
sml

#sml

Table of Contents

About 1

Chapter 1: Getting started with sml 2

Remarks 2

Examples 2

Installation 2

On Windows 2

Using Homebrew On MacOS 2

On Ubuntu / Debian Linux 3

Adding readline support 3

Chapter 2: Comments 4

Syntax 4

Examples 4

All comments are block comments 4

Nested Comments 4

Chapter 3: Interactive Programming using the REPL 5

Syntax 5

Examples 5

Starting the SMLNJ REPL 5

Using 'it' 5

Chapter 4: Module System 7

Examples 7

Lazy evaluation 7

Chapter 5: Numeric Types 10

Syntax 10

Examples 10

Integer 10

Real 10

Coercion of Real Values to Integers 11

Arithmetic Operator Error with Mixed Numeric Types 12

Coersion of Integer Value to Real 12

Credits 13

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: sml

It is an unofficial and free sml ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official sml.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/sml
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with sml

Remarks

This section provides an overview of what sml is, and why a developer might want to use it.

It should also mention any large subjects within sml, and link out to the related topics. Since the
Documentation for sml is new, you may need to create initial versions of those related topics.

Examples

Installation

There is a dozen implementations of Standard ML. MLton produces very optimized code, but has
no REPL. SML/NJ is the most widely used, but has slightly difficult error messages for learning
purposes. Moscow ML and Poly/ML are easy to get started with, but don't support the .mlb
package format. That isn't essential for getting started, though.

Here are instructions for installing each of SML/NJ, Moscow ML and Poly/ML divided by operating
system.

On Windows

SML/NJ:

Go to http://www.smlnj.org/dist/working/ and find the latest release, e.g. 110.80 Distribution
Files.

•

Scroll down and find the MS Windows Installer, e.g. smlnj-110.80.msi. Run the installer.•
You now have a REPL in e.g. C:\Program Files (x86)\SML NJ\bin\sml.bat.•

Moscow ML:

Go to http://mosml.org/ and click "Download Win. Installer". Run the installer.•
You now have a REPL in e.g. C:\Program Files (x86)\mosml\bin\mosml.exe.•

Using Homebrew On MacOS

SML/NJ:

Run brew install smlnj as your own user. Test REPL with smlnj.•

Moscow ML:

Go to http://mosml.org/ and click "Download PKG File". Run the installer.•

https://riptutorial.com/ 2

http://mlton.org/
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
http://smlnj.org/
http://mosml.org/
http://www.polyml.org/
http://www.smlnj.org/dist/working/
http://www.smlnj.org/dist/working/110.80/index.html
http://www.smlnj.org/dist/working/110.80/index.html
http://smlnj.cs.uchicago.edu/dist/working/110.80/smlnj-110.80.msi
http://mosml.org/
http://brew.sh/
http://mosml.org/

Missing... Test REPL how? Is it in $PATH now?•

On Ubuntu / Debian Linux

SML/NJ:

Run sudo apt-get install smlnj as the super user. Test REPL with smlnj.•

Moscow ML:

(Ubuntu) Add the PPA as the super user. Test REPL with mosml.

sudo add-apt-repository ppa:kflarsen/mosml
sudo apt-get update
sudo apt-get install mosml

•

Adding readline support

In order to be able to use the arrow keys to navigate lines that were previously typed into the
REPL, most of the SML compilers can benefit from the program rlwrap. Using Homebrew on
MacOS, install this by brew install rlwrap, and on Ubuntu / Debian Linux, install this by sudo apt-
get install rlwrap. Then in the terminal, try the following:

alias mosml='rlwrap mosml -P full'
alias sml='rlwrap sml'
alias poly='rlwrap poly'

These aliases can be added to e.g. your ~/.bashrc so they work by default.

The arrows key should now work better.

Read Getting started with sml online: https://riptutorial.com/sml/topic/6953/getting-started-with-sml

https://riptutorial.com/ 3

https://riptutorial.com/sml/topic/6953/getting-started-with-sml

Chapter 2: Comments

Syntax

(* opens a block comment•
*) closes a block comment•
(* and *) must be balanced in number•

Examples

All comments are block comments

(***
* All comments in SML are block comments
* Block Comments begin with '(*'
* Block Comments end with '*)'
* (* Block Comments can be nested *)
* The additional framing asterisks at the beginning
* and end of this block comment are common to languages
* of SML's vintage.
* Likewise the asterisk at the start of each line
* But this is solely a matter of style.
**)

val _ = print "Block comment example\n" (* line ending block comment *)

Nested Comments

(* The block comment syntax allows nested comments
(* whether or not this is a good thing is probably
a matter of personal opinion (*or coding standards*)*)*)

val _ = print "Nested comment example\n" (* line ending block comment *)

Read Comments online: https://riptutorial.com/sml/topic/6976/comments

https://riptutorial.com/ 4

https://riptutorial.com/sml/topic/6976/comments

Chapter 3: Interactive Programming using the
REPL

Syntax

Unlike source code files, the semicolon ';' is mandatory to terminate each expression in the
REPL.

•

Examples

Starting the SMLNJ REPL

REPL stands for 'Read Evaluate Print Loop.' The REPL can be used to write and execute code
one line at a time and is an alternative to writing code to a file and then compiling or interpreting
the entire file before execution.

To start the SMLNJ REPL from a command prompt:

smluser> sml
Standard ML of New Jersey v110.78 [built: Thu Jul 23 11:21:58 2015]
- 3+4;
val it = 7 : int
- (*a comment: press contrl-d to exit *)
smluser>

In the Bash and similar command shells, GNU readline functionality can be added to the SML
REPL using the system command rlwrap sml.

smluser> rlwrap sml
Standard ML of New Jersey v110.78 [built: Thu Jul 23 11:21:58 2015]
- 3+4;
val it = 7 : int
- (* pressing the up arrow recalls the previous input *)
- 3+4;
val it = 7 : int
-
smluser>

Using 'it'

All SML expressions return a value. The REPL stores the return value of the last evaluated
expression. it provides the value of the last evaluated expression within the REPL.

smluser> sml
Standard ML of New Jersey v110.78 [built: Thu Jul 23 11:21:58 2015]
- 3+4;
val it = 7 : int

https://riptutorial.com/ 5

https://cnswww.cns.cwru.edu/php/chet/readline/rluserman.html

- it;
val it = 7 : int
- it + 1;
val it = 8 : int
-

[1]+ Stopped sml
smluser>

Effectively, comments are not evaluated by the REPL and do not change the value of it.

smluser> sml
Standard ML of New Jersey v110.78 [built: Thu Jul 23 11:21:58 2015]
- 3+4;
val it = 7 : int
- (* a comment *);
- it;
val it = 7 : int

[1]+ Stopped sml
smluser>

Read Interactive Programming using the REPL online:
https://riptutorial.com/sml/topic/6975/interactive-programming-using-the-repl

https://riptutorial.com/ 6

https://riptutorial.com/sml/topic/6975/interactive-programming-using-the-repl

Chapter 4: Module System

Examples

Lazy evaluation

Standard ML doesn't have built-in support for lazy evaluation. Some implementations, notably
SML/NJ, have nonstandard lazy evaluation primitives, but programs that use those primitives
won't be portable. Lazy suspensions can also be implemented in a portable manner, using
Standard ML's module system.

First we define an interface, or signature, for manipulating lazy suspensions:

signature LAZY =
sig
 type 'a lazy

 val pure : 'a -> 'a lazy
 val delay : ('a -> 'b) -> 'a -> 'b lazy
 val force : 'a lazy -> 'a

 exception Diverge

 val fix : ('a lazy -> 'a) -> 'a
end

This signature indicates that:

The type constructor of lazy suspensions is abstract - its internal representation is hidden
from (and irrelevant to) users.

•

There are two ways to create a suspension: by directly wrapping its final result, and by
delaying a function application.

•

The only thing we can do with a suspension is force it. When a delayed suspension is forced
for the first time, its result is memoized, so that the next time the result won't have to be
recomputed.

•

We can create self-referential values, where the self-reference goes through a suspension.
This way we can create, for example, a logically infinite stream containing the same
repeated element, as in the following Haskell snippet:

•

-- Haskell, not Standard ML!
xs :: [Int]
xs = 1 : xs

After defining the interface, we have to provide an actual implementation, also known as module
or structure:

structure Lazy :> LAZY =
struct

https://riptutorial.com/ 7

 datatype 'a state
 = Pure of 'a
 | Except of exn
 | Delay of unit -> 'a

 type 'a lazy = 'a state ref

 fun pure x = ref (Pure x)
 fun delay f x = ref (Delay (fn _ => f x))
 fun compute f = Pure (f ()) handle e => Except e
 fun force r =
 case !r of
 Pure x => x
 | Except e => raise e
 | Delay f => (r := compute f; force r)

 exception Diverge

 fun fix f =
 let val r = ref (Except Diverge)
 in r := compute (fn _ => f r); force r end
end

This structure indicates that a suspension is internally represented as a mutable cell, whose
internal state is one of the following:

Pure x, if the suspension was already forced, and its final result is x.•
Except e, if the suspension was already forced, and an exception was thrown in the process.•
Delay f, if the suspension wasn't forced yet, and its final result can be obtained by evaluating
f ().

•

Furthermore, because we used opaque ascription (:>), the internal representation of the type of
suspensions is hidden outside of the module.

Here's our new type of lazy suspensions in action:

infixr 5 :::
datatype 'a stream = NIL | ::: of 'a * 'a stream Lazy.lazy

(* An infinite stream of 1s, as in the Haskell example above *)
val xs = Lazy.fix (fn xs => 1 ::: xs)

(* Haskell's Data.List.unfoldr *)
fun unfoldr f x =
 case f x of
 NONE => NIL
 | SOME (x, y) => x ::: Lazy.delay (unfoldr f) y

(* Haskell's Prelude.iterate *)
fun iterate f x = x ::: Lazy.delay (iterate f o f) x

(* Two dummy suspensions *)
val foo = Lazy.pure 0
val bar = Lazy.pure 1

(* Illegal, foo and bar have type `int Lazy.lazy`,

https://riptutorial.com/ 8

 * whose internal representation as a mutable cell is hidden *)
val _ = (foo := !bar)

Read Module System online: https://riptutorial.com/sml/topic/7013/module-system

https://riptutorial.com/ 9

https://riptutorial.com/sml/topic/7013/module-system

Chapter 5: Numeric Types

Syntax

Real numbers must begin with one or more digits followed by a period followed by one or
more digits.

•

~ is the operator to denote negative numbers•
div is the operator for integer division.•
/ is the operator for real division.•

Examples

Integer

Integer Basics

Standard ML of New Jersey v110.78 [built: Thu Jul 23 11:21:58 2015]
- 6;
val it = 6 : int
- ~6;
val it = ~6 : int
- 6 + ~6;
val it = 0 : int

Integer Division

- 6 div 3;
val it = 2 : int
- 6 div 4;
val it = 0 : int
- 3 div 6;
val it = 0 : int

Integer Value Bounds

Using Integer Basis Library Functions

- Int.maxInt;
val it = SOME 1073741823 : int option
- Int.minInt;
val it = SOME ~1073741824 : int option

Real

Real Number Basics

- 6.0;
val it = 6.0 : real

https://riptutorial.com/ 10

http://sml-family.org/Basis/integer.html

- ~6.0;
val it = ~6.0 : real
- 6.0 + ~6.0;
val it = 0.0 : real
- 6.0 / 3.0;
val it = 2.0 : real
- 4.0 / 6.0;
val it = 0.666666666667 : real

Real Value Bounds

Using Real Basis Library Functions

- Real.maxFinite;
val it = 1.79769313486E308 : real
- Real.minPos;
val it = 4.94065645841E~324 : real
- Real.minNormalPos;
val it = 2.22507385851E~308 : real

Infinity

- Real.posInf;
val it = inf : real
- Real.negInf;
val it = ~inf : real

Coercion of Real Values to Integers

Rounding

Values midway between two integers go toward the nearest even value.

- round(4.5);
val it = 4 : int
- round(3.5);
val it = 4 : int

Truncation

val it = 4 : int
- trunc(4.5);
val it = 4 : int
- trunc(3.5);
val it = 3 : int

Floor and Ceiling

- ceil(4.5);
val it = 5 : int
- floor(4.5);
val it = 4 : int

https://riptutorial.com/ 11

http://sml-family.org/Basis/real.html

Arithmetic Operator Error with Mixed Numeric Types

Cannot add Integer and Real*

- 5 + 1.0;
stdIn:1.2-10.4 Error: operator and operand don't agree [overload conflict]
 operator domain: [+ ty] * [+ ty]
 operand: [+ ty] * real
 in expression:
 5 + 1.0

Coersion of Integer Value to Real

- real(6);
val it = 6.0 : real

Read Numeric Types online: https://riptutorial.com/sml/topic/7010/numeric-types

https://riptutorial.com/ 12

https://riptutorial.com/sml/topic/7010/numeric-types

Credits

S.
No

Chapters Contributors

1
Getting started with
sml

4444, ben rudgers, Community, Simon Shine

2 Comments ben rudgers

3
Interactive
Programming using
the REPL

ben rudgers, Nick

4 Module System pyon

5 Numeric Types ben rudgers, pyon

https://riptutorial.com/ 13

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/2101909/ben-rudgers
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/235908/simon-shine
https://riptutorial.com/contributor/2101909/ben-rudgers
https://riptutorial.com/contributor/2101909/ben-rudgers
https://riptutorial.com/contributor/8201661/nick
https://riptutorial.com/contributor/46571/pyon
https://riptutorial.com/contributor/2101909/ben-rudgers
https://riptutorial.com/contributor/46571/pyon

	About
	Chapter 1: Getting started with sml
	Remarks
	Examples
	Installation

	On Windows
	Using Homebrew On MacOS
	On Ubuntu / Debian Linux
	Adding readline support
	Chapter 2: Comments
	Syntax
	Examples
	All comments are block comments
	Nested Comments

	Chapter 3: Interactive Programming using the REPL
	Syntax
	Examples
	Starting the SMLNJ REPL
	Using 'it'

	Chapter 4: Module System
	Examples
	Lazy evaluation

	Chapter 5: Numeric Types
	Syntax
	Examples
	Integer
	Real
	Coercion of Real Values to Integers
	Arithmetic Operator Error with Mixed Numeric Types
	Coersion of Integer Value to Real

	Credits

