
sitecore

#sitecore



Table of Contents

About 1

Chapter 1: Getting started with sitecore 2

Remarks 2

Versions 2

Examples 3

Installation or Setup 3

Using SIM manager for installation 4

Chapter 2: Diagnostics: Asserts 5

Syntax 5

Examples 5

Ensure two values are equal 5

Ensure a value is true or false 6

ResultNotNull 6

Required Object 6

Null/Empty Checks 6

IsNotNull 6

IsNotNullOrEmpty 6

IsNull 7

Argument Checks 7

ArgumentCondition 7

ArgumentNotNull 7

ArgumentNotNullOrEmpty 7

Ensure item is in editing mode 7

Security Asserts 8

CanRunApplication 8

HasAccess 8

Chapter 3: Engagement Automation 9

Remarks 9

Examples 9

Get the contact by username 9



Change the automation state of the contact 9

Enroll contact in the engagement plan programmatically 9

Chapter 4: Glass Mapper 10

Introduction 10

Remarks 10

Examples 10

The easiest way to map Sitecore data to code. 10

Chapter 5: Index configuration 11

Examples 11

Field Configuration 11

StorageType 11

IndexType 11

VectorType 12

Boost 13

Chapter 6: Items 14

Syntax 14

Remarks 14

Examples 14

Get Item by ID 14

Get Specific Version of Item 14

Get Item by Path 14

Get Raw Value of Field on a Sitecore Item 14

Publish Sitecore item programmatically 15

Chapter 7: LinkManager 16

Syntax 16

Examples 16

Obtaining a url for an Item 16

Chapter 8: Scaling 17

Remarks 17

Examples 17

Implement remote events in load-balanced enviornment 17



Chapter 9: Search 19

Remarks 19

Examples 19

Configuration 19

Create an inbound filter for the search 21

Create an outbound filter for the search 21

Delete all previous versions of the item in the index when adding new version 22

Chapter 10: Security 24

Remarks 24

Examples 24

Disable permission checking when accessing an item 24

Impersonate a different user when accessing an item 24

Chapter 11: Sitecore query syntax 25

Remarks 25

Examples 27

Select by item path 27

Relative query 27

Item attributes query 27

Site-specific query 27

Chapter 12: Templates 29

Examples 29

Get Sitecore Template Item by ID 29

Get Sitecore Template Item by name 29

Chapter 13: Unicorn 30

Introduction 30

Remarks 30

Examples 30

Initial Setup 30

Manual Installation/Install from Source 30

Data Provider Architecture 31

Chapter 14: Web Forms For Marketeers (WFFM) 32

Introduction 32



Examples 32

Submit the WFFM form programmatically 32

Chapter 15: Workflow 33

Examples 33

Set Item State and Executes actions in that state 33

Executing workflow command to change the workflow state 33

Chapter 16: Workflow 35

Remarks 35

Examples 35

Assign workflow to an item 35

Credits 36



About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version 
from: sitecore

It is an unofficial and free sitecore ebook created for educational purposes. All the content is 
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at 
Stack Overflow. It is neither affiliated with Stack Overflow nor official sitecore.

The content is released under Creative Commons BY-SA, and the list of contributors to each 
chapter are provided in the credits section at the end of this book. Images may be copyright of 
their respective owners unless otherwise specified. All trademarks and registered trademarks are 
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor 
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/sitecore
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com


Chapter 1: Getting started with sitecore

Remarks

This section provides an overview of what sitecore is, and why a developer might want to use it.

It should also mention any large subjects within sitecore, and link out to the related topics. Since 
the Documentation for sitecore is new, you may need to create initial versions of those related 
topics.

Versions

Version Release Date

8.1 2015-01-01

8.0 2015-01-01

7.5 2014-01-01

7.2 2014-01-01

7.1 2013-01-01

7.0 2013-01-01

6.6 2012-01-01

6.5 2011-01-01

6.4 2010-01-01

6.3 2010-01-01

6.2 2009-01-01

6.1 2009-01-01

6.0 2008-01-01

5.3 2006-01-01

5.2 2006-01-01

5.1 2005-01-01

4.3 2004-01-01

https://riptutorial.com/ 2



Examples

Installation or Setup

Executable File

Download the .exe from http://dev.sitecore.net/ and double-click to start. This .exe will do 
everything for you - attach databases, modify host file, and set folder permissions. The only 
downside is that it leaves an entry in the registry under 
[HKEY_LOCAL_MACHINE\SOFTWARE\Sitecore CMS] and makes your instance available under 
‘Add/Remove Programs’, which is misleading. Sitecore is just an ASP.NET application, not a 
Desktop application.

Manual Install

You can choose to install and set up Sitecore manually by downloading the site root zip. You are 
responsible for attaching databases and ensuring that permissions are set up properly. You may 
wish to use this method in environments that require custom installation steps (databases are on 
another server, custom permissions needed). Follow the installation guide (available on 
http://dev.sitecore.net/; make sure you are reading the guide for your specific version) and - if you 
are installing on production - the Security Hardening Guide.

Once you become a certified Sitecore developer, you will be able to download the latest version of 
Sitecore and all associated modules from http://dev.sitecore.net/. On dev.sitecore.net, there are 
always two different formats available for download - the complete site root or an executable file. 
The following is a list of ways that you can install Sitecore.

Step by Step

Download the Sitecore version you will from the Sitecore website - it's okay if you prefer the 
automatic installation method, but the following steps covers the manual process

1. 

Unzip the archives to a folder on your computer. You'll see the following subfolders:2. 

Data - This is where Sitecore keeps a number of archives related to the currently installed 
instance, such as logs, indexes, packages, and cache files

•

Databases - Database files from SQL Server and Oracle•
Website - Everything that will be accessible from the web browser.•

Open IIS and create a new website linking to the folder "Website"3. 
Set the Application Pool of your website to use the .NET Framework to version 4.54. 
Adjust your DataFolder path (at the web.config) - for Dev you can copy the Data folder to the 
Website folder

5. 

Copy the license.xml file to the Data folder6. 
At the Website folder properties, uncheck the “read only” checkbox. In Dev you can and give 
full permissions to the Application Pool user. In production you must follow the instructions 
contained (here), under item “4.2 Configuring Folder and Registry Permissions”.

7. 

Install all databases to the “Database” folder and edit the configurations in the 
ConnectionStrings.config file, located in the Website/App_Config folder

8. 

https://riptutorial.com/ 3

http://dev.sitecore.net/
http://dev.sitecore.net/
http://dev.sitecore.net/
https://dev.sitecore.net/Downloads.aspx
https://dev.sitecore.net/~/media/Downloads/Sitecore_Experience_Platform/8_0/Sitecore_Experience_Platform_8_0/Non-secure/Installation-Guide-SC80-A4.ashx


Still at the ConnectionStrings.config, setup connection informations for all MongoDB entries 
(Those with connectionString="mongodb:...")

9. 

If your site is on localhost, point your browser to http://localhost/sitecore. If you see a login 
screen, you have successfully installed Sitecore.

10. 

Source: http://sitecore-community.github.io/docs/sitecore-basics/installing-sitecore/

Using SIM manager for installation

Sitecore Instance Manager is open-source tool which is used for managing the local park of 
Sitecore instances. You can install, locate, maintain, reinstal or delete Sitecore products. It also 
helps you install your sitecore instance with any sitecore packages, modules and only thing you 
need to do is set the folder for local repository where all the installations files are kept. See the 
below screenshot for settings. 

It also has API and plugin engine so you can extend it for any of your need.

For Installation click here

For More details about SIM please click here

Read Getting started with sitecore online: https://riptutorial.com/sitecore/topic/1007/getting-started-
with-sitecore

https://riptutorial.com/ 4

http://localhost/sitecore
http://sitecore-community.github.io/docs/sitecore-basics/installing-sitecore/
http://i.stack.imgur.com/yITta.png
http://dl.sitecore.net/updater/sim/
https://github.com/Sitecore/Sitecore-Instance-Manager
https://riptutorial.com/sitecore/topic/1007/getting-started-with-sitecore
https://riptutorial.com/sitecore/topic/1007/getting-started-with-sitecore


Chapter 2: Diagnostics: Asserts

Syntax

Assert.ArgumentCondition(bool condition, string argumentName, string message)•
Assert.ArgumentNotNull(object argument, string argumentName)•
Assert.ArgumentNotNull(object argument, Func<string> getArgumentName)•
Assert.ArgumentNotNullOrEmpty(ID argument, string argumentName)•
Assert.ArgumentNotNullOrEmpty(string argument, string argumentName)•
Assert.ArgumentNotNullOrEmpty(string argument, Func<string> getArgumentName)•
Assert.AreEqual(int value1, int value2, string message)•
Assert.AreEqual(int value1, int value2, string format, params object[] args)•
Assert.AreEqual(string value1, string value2, string message)•
Assert.AreEqual(string value1, string value2, string format, params object[] args)•
Assert.AreEqual(bool value1, bool value2, string message)•
Assert.AreEqual(bool value1, bool value2, string format, params object[] args)•
Assert.CanRunApplication(string application)•
Assert.HasAccess(bool accessAllowed, string message)•
Assert.HasAccess(bool accessAllowed, string format, params object[] args)•
Assert.IsEditing(Item item)•
Assert.IsFalse(bool condition, string message)•
Assert.IsFalse(bool condition, Func<string> getMessage)•
Assert.IsTrue(bool condition, string format, params object[] args)•
Assert.IsNotNull(object value, string message)•
Assert.IsNotNull(object value, string format, params object[] args)•
Assert.IsNotNull(object value, Type type)•
Assert.IsNotNull(object value, Type type, string format, params object[] args)•
Assert.IsNotNullOrEmpty(string value, string message)•
Assert.IsNotNullOrEmpty(string value, string format, params object[] args)•
Assert.IsNull(object value, string message)•
Assert.IsNull(object value, string format, params object[] args)•
Assert.IsTrue(bool condition, string message)•
Assert.IsTrue(bool condition, Func<string> getMessage)•
Assert.IsTrue(bool condition, string format, params object[] args)•
Assert.Required(object obj, string message)•
Assert.Required(object obj, string format, params object[] args)•
Assert.ResultNotNull<T>(T result, string message)•
Assert.ResultNotNull<T>(T result)•

Examples

Ensure two values are equal

Compares two values for equality. It can compare strings, integers, and Boolean values only.

https://riptutorial.com/ 5



Assert.AreEqual(documentElement.LocalName, "xamlControls", "Xaml files must have a root node 
named 'xamlControls'.");

Ensure a value is true or false

To assert that a value is either true or false,:

Assert.IsFalse(Settings.DoBadThings, "Bad things should not happen, disable DoBadThings."); 
Assert.IsTrue(magicNumber =< 42, "The magic number is greater than 42!");

You can also pass formatting parameters for the exception message

Assert.IsFalse(myValue > 5, "The value should not be greater than 5, it's currently {0}", 
myValue);

ResultNotNull

ResultNotNull() checks to see if the object passed in is not null. If the object and message are not 
null it will then simply return the object that was passed in, otherwise it will throw 
InvalidOperationException.

return Assert.ResultNotNull(this.Database.GetItem(this.ItemRootId), string.Concat("Root item 
not found. ID: ", this.ItemRootId));

Required Object

This checks to see if the given object is null, and then throws RequiredObjectIsNullException if it is.

Assert.Required(parameter, "parameter is required.");

Null/Empty Checks

IsNotNull

This is a very simple and popular method to use to check if an item is not null. It simply checks the 
object that is passed in to see if it is null.

Assert.IsNotNull(database, type, "Name: {0}", item);

IsNotNullOrEmpty

This is the same as IsNotNull above, but works on string values instead of objects.

Assert.IsNotNullOrEmpty(propertyName, "user");

https://riptutorial.com/ 6



IsNull

This is simply an inverse of the IsNotNull() method. This method asserts that the object is null.

Assert.IsNull(this.StandardValues, "A Standard Values item has already been created for this 
template ");

Argument Checks

ArgumentCondition

This method checks to see if the argument specified is true. It also takes in the name of the 
argument that is logged if the condition fails.

Assert.ArgumentCondition(pageIndex >= 0, "pageIndex", "Value must be greater than or equal to 
zero.");

ArgumentNotNull

This method ensures that the argument passed is not null. There are two signatures for this 
method, the first takes in an object and a paramter name and does a simple null check.

Assert.ArgumentNotNull(item, "item");

ArgumentNotNullOrEmpty

This is similar to the ArgumentNotNull method, but will also check to see if the object is empty. 
There are three variants of this method. The first variant takes in a Sitecore ID and an argument 
name, and checks to see if the ID is null.

var nullId = new new ID("{00000000-0000-0000-0000-000000000000}"); 
 
// Both of these calls will result in an exception 
Assert.ArgumentNotNullOrEmpty((ID)null, "null"); 
Assert.ArgumentNotNullOrEmpty(nullId, nameof(nullId));

The second method adds a check to see if the given string is null or empty.

// Both of these calls will result in an exception 
Assert.ArgumentNotNullOrEmpty((string)null, "null"); 
Assert.ArgumentNotNullOrEmpty("", nameof(emptyString));

Ensure item is in editing mode

Checks to see if the passed Item is in Editing mode. If not, it throws an EditingNotAllowedException.

https://riptutorial.com/ 7



Assert.IsEditing(Sitecore.Context.Item);

Security Asserts

CanRunApplication

To check to see if the user has permission to run the given application. If not, 
AccessDeniedException is thrown.

Assert.CanRunApplication("WebEdit");

HasAccess

HasAccess will check if the given parameter is true, otherwise an AccessDeniedException will be 
thrown.

Assert.HasAccess(Context.User.IsAdministrator, "Only administrators can create new domains");

Read Diagnostics: Asserts online: https://riptutorial.com/sitecore/topic/1297/diagnostics--asserts

https://riptutorial.com/ 8

https://riptutorial.com/sitecore/topic/1297/diagnostics--asserts


Chapter 3: Engagement Automation

Remarks

Sitecore automation gives marketer a possobility to create marketing workflows which will put user 
through different states on the website.

The example of automation usage could be registration workflow (registered, confirmed, logged in) 
or purchase workflow (new order, added products, payment details, purchase complete).

Examples

Get the contact by username

ContactManager contactManager = Factory.CreateObject("tracking/contactManager", true) as 
ContactManager; 
 
Contact contact = contactManager.LoadContactReadOnly(userName); 
return contact;

Change the automation state of the contact

This method doesn't require initialization of the tracker, which is handy if the state should be 
changed outside of the site context (for example in the shell).

var stateManager = AutomationStateManager.Create(contact); 
automationStateManager.MoveToEngagementState(stateItem.ParentID, stateId); 
stateManager.SaveChanges(AutomationManager.Provider);

Enroll contact in the engagement plan programmatically

 AutomationMetadataProvider automationMetadataProvider = 
Assert.ResultNotNull(Factory.CreateObject("automation/metadataProvider", true) as 
AutomationMetadataProvider); 
 var context = AutomationManager.Provider.GetAutomationContext(ID.Parse(contact.ContactId)); 
 
 context.Enroll(fromStateItem.ParentID, ID.Parse(fromState), 
automationMetadataProvider.CalculateWakeUpDateTime(ID.Parse(fromState), DateTime.UtcNow), 
null); 
 AutomationManager.Provider.SaveAutomationContext(context);

Read Engagement Automation online: https://riptutorial.com/sitecore/topic/6879/engagement-
automation

https://riptutorial.com/ 9

https://riptutorial.com/sitecore/topic/6879/engagement-automation
https://riptutorial.com/sitecore/topic/6879/engagement-automation


Chapter 4: Glass Mapper

Introduction

Glass.Mapper is the awesome Open Source mapping framework that allows you to focus on 
solving your business problems. It does the hard work of converting data from your CMS to 
something your code can work with.

Using Glass.Mapper and your favourite CMS you can map data to strongly typed models in your 
C# code. Your models do not require any special mark-up to work with Glass.Mapper and almost 
no configuration to get started.

Remarks

Visit this url for tutorials http://glass.lu/Mapper/Sc/Tutorials

Examples

The easiest way to map Sitecore data to code.

Glass.Mapper.Sc allows you to move your data from Sitecore and into your code seamlessly using 
strongly typed objects.

The framework allows you to map data on to c# classes and interfaces without any additional 
mark-up. As the data is mapped to your target objects it is converted to the target type. Take a 
look at this simple example:

public class Demo 
    { 
        public virtual Guid Id { get; set; } 
 
        public virtual string Title { get; set; } 
 
        public virtual DateTime Date { get; set; } 
 
        public virtual string Url { get; set; } 
    } 
 
 
    public void DoWork( 
            ISitecoreContext sitecoreContext) 
    { 
        var model = 
            sitecoreContext.GetCurrentItem<Demo>(); 
 
        var url = model.Url; 
    }

Read Glass Mapper online: https://riptutorial.com/sitecore/topic/8845/glass-mapper

https://riptutorial.com/ 10

http://glass.lu/Mapper/Sc/Tutorials
https://riptutorial.com/sitecore/topic/8845/glass-mapper


Chapter 5: Index configuration

Examples

Field Configuration

When adding custom fields to a Lucene index you can add new fields into the index using the 
following configuration:

 <configuration ref="contentSearch/indexConfigurations/defaultLuceneIndexConfiguration"> 
  <indexAllfields>false</indexAllfields> 
  <fieldNames hint="raw:AddFieldByFieldName"> 
      <field fieldName="title" storageType="YES" indexType="TOKENIZED"   vectorType="NO" 
boost="1f" type="System.String" 
 
settingType="Sitecore.ContentSearch.LuceneProvider.LuceneSearchFieldConfiguration, 
Sitecore.ContentSearch.LuceneProvider"/> 
  </fieldNames> 
</configuration>

A field has a couple of possible properties:

storageType•
indexType•
vectorType•
boost•

Tjhese fields directly relate to the content of the 
Sitecore.ContentSearch.LuceneProvider.LuceneSearchFieldConfiguration class. If we reflect the 
values out of this class we can see their possible values, etc.

StorageType

/// <summary>Specifies whether and how a field should be stored. </summary> 
public enum Store 
{ 
    /// <summary>Store the original field value in the index. This is useful for short texts 
    /// like a document's title which should be displayed with the results. The 
    /// value is stored in its original form, i.e. no analyzer is used before it is 
    /// stored. 
    /// </summary> 
    YES, 
    /// <summary>Do not store the field value in the index. </summary> 
    NO 
}

IndexType

/// <summary>Specifies whether and how a field should be indexed. </summary> 

https://riptutorial.com/ 11



public enum Index 
{ 
    /// <summary>Do not index the field value. This field can thus not be searched, 
    /// but one can still access its contents provided it is 
    /// <see cref="T:Lucene.Net.Documents.Field.Store">stored</see>. 
    /// </summary> 
    NO, 
    /// <summary>Index the tokens produced by running the field's 
    /// value through an Analyzer.  This is useful for 
    /// common text. 
    /// </summary> 
    ANALYZED, 
    /// <summary>Index the field's value without using an Analyzer, so it can be searched. 
    /// As no analyzer is used the value will be stored as a single term. This is 
    /// useful for unique Ids like product numbers. 
    /// </summary> 
    NOT_ANALYZED, 
    /// <summary>Expert: Index the field's value without an Analyzer, 
    /// and also disable the storing of norms.  Note that you 
    /// can also separately enable/disable norms by calling 
    /// <see cref="!:AbstractField.SetOmitNorms" />.  No norms means that 
    /// index-time field and document boosting and field 
    /// length normalization are disabled.  The benefit is 
    /// less memory usage as norms take up one byte of RAM 
    /// per indexed field for every document in the index, 
    /// during searching.  Note that once you index a given 
    /// field <i>with</i> norms enabled, disabling norms will 
    /// have no effect.  In other words, for this to have the 
    /// above described effect on a field, all instances of 
    /// that field must be indexed with NOT_ANALYZED_NO_NORMS 
    /// from the beginning. 
    /// </summary> 
    NOT_ANALYZED_NO_NORMS, 
    /// <summary>Expert: Index the tokens produced by running the 
    /// field's value through an Analyzer, and also 
    /// separately disable the storing of norms.  See 
    /// <see cref="F:Lucene.Net.Documents.Field.Index.NOT_ANALYZED_NO_NORMS" /> for what norms 
are 
    /// and why you may want to disable them. 
    /// </summary> 
    ANALYZED_NO_NORMS 
}

VectorType

/// <summary>Specifies whether and how a field should have term vectors. </summary> 
public enum TermVector 
{ 
    /// <summary>Do not store term vectors. </summary> 
    NO, 
    /// <summary>Store the term vectors of each document. A term vector is a list 
    /// of the document's terms and their number of occurrences in that document. 
    /// </summary> 
    YES, 
    /// <summary> Store the term vector + token position information 
    /// 
    /// </summary> 
    /// <seealso cref="F:Lucene.Net.Documents.Field.TermVector.YES"> 
    /// </seealso> 

https://riptutorial.com/ 12



    WITH_POSITIONS, 
    /// <summary> Store the term vector + Token offset information 
    /// 
    /// </summary> 
    /// <seealso cref="F:Lucene.Net.Documents.Field.TermVector.YES"> 
    /// </seealso> 
    WITH_OFFSETS, 
    /// <summary> Store the term vector + Token position and offset information 
    /// 
    /// </summary> 
    /// <seealso cref="F:Lucene.Net.Documents.Field.TermVector.YES"> 
    /// </seealso> 
    /// <seealso cref="F:Lucene.Net.Documents.Field.TermVector.WITH_POSITIONS"> 
    /// </seealso> 
    /// <seealso cref="F:Lucene.Net.Documents.Field.TermVector.WITH_OFFSETS"> 
    /// </seealso> 
    WITH_POSITIONS_OFFSETS 
}

Boost

Add's a boost value to the Lucene index for this item

Read Index configuration online: https://riptutorial.com/sitecore/topic/7634/index-configuration

https://riptutorial.com/ 13

http://www.riptutorial.com/lucene/example/19936/boosting-queries
https://riptutorial.com/sitecore/topic/7634/index-configuration


Chapter 6: Items

Syntax

Database.GetItem(ID itemId)•
Database.GetItem(ID itemId, Language language)•
Database.GetItem(ID itemId, Language language, Version version)•
Database.GetItem(string path)•
Database.GetItem(string path, Language language)•
Database.GetItem(string path, Language language, Version version)•

Remarks

Most of the above examples make use of Sitecore.Context.Database to fetch items. Keep in mind 
that most Sitecore implementations have multiple content databases, so using the correct 
database to fetch your item is important.

Examples

Get Item by ID

To fetch the latest version of an item in the current language:

Sitecore.Context.Database.GetItem(new ID("{11111111-1111-1111-1111-111111111111}"));

Get Specific Version of Item

If you need to get a specific language or version of an item, you can use these overloads of 
GetItem()

Sitecore.Context.Database.GetItem("/sitecore/content/Sitecore", Language.Current, new 
Version(5));

Get Item by Path

To fetch the latest version of an item in the current language:

Sitecore.Context.Database.GetItem("/sitecore/content/Sitecore")

Get Raw Value of Field on a Sitecore Item

To get the raw value of a field on the Context Item:

Sitecore.Context.Item["Field Name"];

https://riptutorial.com/ 14



To get the raw value of a field on a given item, item:

item["Field Name"];

Publish Sitecore item programmatically

When publishing Sitecore item programmatically the developer should keep in mind that Sitecore 
could be configured for several publishing targets, as well that several languages could be defined 
for item.

ID targetDatabaseFieldId = ID.Parse("{39ECFD90-55D2-49D8-B513-99D15573DE41}"); 
 
     var publishingDatabases = 
                                PublishManager.GetPublishingTargets(mediaItem.Database) 
                                .Select(i => i[targetDatabaseFieldId]) //Get Target Database 
value 
                                .Where (i => i != null) 
                                .Select(i => Database.GetDatabase(i)) 
                                .ToArray(); 
 
                        PublishManager.PublishItem(mediaItem, publishingDatabases, 
 
LanguageManager.GetLanguages(StaticSettings.WebDatabase).ToArray(), false, false);

Read Items online: https://riptutorial.com/sitecore/topic/2035/items

https://riptutorial.com/ 15

https://riptutorial.com/sitecore/topic/2035/items


Chapter 7: LinkManager

Syntax

public static string GetItemUrl(Item item)•
public static string GetItemUrl(Item item, UrlOptions options);•

Examples

Obtaining a url for an Item

Given a simple sitecore item:

Item item;

The item itself does not contain it's url. To obtain a url for an item you need to make a call to the 
static class Sitecore.Links.LinkManager

string url = LinkManager.GetItemUrl(item);

an overload of this accepts a UrlOptions class:

UrlOptions options = new UrlOptions 
{ 
     AddAspxExtension = false 
     .... 
}; 
string url = LinkManager.GetItemUrl(item, options);

Read LinkManager online: https://riptutorial.com/sitecore/topic/7664/linkmanager

https://riptutorial.com/ 16

https://riptutorial.com/sitecore/topic/7664/linkmanager


Chapter 8: Scaling

Remarks

Sitecore out of the box supports load-balancing for multiple server. Typical configuration is 
Content Management (CM) and Content Delivery (CD) server, however multiple CM and CD 
servers are supported too.

Examples

Implement remote events in load-balanced enviornment

If Sitecore is setup in a CM-CD enviornment there could be a need to fire events on CD server 
when CM events are fired.

The example could be firing publish:end:remote on CD when content editors done publish on CM.

In order to make sure that events are firing the following steps are required to be done:

Check that event queues are enabled in web.config1. 

    <!--  ENABLE EVENT QUEUES 
            If enabled, Sitecore sends local events to the event queue available to remote 
instances, 
            and handles events in the queue from remote instances. 
            Default value: true 
      --> 
      <setting name="EnableEventQueues" value="true" />

Add ScalabilitySettings.config to each instance. Set InstanceName for each server and 
PublishingInstance to the CM server instance name.

2. 

The example of ScalabilitySettings.config could be found in the App_Config/Include folder.

<!--  INSTANCE NAME 
            Unique name for Sitecore instance. 
            Default value: (machine name and IIS site name) 
      --> 
      <setting name="InstanceName"> 
        <patch:attribute name="value">BAYERUATCD</patch:attribute> 
      </setting> 
      <!--  PUBLISHING INSTANCE 
            Assigns the instance name of dedicated Sitecore installation for publishing 
operations. 
            When empty, all publishing operations are performed on the local installation of 
Sitecore. 
            Default vaue: (empty) 
      --> 
      <setting name="Publishing.PublishingInstance"> 
        <patch:attribute name="value">BAYERUATCM</patch:attribute> 

https://riptutorial.com/ 17



      </setting> 
      <!--  COUNTERS INSTANCE NAME 
            Instance name for performance counters. 
            Default value: (value of InstanceName setting) 
      --> 
      <setting name="Counters.InstanceName"> 
        <patch:attribute name="value">BAYERUATCD</patch:attribute> 
      </setting> 
      <!--  SECURITY CACHE EXPIRATION 
            Sets the absolute expiration on the cached security data. 
            A value of 00:00:00 disables automatic expiration of security caches. 
 
      -->

Read Scaling online: https://riptutorial.com/sitecore/topic/5043/scaling

https://riptutorial.com/ 18

https://riptutorial.com/sitecore/topic/5043/scaling


Chapter 9: Search

Remarks

Sitecore search is built on top of Lucene, providing the ability to create very fast searching 
capabilities for your site. Instead of querying against a centralised database (such as Sitecore's 
SQL DB), it queries Lucene index files which are stored on the physical file system of the web-
server. Sitecore provides a layer of abstraction over the Lucene.NET API including a LINQ 
provider which makes writing Lucene queries a simple & familiar process for .NET developers. 
Sitecore ships with some standard indexes configured which you can extend or define your own. 
You can also opt to use SOLR; a centralised & scalable platform built on top of Lucene.

Examples

Configuration

Sitecore ships with a set of standard indexes pre-configured which you can extend, or you can 
define your own. Of the pre-configured, sitecore_master_index & sitecore_web_index are of most 
interest for your site search. These are the predefined indexes for all of your Sitecore items in the 
tree of your master & web databases respectively, and are configured to store all of the standard 
fields of a Sitecore item that will be common among all templates.

You can look at this configuration of the standard web index at this location: <Your 
Site>\App_Config\Include\Sitecore.ContentSearch.Lucene.Index.Web.config

The main areas of importance of an index's configuration are:

The Field Configuration - What fields should be stored in the index, and how they should be 
stored.

•

The Strategy - How and when should the index be updated.•
The Crawler - The location where the index can get it's Sitecore data•

Field Configuration

Looking in the sitecore_web_index config, you can see the following reference: <configuration 
ref="contentSearch/indexConfigurations/defaultLuceneIndexConfiguration" />. This refers to a 
shared index configuration file found here: <Your 
Site>\App_Config\Include\Sitecore.ContentSearch.Lucene.DefaultIndexConfiguration.config. Here 
you can see all of the fields that are included in the standard config.

There are basically two ways to defined a field: either the field is sourced directly from a Sitecore 
item field, or it's a computed field. A computed field allows you write some code to do some 
calculations and store the result in the field. This code will get executed when the index is 
built/updated not when the index is queried. This is particularly useful if the field needs to store 
aggregated data, such as counts etc.

https://riptutorial.com/ 19



Within the <fieldMap> element you'll see the elements <fieldNames hint="raw:AddFieldByFieldName"> 
& <fields hint="raw:AddComputedIndexField">, which contain the directly sourced fields and the 
computed fields respectively.

Strategy

The strategy of your index determines when your index is updated. There are the following options 
to choose from:

OnPublishEndAsynchronousStrategy (onPublishEndAsync) - When an item is 
published, the index will be updated asynchronously.

•

SynchronousStrategy (syncMaster) - When an item is saved, the index will be updated 
instantly and synchronously.

•

IntervalAsynchronousStrategy (intervalAsyncCore/intervalAsyncMaster) - Periodically 
check for item updates & update the index asynchronously

•

ManualStrategy - No automatic index updates. Indexes will only be updated manually 
(through the control panel, or programmatically)

•

RebuildAfterFullPublishStrategy (rebuildAfterFullPublish) - After a publish, the index will 
be rebuilt in full

•

RemoteRebuildStrategy (remoteRebuild) - This strategy is for multiple instances of 
Sitecore. For example, if a rebuild is called for from the content management server, then 
the remote content delivery servers will subscribed to this event and rebuild their own 
indexes.

•

By default, the master index is configured as syncMaster. This is because if you're in the 
experience editor saving items and rendering on the page displays the results of an index, you'll 
want to see changes you've made to items immediately in the results. The web index is configured 
as 'onPublishEndAsync', this is because the indexes of your web database only need updating 
when items are published from the master database to the web.

You can also combine multiple strategies. For example, if you have separate Sitecore instances 
for your content management (CM) & content delivery (CD), it would make sense to combine the 
onPublishEndAsync with remoteRebuild, so that CD indexes get updated when items are published as 
well as get rebuilt when a user triggers a rebuild from the control panel of the CM server.

You can choose your strategy using the following config:

<strategies hint="list:AddStrategy"> 
    <strategy ref="contentSearch/indexConfigurations/indexUpdateStrategies/onPublishEndAsync" 
/> 
</strategies>

The Crawler

This allows you to specify the location of the Sitecore data you want to index. The web index has 
the following default configuration:

<locations hint="list:AddCrawler"> 
    <crawler type="Sitecore.ContentSearch.SitecoreItemCrawler, Sitecore.ContentSearch"> 

https://riptutorial.com/ 20



        <Database>web</Database> 
        <Root>/sitecore</Root> 
    </crawler> 
</locations> 

The two important bits are the <Database> and <Root> elements. The <Root> element allows you to 
specify the starting position in your Sitecore tree that the index should index. In reality, you're likely 
to have a 'Home' node under the content node that you'd point this at so that it only indexes actual 
content/pages rather than your templates etc.

Create an inbound filter for the search

Inbound filter is applied when item is added to the search index and allows to specify whether item 
is included to the index or not.

Examples when inbound filter can be used - do not include standard values and previous versions 
of the item in the index.

Inbound filters are set in configuration:

<indexing.filterIndex.inbound> 
 <processor type="Sitecore.ContentSearch.Pipelines.IndexingFilters.ApplyInboundIndexFilter, 
Sitecore.ContentSearch"></processor> 
</indexing.filterIndex.inbound> 

Code implementation:

public class ApplyInboundIndexVersionFilter : InboundIndexFilterProcessor 
{ 
    public override void Process(InboundIndexFilterArgs args) 
    { 
        var item = args.IndexableToIndex as SitecoreIndexableItem; 
 
        if (!item.Item.Versions.IsLatestVersion()) 
        { 
            args.IsExcluded = true; 
        } 
    } 
}

More examples and information could be found on http://www.sitecore.net/learn/blogs/technical-
blogs/sitecore-7-development-team/posts/2013/04/sitecore-7-inbound-and-outbound-filter-
pipelines.aspx

Create an outbound filter for the search

Outbound filter can be used to filter the search results.

One of the examples of outbound filter usage is removing items which user doesn't have access to 
from search results.

Outbound filters are set in the configuration:

https://riptutorial.com/ 21

http://www.sitecore.net/learn/blogs/technical-blogs/sitecore-7-development-team/posts/2013/04/sitecore-7-inbound-and-outbound-filter-pipelines.aspx
http://www.sitecore.net/learn/blogs/technical-blogs/sitecore-7-development-team/posts/2013/04/sitecore-7-inbound-and-outbound-filter-pipelines.aspx
http://www.sitecore.net/learn/blogs/technical-blogs/sitecore-7-development-team/posts/2013/04/sitecore-7-inbound-and-outbound-filter-pipelines.aspx


<indexing.filterIndex.outbound> 
 <processor 
type="Sitecore.ContentSearch.Pipelines.IndexingFilters.ApplyOutboundSecurityFilter, 
Sitecore.ContentSearch"></processor> 
</indexing.filterIndex.outbound>

Example of outbound filter implementation:

public class ApplyOutboundIndexWorkflowFilter : OutboundIndexFilterProcessor 
{ 
    public override void Process(OutboundIndexFilterArgs args) 
    { 
        //You can use args.IsExcluded to remove items from the search results here 
    } 
}

More examples and information could be found on http://www.sitecore.net/learn/blogs/technical-
blogs/sitecore-7-development-team/posts/2013/04/sitecore-7-inbound-and-outbound-filter-
pipelines.aspx

Delete all previous versions of the item in the index when adding new version

By default Sitecore adds all versions of the item to the sitecore_master_index. The drawback of 
that is that if users are using workflows and adding lots of versions all of them will be added to the 
search results in the content editor.

Configuration:

<event name="item:versionAdded" > 
              <handler type="FilterPatch.Library.ContentSearch.EventHandler, AssemblyName" 
method="Execute" /> 
       </event>

Handler implementation

public class EventHandler 
    { 
        public void Execute(object sender, EventArgs eventArgs) 
        { 
            var item = Event.ExtractParameter(eventArgs, 0) as Item; 
 
            //If item has less than 2 versions - then skip 
            if(item.Versions.Count < 2) 
            { 
                return; 
            } 
 
            var indexableItem = new SitecoreIndexableItem(item); 
 
            var index = ContentSearchManager.GetIndex(indexableItem); 
 
            using (var context = index.CreateDeleteContext()) 
            { 
                foreach(var version in item.Versions.GetVersions(true)) 

https://riptutorial.com/ 22

http://www.sitecore.net/learn/blogs/technical-blogs/sitecore-7-development-team/posts/2013/04/sitecore-7-inbound-and-outbound-filter-pipelines.aspx
http://www.sitecore.net/learn/blogs/technical-blogs/sitecore-7-development-team/posts/2013/04/sitecore-7-inbound-and-outbound-filter-pipelines.aspx
http://www.sitecore.net/learn/blogs/technical-blogs/sitecore-7-development-team/posts/2013/04/sitecore-7-inbound-and-outbound-filter-pipelines.aspx


                { 
                    if(!version.Versions.IsLatestVersion()) 
                    { 
                        var indexableItemVersion = new SitecoreIndexableItem(version); 
                        context.Delete(indexableItemVersion.UniqueId); 
                    } 
                } 
                context.Commit(); 
            } 
        } 
    }

Read Search online: https://riptutorial.com/sitecore/topic/2440/search

https://riptutorial.com/ 23

https://riptutorial.com/sitecore/topic/2440/search


Chapter 10: Security

Remarks

Sitecore offers two ways to access items that the context user doesn't have permissions to 
access. The preferred way is to use the UserSwitcher class to temporarily change the user that 
will be used to access the item. The reason that this is preferred is because you can still have 
permissions in effect for the user account that is being utilised.

The alternative is to use the SecurityDisabler class. This performs the action without any security 
constraints.

It is recommended to only use these classes for the operations that require elevated permissions. 
The best way to ensure this is by utilising the 'using' keyword in C#; this will ensure that the 
UserSwitcher / SecurityDisabler is correctly disposed.

Examples

Disable permission checking when accessing an item

using (new Sitecore.SecurityModel.SecurityDisabler()) 
{ 
    var item = Sitecore.Context.Database.GetItem("/sitecore/content/home"); 
}

Impersonate a different user when accessing an item

var user = Sitecore.Security.Accounts.User.FromName("sitecore/testname", false); 
 
using (new Sitecore.Security.Accounts.UserSwitcher(user)) 
{ 
    var item = Sitecore.Context.Database.GetItem("/sitecore/content/home"); 
}

Read Security online: https://riptutorial.com/sitecore/topic/2586/security

https://riptutorial.com/ 24

https://riptutorial.com/sitecore/topic/2586/security


Chapter 11: Sitecore query syntax

Remarks

Template Names vs. Template IDs vs. Item Names in Queries:

I strongly recommend that you use Template IDs and not Template Names or Item Names in your 
queries. This will ensure that your queries will still work, even when templates and/or items are 
renamed.

The one exception to this is when working with OOTB templates, while querying an OOTB 
structure, e.g. /sitecore/content or /sitecore/system/Marketing Control Panel. In these situations, 
the loss of readability is often greater than the risk of queries breaking, since these templates are 
far less likely to be renamed.

Note that template names were used in my examples, above, for sake of readabiltiy. Those 
queries should not be used in production, unless the template names are replaced with template 
IDs.

Reference Sheet:

I noticed that the Sitecore Query Cheat Sheet is no longer available for download on the web (all 
of the Sitecore-hosted links now redirect to 404 pages). Fortunately, I had a copy on my machine, 
and have added a screenshot, below:

https://riptutorial.com/ 25



https://riptutorial.com/ 26

http://i.stack.imgur.com/GWePd.png


Examples

Select by item path

Query:

query:/sitecore/content/home/foo/bar

Result

bar

Relative query

Current Item:

bar (path: /sitecore/content/home/foo/bar)

Query:

query:./child/grandchild

Result:

grandchild (path: /sitecore/content/home/foo/bar/child/grandchild)

Item attributes query

Query:

query:/sitecore/content/[@@templatename='Homepage']

Result:

home (name: home, path: /sitecore/content/home, template name: Homepage)

Site-specific query

Tree structure:

/sitecore 
    /content 
        /foo-site 
            /home 
                /my-account 
        /bar-site 

https://riptutorial.com/ 27



            /home 
                /my-account 
        /baz-site 
            /home 
                /my-account

The template of each site item (foo-site, bar-site, baz-site) is named Site Node.•
The template of each home item (home, home, home) is named Homepage•
The template of each user account item (my-account, my-account, my-account) is named User 
Account Page

•

Current Item:

The current item could be the home item or any page underneath the home item for any of the given 
sites, and this query will still work (provided that there are no items with the Homepage template 
underneath the home items that are an ancestor of the current item).

Query:

query:./ancestor-or-self::*[@@templatename='Homepage']/*[@@templatename='my-account']

Result:

If querying from the home item or one of its descendants in the foo-site site:

/sitecore/content/foo-site/home/my-account

If querying from the home item or one of its descendants in the bar-site site:

/sitecore/content/bar-site/home/my-account

If querying from the home item or one of its descendants in the baz-site site:

/sitecore/content/baz-site/home/my-account

Read Sitecore query syntax online: https://riptutorial.com/sitecore/topic/7212/sitecore-query-syntax

https://riptutorial.com/ 28

https://riptutorial.com/sitecore/topic/7212/sitecore-query-syntax


Chapter 12: Templates

Examples

Get Sitecore Template Item by ID

To get template item by template Id.

TemplateItem templateItem = Sitecore.Context.Database.GetTemplate(new ID("{11111111-1111-1111-
1111-111111111111}"));

Get Sitecore Template Item by name

Input the name of the template to get the template by using GetTemplate Method.

TemplateItem templateItem = Sitecore.Context.Database.GetTemplate("NameOfTheTemplate");

Read Templates online: https://riptutorial.com/sitecore/topic/2448/templates

https://riptutorial.com/ 29

https://riptutorial.com/sitecore/topic/2448/templates


Chapter 13: Unicorn

Introduction

Unicorn is a utility for Sitecore that solves the issue of moving templates, renderings, and other 
database items between Sitecore instances. This becomes problematic when developers have 
their own local instances - packages are error-prone and tend to be forgotten on the way to 
production. Unicorn solves this issue by writing serialized copies of Sitecore items to disk along 
with the code - this way, a copy of the necessary database items for a given codebase 
accompanies it in source control.

Remarks

Useful Information can be found here:

Unicorn on Github•
Founder of Unicorn - Kam Figy's Blog•
Sitecore: Getting Started with Unicorn!•

Examples

Initial Setup

You'll need Sitecore 6.6 or later (including Sitecore 8.x). Note that for Sitecore 6.6 
compatibility you must have .NET 4.5 installed.

•

Install Unicorn. This is as simple as adding the Unicorn NuGet package to your project.•

PM> Install-Package Unicorn

When you install the NuGet package, a README file will come up in Visual Studio with help 
to get you started.

•

Manual Installation/Install from Source

Clone the repository•
Place a copy of your Sitecore.Kernel.dll assembly in /lib/sitecore/v7 (for v7/v8)•
Build the project for your Sitecore version using Visual Studio 2012 or later•
Copy Unicorn.dll, Rainbow.dll, Rainbow.Storage.Sc.dll, Rainbow.Storage.Yaml.dll and 
Kamsar.WebConsole.dll to your main project in whatever fashion you wish (project 
reference, as binary references, etc)

•

Copy Standard Config Files*.config to the App_Config\Include\Unicorn folder•
Configure to your liking; the setup README file is a good starting point.•
Hit $yoursite/unicorn.aspx to perform initial serialization of your configured predicate•

https://riptutorial.com/ 30

https://github.com/kamsar/Unicorn
http://kamsar.net/index.php/category/Unicorn/
http://blog.karbyn.com/articles/sitecore-getting-started-with-unicorn/
https://sdn.sitecore.net/SDN5/Products/Sitecore%20V5/Sitecore%20CMS%206/Update/6_6_0_rev_140410.aspx
https://dev.sitecore.net/Downloads.aspx
https://www.nuget.org/packages/Unicorn/
https://github.com/kamsar/Unicorn/blob/master/Build/Unicorn.nuget/readme.txt
https://github.com/kamsar/Unicorn/blob/master/Build/Unicorn.nuget/readme.txt


Data Provider Architecture

There are two components to the Unicorn data provider: the database-specific implementation, 
and the Unicorn implementation.

The Unicorn implementation is an individual configuration of Unicorn dependencies that get 
automatic serialization. For example, if you were serializing two presets you'd need two instances 
of UnicornDataProvider - one for each IPredicate implementation.

The database specific implementation is a subclass of the original Sitecore data provider that 
provides a container for one or more UnicornDataProvider instances. Out of the box, a 
UnicornSqlServerDataProvider is provided. You could roll your own if you're on Oracle. This provider 
is effectively an unblockable event handler that allows Unicorn to trap item changes even if the evil 
EventDisabler class is being used.

If you want to wire multiple Unicorn data providers to your database, you create a class that 
derives from UnicornSqlServerDataProvider. In this class you can select to:

Create a constructor that injects your provider(s) using the base constructor:•

public MyDataProvider(string connectionString) : 
base(connectionString, new UnicornDataProvider(), new 
UnicornDataProvider(), ...)

Create a constructor that injects your provider(s) using code (this is better if you have to 
construct dependencies, etc that don't fit well in a base call):

•

public MyDataProvider(string connectionString) : base(connectionString, null) 
 { 
    AddUnicornDataProvider(new UnicornDataProvider()); 
    // ... 
 }

Read Unicorn online: https://riptutorial.com/sitecore/topic/8852/unicorn

https://riptutorial.com/ 31

https://riptutorial.com/sitecore/topic/8852/unicorn


Chapter 14: Web Forms For Marketeers 
(WFFM)

Introduction

Web Forms For Marketeers is the popular Sitecore module that allows to create forms in Sitecore 
and customize and extend their behavior using save actions.

More information about the module can be found in 
https://dev.sitecore.net/Downloads/Web_Forms_For_Marketers.aspx

Examples

Submit the WFFM form programmatically

This example shows how to submit the WFFM form in code.

var controlResults = new List<ControlResult>(); 
controlResults.Add(new ControlResult(Pdf_Request_Form.Name.ItemID.ToString(), "Name", name, 
string.Empty)); 
controlResults.Add(new ControlResult(Pdf_Request_Form.Email.ItemID.ToString(), "Email", email, 
string.Empty)); 
FormDataHandler.ProcessData(Pdf_Request_Form.ItemID, controlResults.ToArray(), new 
IActionDefinition[] {}, DependenciesManager.ActionExecutor);

Read Web Forms For Marketeers (WFFM) online: https://riptutorial.com/sitecore/topic/9758/web-
forms-for-marketeers--wffm-

https://riptutorial.com/ 32

https://dev.sitecore.net/Downloads/Web_Forms_For_Marketers.aspx
https://riptutorial.com/sitecore/topic/9758/web-forms-for-marketeers--wffm-
https://riptutorial.com/sitecore/topic/9758/web-forms-for-marketeers--wffm-


Chapter 15: Workflow

Examples

Set Item State and Executes actions in that state

public void MoveToStateAndExecuteActions(Item item, ID workflowStateId) 
{ 
    Sitecore.Workflows.IWorkflowProvider workflowProvider = Item.Database.WorkflowProvider; 
    Sitecore.Workflows.IWorkflow workflow = workflowProvider.GetWorkflow(item); 
 
    // if item is in any workflow 
    if (workflow != null) 
    { 
        using (new Sitecore.Data.Items.EditContext(item)) 
        { 
            // update item's state to the new one 
            item[Sitecore.FieldIDs.WorkflowState] = workflowStateId.ToString(); 
        } 
 
        Item stateItem = ItemManager.GetItem(workflowStateId, 
            Language.Current, Sitecore.Data.Version.Latest, item.Database, 
SecurityCheck.Disable); 
 
        // if there are any actions for the new state 
        if (!stateItem.HasChildren) 
            return; 
 
        WorkflowPipelineArgs workflowPipelineArgs = new WorkflowPipelineArgs(item, null, 
null); 
 
        // start executing the actions 
        Pipeline pipeline = Pipeline.Start(stateItem, workflowPipelineArgs); 
        if (pipeline == null) 
            return; 
        WorkflowCounters.ActionsExecuted.IncrementBy(pipeline.Processors.Count); 
    } 
}

Thanks to this thread

Executing workflow command to change the workflow state

Thanks to this great post

If we want to mimic the Sitecore UI behavior and execute the command which will change the 
workflow state, we need to use WorkflowProvider to get an instance of the workflow assigned to 
the given item and call Execute method with a chosen command ID. This will fire all the actions 
which are defined under the command item node, change the state of the item and fire all the 
auto-actions defined below the new state item node:

public static WorkflowResult ExecuteCommand(Item item, string commandName, string comment) 

https://riptutorial.com/ 33

http://stackoverflow.com/questions/18903060/execute-sitecore-workflow-state-actions-using-the-api
https://www.cognifide.com/our-blogs/sitecore/changing-workflow-state-of-sitecore-items-programmatically/


{ 
    IWorkflow workflow = item.Database.WorkflowProvider.GetWorkflow(item); 
 
    if (workflow == null) 
    { 
        return new WorkflowResult(false, "No workflow assigned to item"); 
    } 
 
    WorkflowCommand command = workflow.GetCommands(item[FieldIDs.WorkflowState]) 
        .FirstOrDefault(c => c.DisplayName == commandName); 
 
    if (command == null) 
    { 
        return new WorkflowResult(false, "Workflow command not found"); 
    } 
 
    return workflow.Execute(command.CommandID, item, comment, false, new object[0]); 
}

Read Workflow online: https://riptutorial.com/sitecore/topic/4235/workflow

https://riptutorial.com/ 34

https://riptutorial.com/sitecore/topic/4235/workflow


Chapter 16: Workflow

Remarks

Workflows provide a flexible and controllable way of content creation, maintenance, and review. 
Workflow contains a list of states and commands.

Examples

Assign workflow to an item

Information about the item workflow is stored in the "Workflow" field.

var workflow = Factory.GetDatabase("master").WorkflowProvider.GetWorkflow(workflowId); 
workflow.Start(item); 
 
var workflowId = item.Fields["__Default workflow"].Value; 
var workflow = Factory.GetDatabase("master").WorkflowProvider.GetWorkflow(workflowId); 
workflow.Start(item);

Read Workflow online: https://riptutorial.com/sitecore/topic/6315/workflow

https://riptutorial.com/ 35

https://riptutorial.com/sitecore/topic/6315/workflow


Credits

S. 
No

Chapters Contributors

1
Getting started with 
sitecore

Adrian Iorgu, Community, Jack Spektor, Liam, Paritosh Tripathi, 
Rodrigo Peplau

2 Diagnostics: Asserts James de la Bastide, JohnD

3
Engagement 
Automation

Jack Spektor

4 Glass Mapper Shriroop

5 Index configuration Liam

6 Items Jack Spektor, JohnD, Zachary Kniebel

7 LinkManager Liam

8 Scaling Jack Spektor, Liam

9 Search David Masters, Jack Spektor, Laurel

10 Security Jack Spektor, Laurel, SamMullins

11
Sitecore query 
syntax

Zachary Kniebel

12 Templates Dheeraj Palagiri, Wesley Lomax

13 Unicorn Shriroop

14
Web Forms For 
Marketeers (WFFM)

Jack Spektor

15 Workflow Rodrigo Peplau

https://riptutorial.com/ 36

https://riptutorial.com/contributor/2007455/adrian-iorgu
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/750392/jack-spektor
https://riptutorial.com/contributor/542251/liam
https://riptutorial.com/contributor/4781528/paritosh-tripathi
https://riptutorial.com/contributor/4226989/rodrigo-peplau
https://riptutorial.com/contributor/6620542/james-de-la-bastide
https://riptutorial.com/contributor/343911/johnd
https://riptutorial.com/contributor/750392/jack-spektor
https://riptutorial.com/contributor/1740994/shriroop
https://riptutorial.com/contributor/542251/liam
https://riptutorial.com/contributor/750392/jack-spektor
https://riptutorial.com/contributor/343911/johnd
https://riptutorial.com/contributor/1506793/zachary-kniebel
https://riptutorial.com/contributor/542251/liam
https://riptutorial.com/contributor/750392/jack-spektor
https://riptutorial.com/contributor/542251/liam
https://riptutorial.com/contributor/254449/david-masters
https://riptutorial.com/contributor/750392/jack-spektor
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/750392/jack-spektor
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/590377/sammullins
https://riptutorial.com/contributor/1506793/zachary-kniebel
https://riptutorial.com/contributor/2263758/dheeraj-palagiri
https://riptutorial.com/contributor/2006945/wesley-lomax
https://riptutorial.com/contributor/1740994/shriroop
https://riptutorial.com/contributor/750392/jack-spektor
https://riptutorial.com/contributor/4226989/rodrigo-peplau

	About
	Chapter 1: Getting started with sitecore
	Remarks
	Versions
	Examples
	Installation or Setup
	Using SIM manager for installation


	Chapter 2: Diagnostics: Asserts
	Syntax
	Examples
	Ensure two values are equal
	Ensure a value is true or false
	ResultNotNull
	Required Object
	Null/Empty Checks

	IsNotNull
	IsNotNullOrEmpty
	IsNull
	Argument Checks

	ArgumentCondition
	ArgumentNotNull
	ArgumentNotNullOrEmpty
	Ensure item is in editing mode
	Security Asserts

	CanRunApplication
	HasAccess

	Chapter 3: Engagement Automation
	Remarks
	Examples
	Get the contact by username
	Change the automation state of the contact
	Enroll contact in the engagement plan programmatically


	Chapter 4: Glass Mapper
	Introduction
	Remarks
	Examples
	The easiest way to map Sitecore data to code.


	Chapter 5: Index configuration
	Examples
	Field Configuration

	StorageType
	IndexType
	VectorType
	Boost

	Chapter 6: Items
	Syntax
	Remarks
	Examples
	Get Item by ID
	Get Specific Version of Item
	Get Item by Path
	Get Raw Value of Field on a Sitecore Item
	Publish Sitecore item programmatically


	Chapter 7: LinkManager
	Syntax
	Examples
	Obtaining a url for an Item


	Chapter 8: Scaling
	Remarks
	Examples
	Implement remote events in load-balanced enviornment


	Chapter 9: Search
	Remarks
	Examples
	Configuration
	Create an inbound filter for the search
	Create an outbound filter for the search
	Delete all previous versions of the item in the index when adding new version


	Chapter 10: Security
	Remarks
	Examples
	Disable permission checking when accessing an item
	Impersonate a different user when accessing an item


	Chapter 11: Sitecore query syntax
	Remarks
	Examples
	Select by item path
	Relative query
	Item attributes query
	Site-specific query


	Chapter 12: Templates
	Examples
	Get Sitecore Template Item by ID
	Get Sitecore Template Item by name


	Chapter 13: Unicorn
	Introduction
	Remarks
	Examples
	Initial Setup
	Manual Installation/Install from Source
	Data Provider Architecture


	Chapter 14: Web Forms For Marketeers (WFFM)
	Introduction
	Examples
	Submit the WFFM form programmatically


	Chapter 15: Workflow
	Examples
	Set Item State and Executes actions in that state
	Executing workflow command to change the workflow state


	Chapter 16: Workflow
	Remarks
	Examples
	Assign workflow to an item


	Credits



