOT override index().

Instead index() is assumed as HelloWorldLeftAndMain_Content.ss and from there, it's required to 
deal with the indexes display via template functions (see example below)

Complete Code

class HelloWorldLeftAndMain extends LeftAndMain { 
    private static $url_segment = 'helloworld'; 
    private static $menu_title  = 'Hello World'; 
    private static $allowed_actions = array( 
        'some_action' 
    ); 
 
    public function init() { 
        parent::init(); 
 
        Requirements::css('helloworld/css/styles.css'); 
        //Requirements::javascript('helloworld/javascript/script.min.js'); 
    } 
 
    public function Hello($who=null) { 
        if (!$who) { 
            $who = 'World'; 
        } 
 
        return "Hello " . htmlentities($who); 
    } 
}

3. The Template (HelloWorldLeftAndMain_Content.ss)

https://riptutorial.com/ 16

https://api.silverstripe.org/3.5/class-Requirements.html


The expected structure of this template can be a bit convoluted but it all boils down to this:

There are 3 sections worth noting for this guide:

.north•

.center•

.south•

1. 

It must be wrapped entirely within an element that has the data-pjax-fragment="Content" 
attribute. This is so the AJAX calls generated from the sidemenu, know where the "Content" 
is so that it may display it appropriately:

2. 

<div class="cms-content center $BaseCSSClasses" data-layout-type="border" data-pjax-
fragment="Content"> 
 
</div>

I won't go into detail about template functionality, I have included comments where relevant but 
you shouldn't be reading this guide if you don't understand template syntax for SilverStripe

Complete Code

The only thing from below; that you should expect to come out already styled is the <% include 
CMSBreadcrumbs %> everything else you must cater for yourself in the CSS file that was included 
earlier

<div class="cms-content center $BaseCSSClasses" data-layout-type="border" data-pjax-
fragment="Content"> 
    <%-- This will add the breadcrumb that you see on every other menu item --%> 
    <div class="cms-content-header north"> 
        <div class="cms-content-header-info"> 
            <% include CMSBreadcrumbs %> 
        </div> 
    </div> 
 
    <div class="center"> 
        <%-- Our function in HelloWorldLeftAndMain.php --%> 
        $Hello('USER'); 
        <%-- ^ outputs "Hello USER" --%> 
    </div> 
 
    <div class='south'> 
        Some footer-worthy content 
    </div> 
</div>

Now all thats left to do is for you to /dev/build and ?flush=1 then you can check out our useless 
little module in the Administration Panel!

Read LeftAndMain online: https://riptutorial.com/silverstripe/topic/8300/leftandmain

https://riptutorial.com/ 17

https://riptutorial.com/silverstripe/topic/8300/leftandmain


Chapter 6: ModelAdmin

Examples

Simple Example

Given a simple DataObject like this:

class MyDataObject extends DataObject { 
    private static $db = array( 
        'Name' => 'Varchar(255)' 
    ); 
}

To provide full Create-Read-Update-Delete for the objects then this is the ModelAdmin code 
required:

class MyModelAdmin extends ModelAdmin { 
    private static $mangaged_models = array( 
        'MyDataObject' 
    ); 
    private static $url_segment = 'my-model-admin'; 
    private static $menu_title = 'My Model Admin'; 
    private static $menu_icon = 'mysite/images/treeicons/my-model-admin.png'; 
    private static $menu_priority = 9; 
}

Control the DataObject name displayed in the UI

class MyDataObject extends DataObject { 
 
    private static $singular_name = 'My Object'; 
    private static $plural_name = 'My Objects'; 
 
    ... 
}

DataObjects can be sorted by default

class SortDataObject extends DataObject { 
 
    private static $db = array( 
        'Name' => 'Varchar', 
        'SortOrder' => 'Int' 
    ); 
 
    private static $default_sort = 'SortOrder DESC'; 
}

Control columns displayed for the DataObject

https://riptutorial.com/ 18



class MyDataObject extends DataObject { 
 
    private static $db = array( 
        'Name' => 'Varchar' 
    ); 
 
    private static $has_one = array( 
        'OtherDataObject' => 'OtherDataObject' 
    ); 
 
    private static $summary_fields = array( 
        'Name', 
        'OtherDataObject.Name' 
    ); 
 
    private static $field_labels = array( 
        'OtherDataObject.Name' => 'Other Data Object' 
    ); 
}

ModelAdmin uses the summary_fields to generate the columns that it displays. To specify the name 
of the column, use field_labels as shown.

Using searchable_fields to control the filters for that Object in ModelAdmin

class MyDataObject extends DataObject { 
 
    private static $db = array( 
        'Name' => 'Varchar' 
    ); 
 
    private static $has_one = array( 
        'OtherDataObject' => 'OtherDataObject' 
    ); 
 
    private static $summary_fields = array( 
        'Name', 
        'OtherDataObject.Name' 
    ); 
 
    private static $searchable_fields = array( 
        'Name', 
        'OtherDataObjectID' => array( 
            'title' => 'Other Data Object' 
        ) 
    ); 
 
}

Note the OtherDataObjectID which converts a text field into a drop down of the relating object to 
filter with.

Remove scaffolded GridField for relationships

class MyDataObject extends DataObject { 
 

https://riptutorial.com/ 19



    ... 
 
    private static $has_many = array( 
        'OtherDataObjects' => 'OtherDataObject' 
    ); 
 
    function getCMSFields() { 
        $fields = parent::getCMSFields(); 
 
        if ($gridField = $fields->dataFieldByName('OtherDataObjects')) { 
            $gridField->getConfig() 
                ->removeComponentsByType('GridFieldExportButton'); 
        } 
 
        return $fields; 
    } 
}

To remove the export button from ModelAdmin

class MyAdmin extends ModelAdmin { 
 
    ... 
 
    function getEditForm($id = null, $fields = null) { 
        $form = parent::getEditForm($id, $fields); 
 
        if ($this->modelClass == 'MyDataObjectName') { 
            $form->Fields() 
                ->fieldByName($this->sanitiseClassName($this->modelClass)) 
                ->getConfig() 
                ->removeComponentsByType('GridFieldExportButton'); 
        } 
        return $form; 
    } 
}

Read ModelAdmin online: https://riptutorial.com/silverstripe/topic/3836/modeladmin

https://riptutorial.com/ 20

https://riptutorial.com/silverstripe/topic/3836/modeladmin


Chapter 7: The autoloader

Remarks

When you make any changes to the classes then you need to run a dev/build?flush=1 to rebuild 
the manifest.

Examples

MyClass.php

<?php 
 
class MyClass { 
    ... 
} 
 
class OtherClass { 
    ... 
} 
 
?>

Any class that has the same name as it's file name will be auto loaded by Silverstripe.

OtherClass will be loaded too because it is in a file which is being read.

MyPage.php

<?php 
 
class MyPage_Controller extends BookingPage_Controller { 
    ... 
} 
 
?>

For controller functions you can omit the "_Controller" part int he file name.

If a directory is to be ignored then include a file named "_manifest_exclude"

Read The autoloader online: https://riptutorial.com/silverstripe/topic/3817/the-autoloader

https://riptutorial.com/ 21

https://riptutorial.com/silverstripe/topic/3817/the-autoloader


Chapter 8: The Config System

Remarks

What is the config system

SilverStripe uses a global config system to store settings for classes and the application. These 
config variables can be used to define the structure of Models, security settings on Controllers or 
API keys for third party services.

How it works

Config values are populated by the SS_ConfigStaticManifest during a dev/build and cache flush 
(appending ?flush to any URL`) or on first ever run of the application code.

The SS_ConfigStaticManifest will scan all PHP classes and YAML config files for any config values 
and build a cache of these values.

When making change to Config settings via YAML or private static variables, you'll 
need to flush the cache for these changes to take effect.

Examples

Setting config values

Config values can be set in three ways:

Via private static variables on any class within a SilverStripe project1. 
Via yaml config files (stored in module-folder/_config/[file].yml)2. 
Via PHP at run time (Config::inst()->update('Director', 'environment_type', 'dev')3. 

Generally it's best to set config values via the first 2 methods as these are statically 
cached when flushing the cache.

Setting with private statics

class MyDataObject extends DataObject { 
 
    private static $db = array( 
        'Title' => 'Varchar', 
    ); 
 
}

https://riptutorial.com/ 22



All private static class variables in a SilverStripe project's code (including modules, 
but not packages in the vendor/ directory) will be loaded into the Config.

Setting with YAML

You can add this to mysite/_config/config.yml (or any other YAML file in that path).

Director: 
  environment_type: dev

Using YAML files is a great way to override default Config values for core classes or 
modules

Setting at runtime

This would typically be done in mysite/_config.php

Config::inst()->update('Director', 'environment_type', 'dev');

Updating the Config in PHP should be avoided where possible as it's slower than using 
the cached values

Read The Config System online: https://riptutorial.com/silverstripe/topic/4699/the-config-system

https://riptutorial.com/ 23

https://riptutorial.com/silverstripe/topic/4699/the-config-system


Chapter 9: Using the ORM

Examples

Reading and writing DataObjects

DataObjects in SilverStripe represent a database table row. The fields in the model have magic 
methods that handle getting and setting data via their property names.

Given we have a simple DataObject as an example:

class Fruit extends DataObject 
{ 
    private static $db = ['Name' => 'Varchar']; 
}

You can create, set data and write a Fruit as follows:

$apple = Fruit::create(); 
$apple->Name = 'Apple'; 
$apple->write();

You can similarly retrieve the Fruit object as follows:

$apple = Fruit::get()->filter('Name', 'Apple')->first(); 
var_dump($apple->Name); // string(5) "Apple"

Read Using the ORM online: https://riptutorial.com/silverstripe/topic/3463/using-the-orm

https://riptutorial.com/ 24

https://riptutorial.com/silverstripe/topic/3463/using-the-orm


Credits

S. 
No

Chapters Contributors

1
Getting started with 
silverstripe

3dgoo, Barry, Community, zanderwar

2
Add Ons and 
Modules

Barry

3 DataExtensions bummzack, Dan Hensby, Robbie Averill

4 Forms 3dgoo, Dan Hensby

5 LeftAndMain zanderwar

6 ModelAdmin 3dgoo, Barry, Turnerj

7 The autoloader Barry

8 The Config System Dan Hensby

9 Using the ORM 3dgoo, bummzack, Robbie Averill

https://riptutorial.com/ 25

https://riptutorial.com/contributor/1715759/3dgoo
https://riptutorial.com/contributor/4921194/barry
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2266583/zanderwar
https://riptutorial.com/contributor/4921194/barry
https://riptutorial.com/contributor/378822/bummzack
https://riptutorial.com/contributor/4978044/dan-hensby
https://riptutorial.com/contributor/2812842/robbie-averill
https://riptutorial.com/contributor/1715759/3dgoo
https://riptutorial.com/contributor/4978044/dan-hensby
https://riptutorial.com/contributor/2266583/zanderwar
https://riptutorial.com/contributor/1715759/3dgoo
https://riptutorial.com/contributor/4921194/barry
https://riptutorial.com/contributor/1676444/turnerj
https://riptutorial.com/contributor/4921194/barry
https://riptutorial.com/contributor/4978044/dan-hensby
https://riptutorial.com/contributor/1715759/3dgoo
https://riptutorial.com/contributor/378822/bummzack
https://riptutorial.com/contributor/2812842/robbie-averill

	About
	Chapter 1: Getting started with silverstripe
	Remarks
	Versions
	Examples
	Installation
	Customising the CMS / White Labeling


	Chapter 2: Add Ons and Modules
	Remarks
	Examples
	SilverStripe Grid Field Extensions Module
	Better Buttons for GridField
	UserForms
	Display Logic
	Grouped CMS Menu
	Dashboard


	Chapter 3: DataExtensions
	Examples
	Adding fields to a DataObject
	Adding methods to a DataObject
	Applying a DataExtension to a Class


	Chapter 4: Forms
	Syntax
	Examples
	Creating a Form
	Creating a simple AJAX Form

	Adding the form to our controller
	Customising out templates for easy content replacement

	Creating the javascript form listener
	For advanced users:
	Chapter 5: LeftAndMain
	Introduction
	Examples
	1. Getting Started


	Requirements
	Preparation
	Structure
	2. Configuring HelloWorldLeftAndMain.php

	Configure
	Adding Stylesheets and Javascript
	Complete Code
	3. The Template (HelloWorldLeftAndMain_Content.ss)
	There are 3 sections worth noting for this guide:

	Complete Code
	Chapter 6: ModelAdmin
	Examples
	Simple Example
	Control the DataObject name displayed in the UI
	DataObjects can be sorted by default
	Control columns displayed for the DataObject
	Using searchable_fields to control the filters for that Object in ModelAdmin
	Remove scaffolded GridField for relationships
	To remove the export button from ModelAdmin


	Chapter 7: The autoloader
	Remarks
	Examples
	MyClass.php


	Chapter 8: The Config System
	Remarks

	What is the config system
	How it works
	Examples
	Setting config values


	Setting with private statics
	Setting with YAML
	Setting at runtime
	Chapter 9: Using the ORM
	Examples
	Reading and writing DataObjects


	Credits



