
sinatra

#sinatra



Table of Contents

About 1

Chapter 1: Getting started with sinatra 2

Remarks 2

Versions 2

Examples 2

Installation 2

Your first Sinatra app 3

Chapter 2: Routing 4

Examples 4

What is routing 4

Regexp based path matching 4

Available Sinatra Routing verbs 5

Sinatra Route Parameters 6

Credits 7



About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version 
from: sinatra

It is an unofficial and free sinatra ebook created for educational purposes. All the content is 
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at 
Stack Overflow. It is neither affiliated with Stack Overflow nor official sinatra.

The content is released under Creative Commons BY-SA, and the list of contributors to each 
chapter are provided in the credits section at the end of this book. Images may be copyright of 
their respective owners unless otherwise specified. All trademarks and registered trademarks are 
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor 
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/sinatra
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com


Chapter 1: Getting started with sinatra

Remarks

Sinatra is a simple Ruby DSL for quickly creating web applications.

It has built in features for routing, using templates, serving static files, helpers, error handling and 
many other topics.

http://www.sinatrarb.com/intro.html

Versions

Version Release Date

2.0.0beta2 2016-08-22

2.0.0beta1 2016-08-22

1.4.7 2016-01-24

1.4.0 2013-03-15

1.3.0 2011-10-01

1.2.0 2011-03-02

1.1.0 2010-10-23

1.0.0 2010-03-23

0.9.0 2009-01-18

0.3.0 2008-08-31

0.2.0 2008-04-11

0.1.0 2007-10-04

Examples

Installation

You can install Sinatra as a global gem:

gem install sinatra

https://riptutorial.com/ 2

http://www.sinatrarb.com/intro.html


or add it to a project's Gemfile

# in Gemfile: 
gem 'sinatra'

and run bundle install.

Your first Sinatra app

# app.rb 
require 'sinatra' 
 
get '/' do 
    'Hello, Universe!' 
end

Install Sinatra:

gem install sinatra

Run the app:

ruby app.rb

That's it! Access your app at http://localhost:4567

Read Getting started with sinatra online: https://riptutorial.com/sinatra/topic/4533/getting-started-
with-sinatra

https://riptutorial.com/ 3

http://localhost:4567
https://riptutorial.com/sinatra/topic/4533/getting-started-with-sinatra
https://riptutorial.com/sinatra/topic/4533/getting-started-with-sinatra


Chapter 2: Routing

Examples

What is routing

In Sinatra, routing is how your app responds to requests, by the path of the request (e.g. /welcome) 
and by the HTTP verb used (e.g. GET or POST). The way a request is written is as follows:

<http-verb> <path> do 
    <code block to execute when this route is requested> 
end

Here is an example that responds to GET requests to the path /hello by returning a page that says 
"Hi, whats up":

get "/hello" do 
    return "Hi, whats up" 
end

Sinatra only responds to routes that you define. If you do not define a route, Sinatra returns a 
404 Page Not Found error page.

Sinatra responds to routes in the order they are defined. If you have several routes that can match 
a given request (see "Regexp based path matching"), the first route that fits the request is 
returned.

NOTE: Sinatra treats routes with and without trailing forward-slash (/) as 2 different and distinct 
routes. That is, get '/hello' and get '/hello/' by default match different blocks of code. If you 
want to ignore the trailing forward-slash and treat both routes as the same, you can add ? after the 
forward-slash to make it optional, like so: get '/hello/?'. This uses Sinatra's ability to use regular 
expressions for route matching (more on this below).

Regexp based path matching

When matching the path of a route, you can do it explicitly, matching only one path, like so:

get "/hello" do 
    return "Hello!" 
end

You can also use a regular expression to match complex routes. Any route which matches the 
regular expression will run that code block. If multiple routes can potentially match the request, the 
first-matched route is executed.

Here's a typical example of a route that matches paths that include /user/ followed by one or more 
digits (presumably, user IDs) i.e. GET /user/1:

https://riptutorial.com/ 4



get /\/user\/\d+/ do 
  "Hello, user!" 
end

The example above matches /user/1, but will also match /delete/user/1 and /user/1/delete/now, 
since our regular expression is not very restrictive and allows for a partial match against any part 
of the path.

We can be more explicit with the regexp and tell it to match the route exactly, using \A and \z 
directives to anchor the match to the beginning and the end of the path:

get /\A\/user\/\d+\z/ do 
  "Hello, user!" 
end

This route will not match /delete/user/1 or /user/1/delete/now because of match anchoring.

Ignoring Trailing /

Our example route above will also not match /user/1/ (with trailing forward-slash). If you want to 
ignore trailing slash at the end of the route, adjust the regexp to make the slash optional (note the 
\/? at the end):

get /\A\/user\/\d+\/?\z/ do 
  "Hello, user! You may have navigated to /user/<ID> or /user/<ID>/ to get here." 
end

Capturing Route Matches

So far, we've matched against regexp routes, but what if we want to use the matched values in our 
code block? Following up on our example, how do we know what the user's ID is when the route is 
executed?

We can capture the desired part of the path and use Sinatra's param[:captures] variable to work 
with the data inside the route:

get /\A\/user\/(\d+)\/?\z/ do 
  "Hello, user! Your ID is #{params['captures'].first}!" 
end

Available Sinatra Routing verbs

There are a number of available routing verbs in Sinatra, they correspond directly to http verbs

get '/' do 
  .. get some data, a view, json, etc .. 
end 
 
post '/' do 
  .. create a resource .. 
end 

https://riptutorial.com/ 5



 
put '/' do 
  .. replace a resource .. 
end 
 
patch '/' do 
  .. change a resource .. 
end 
 
delete '/' do 
  .. delete something .. 
end 
 
options '/' do 
  .. appease something .. 
end 
 
link '/' do 
  .. affiliate something .. 
end 
 
unlink '/' do 
  .. separate something .. 
end

Sinatra Route Parameters

Of course you can pass data to Sinatra routes, to accept data in your routes you can add route 
paremeters. You can then access a params hash:

get '/hello/:name' do 
  # matches "GET /hello/foo" and "GET /hello/bar" 
  # params['name'] is 'foo' or 'bar' 
  "Hello #{params['name']}!" 
end

You can also assign parameters directly to variables like we usually do in Ruby hashes:

get '/hello/:name' do |n| 
  # matches "GET /hello/foo" and "GET /hello/bar" 
  # params['name'] is 'foo' or 'bar' 
  # n stores params['name'] 
  "Hello #{n}!" 
end

You can also add wildcard parameters without any specific names by using asteriks. They can 
then be accessed by using params['splat']:

get '/say/*/to/*' do 
  # matches /say/hello/to/world 
  params['splat'] # => ["hello", "world"] 
end

Read Routing online: https://riptutorial.com/sinatra/topic/4692/routing

https://riptutorial.com/ 6

https://riptutorial.com/sinatra/topic/4692/routing


Credits

S. 
No

Chapters Contributors

1
Getting started with 
sinatra

Arman H, Community, mhutter, tpei

2 Routing aisflat439, Arman H, thesecretmaster, tpei

https://riptutorial.com/ 7

https://riptutorial.com/contributor/1404425/arman-h
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/405454/mhutter
https://riptutorial.com/contributor/1463572/tpei
https://riptutorial.com/contributor/2049247/aisflat439
https://riptutorial.com/contributor/1404425/arman-h
https://riptutorial.com/contributor/4948732/thesecretmaster
https://riptutorial.com/contributor/1463572/tpei

	About
	Chapter 1: Getting started with sinatra
	Remarks
	Versions
	Examples
	Installation
	Your first Sinatra app


	Chapter 2: Routing
	Examples
	What is routing
	Regexp based path matching
	Available Sinatra Routing verbs
	Sinatra Route Parameters


	Credits



