
soap

#soap

Table of Contents

About 1

Chapter 1: Getting started with soap 2

Remarks 2

Versions 2

Examples 2

General Information 2

SOAP 3

Differences between SOAP 1.1 and 1.2 4

Web Service Interoperability 5

WSDL 5

WSDL 1.1 5

WSDL 2.0 8

Differences between WSDL 1.1 and 2.0 9

Which style to prefer 11

RPC / encoded 11

RPC / literal 12

Document / encoded 13

Document / literal 14

Document / literal (wrapped) 15

UDDI 16

Further notes: 16

Java Client for Weather service open source webservice avaliable on http://www.webserviceX 17

Creating a Simple Web Service and Clients with JAX-WS (Document / literal) 18

Chapter 2: Consuming SOAP Web Service 22

Introduction 22

Parameters 22

Examples 22

Without creating Stub or Java files 22

Credits 24

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: soap

It is an unofficial and free soap ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official soap.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/soap
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with soap

Remarks

This section provides an overview of what soap is, and why a developer might want to use it.

It should also mention any large subjects within soap, and link out to the related topics. Since the
Documentation for soap is new, you may need to create initial versions of those related topics.

Versions

Version Release Date

1.1 2000-05-08

1.2 2003-06-24

Examples

General Information

SOAP is an acronym for Simple Object Access Protocol which defines a protocol that is used to
exchange data via a Remote Procedure Call (RPC) with other SOAP services or clients. It is
available in two version:

SOAP 1.1 [IETF]•
SOAP 1.2 [IETF]•

SOAP 1.2 obsoletes SOAP 1.1 it is therefore recommended to use SOAP 1.2 if possible.

It is often build on top of HTTP/S and rarely on SMTP or FTP, though it would support it according
to the protocol. Although HTTP is often used as underlying transportation protocol, SOAP uses
only a limited subset of it. For sending requests it relies almost completely on HTTP's POST
operation. GET invocations are theoretically possible since 1.2, though the document has to be
passed as URI parameter and thus may exceed a roughly 3000 character boundary which is
rejected by most frameworks. Also, security related settings are usually defined within a special
SOAP header.

Although SOAP and REST are called web-services, they are very different by nature. Some
frameworks distinguish between WS (for SOAP based services) and RS (for REST based
services).

The following table gives a brief overview on the differences between both web service types.

https://riptutorial.com/ 2

https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://tools.ietf.org/html/rfc3288
https://www.w3.org/TR/2007/REC-soap12-part0-20070427/
https://tools.ietf.org/html/rfc4227
http://www.riptutorial.com/rest/example/20145/rest-over-http

Aspect SOAP REST

Standard SOAP, WSDL No standard, just an architectural style

Resource
addressing

Indirect via SOAP
operations

via unique resource identifiers (URIs)

Error handling SOAP fault message
HTTP error response codes and optionally
response body

Data
representation

XML all available encodings in HTTP

HTTP usage As transport protocol
Actions on resources (CRUD) mapped on
HTTP methods (GET, POST, PUT,
DELETE, ...)

Transactional
support

via SOAP header by modeling a transaction as a resource

State
Stateful (SOAP action is
part of the application)

Stateless (self-contained requests)

Service
discovery

UDDI / WSDL
None actually; Start-URI of the API should
return a list of sub APIs though

Method Inside SOAP body HTTP method

Method
arguments

Defined by XML schema in
the WSDL

Either via HTTP Headers or Path/Query or
Matrix parameters within the URI

State transition
Difficult to determine as
not directly based on data

Next URI invocation

Caching support Caching often not desired, Simple as defined by HTTP

SOAP

A SOAP requests consists of a SOAP envelop which has to contain a body element and may
contain an optional header element. The header element is used to pass certain configurations to
the service like i.e. WS-Security may defined that the message is encrypted or WS-
Coordination/WS-Transaction may define that the message has to be executed within a
transaction.

A simple SOAP 1.2 requests via HTTP which adds two values may look like this:

POST /calculator HTTP/1.1
Host: http://example.org

https://riptutorial.com/ 3

https://www.w3.org/TR/soap/
https://www.w3.org/TR/wsdl
https://en.wikipedia.org/wiki/WS-Security
https://en.wikipedia.org/wiki/WS-Coordination
https://en.wikipedia.org/wiki/WS-Coordination

Content-Type: application/soap+xml; charset=utf-8
Content-Length: 224

<?xml version="1.0"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Body>
 <m:AddValues xmlns:m="http://example.org/calculator">
 <m:FirstValue>1</m:FirstValue>
 <m:SecondValue>2</m:SecondValue>
 </m:AddValues>
 </env:Body>
</env:Envelope>

A response to the above sample request may look like this

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: 329

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 soap:encodingStyle="http://www.w3.org/2003/05/soap-encoding">
 <soap:Body xmlns:m="http://www.example.org/calculator">
 <m:AddValuesResponse>
 <m:Result>3</m:Result>
 </m:AddValuesResponse>
 </soap:Body>
</soap:Envelope>

The example above defined a request which invoked AddValues method with two arguments,
FirstValue set to 1 and SecondValue set to 2. The request resulted in an execution of this method on
the remote SOAP server which calculated a value of 3 as a result which is encapsulated in a
separate response element, which by convention is often the invoked method name plus a trailing
Response string so anyone who is inspecting the response can conclude that this is the response of
a previous AddValue method invocation.

Differences between SOAP 1.1 and 1.2

SOAP 1.2 allows for other transport protocols then HTTP as long as the binding framework is
supported by the protocol.

SOAP 1.1 is based on XML 1.0, while 1.2 is based on XML Infoset which allows to serialize the
SOAP messages with other serializers then the default XML 1.0 serializer used by SOAP 1.1. This
allows i.e. to serialize messages as binary messages and therefore prevent some overhead of the
XML nature of the message. In addition to that, the serialization mechanism of the underlying
protocol used can be determined via the data binding.

The interoperability aspect was also fostered with SOAP 1.2 by defining a more specific
processing model then its predecessor which eliminated many possibilities for interpretation.
SOAP with Attachment API (SAAJ), which allows to operate on SOAP 1.1 and 1.2 messages,
helped many framework implementors to process and create messages.

https://riptutorial.com/ 4

W3C has released a short overview on the main changes between SOAP 1.1 and 1.2

Web Service Interoperability

Web Service Interoperability (also known as WS-I) is an interoperability guideline governed by
some well known enterprises such as IBM, Microsoft, Oracle and HP to name just a few. These
guidelines among others recommend to use only one single root element within the SOAP body
even though the SOAP does allow to contain multiple elements within the body.

WS-I consists of

WS-I Basic Profile a.k.a WSI-BP•
WS-I Basic Security Profile•
Simple Soap Binding Profile•

WSI-BP is available in 4 different versions v1.0 (2004), v1.1 (2006), v1.2 (2010), v2.0 (2010) and
defines interoperability guidelines for core web service specifications such as SOAP, WSDL and
UDDI. Through the use of Web Services Description Language (WSDL), SOAP services can
describe their supported operations and methods within a cohesive set to other endpoints. WSI-
BP makes use of WSDL to define a narrower set then the full WSDL or SOAP schema would
define and thus eliminates some of the ambiguity within the specification itself and thus improve
the interoperability between endpoints.

WSDL

In order to advertise the available SOAP operations, their parameters as well as the respective
endpoints to invoke to clients, a further XML based document is used called Web Services
Description Language or WSDL for short.

WSDL describes the service endpoint, the binding of SOAP messages to operations, the interface
of operations as well as their types to clients. WSDL is, like SOAP, available in 2 versions which
differ in their syntax slightly though express almost the same semantics to the client.

WSDL 1.1

A WSDL 1.1 description contains of a service, a binding, a portType and a message section. It can
further import or define schemas within the WSDL file as can be seen from a sample WSDL file
which corresponds to the calculator sample shown above:

<wsdl:definitions xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:calc="http://example.org/calculator"
 xmlns:tns="http://example.org/calculatorService"
 targetNamespace="http://example.org/calculatorService">

https://riptutorial.com/ 5

https://www.w3.org/2003/06/soap11-soap12.html
https://en.wikipedia.org/wiki/Web_Services_Interoperability
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://ws-i.org/profiles/BasicProfile-1.2-2010-11-09.html
http://ws-i.org/profiles/BasicProfile-2.0-2010-11-09.html

 <!--
 Abstract type definitions
 -->

 <wsdl:types>
 <!--
 <xs:schema>
 <xs:import namespace="http://example.org/calculator"
schemaLocation="calc/calculator.xsd" />
 </xs:schema>
 -->
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://example.org/calculator"
 targetNamespace="http://example.org/calculator"
 elementFormDefault="qualified"
 attributeFormDefault="qualified">

 <xs:element name="AddValuesRequest" type="tns:AddValuesType" />
 <xs:element name="AddValuesResponse" type="tns:AddValuesResponseType" />

 <xs:complexType name="AddValuesType">
 <xs:sequence>
 <xs:element name="FirstValue" type="xs:int" minOccurs="1" maxOccurs="1" />
 <xs:element name="SecondValue" type="xs:int" minOccurs="1" maxOccurs="1"
/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="AddValuesResponseType">
 <xs:sequence minOccurs="1" maxOccurs="1">
 <xs:element name="Result" type="xs:int" />
 </xs:sequence>
 </xs:complexType>

 <xs:attribute name="Timestamp" type="xs:dateTime" />
 <xs:element name="CalculationFailure">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ErrorCode" type="xs:int" />
 <xs:element name="Reason" type="xs:string" />
 </xs:sequence>
 <xs:attribute ref="tns:Timestamp" use="required" />
 </xs:complexType>
 </xs:element>

 </xs:schema>
 </wsdl:types>

 <!--
 Abstract message definitions
 -->

 <wsdl:message name="AddValuesRequest">
 <wsdl:part name="in" element="calc:AddValuesRequest" />
 </wsdl:message>
 <wsdl:message name="AddValuesResponse">
 <wsdl:part name="out" element="calc:AddValuesResponse" />
 </wsdl:message>
 <wsdl:message name="CalculationFault">
 <wsdl:part name="fault" element="calc:CalculationFailure" />
 </wsdl:message>

https://riptutorial.com/ 6

 <!--
 Abstract portType / interface definition
 -->

 <wsdl:portType name="CalculatorEndpoint">
 <wsdl:operation name="AddValues">
 <wsdl:documentation>Adds up passed values and returns the
result</wsdl:documentation>
 <wsdl:input message="tns:AddValuesRequest" />
 <wsdl:output message="tns:AddValuesResponse" />
 <wsdl:fault name="CalculationFault" message="tns:CalculationFault" />
 </wsdl:operation>
 </wsdl:portType>

 <!--
 Concrete binding definition
 -->

 <wsdl:binding name="CalculatorBinding" type="tns:CalculatorEndpoint">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="AddValues">
 <soap:operation soapAction="http://example.org/calculator/AddValuesMessage" />
 <wsdl:input>
 <soap:body parts="in" use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body parts="out" use="literal" />
 </wsdl:output>
 <wsdl:fault name="CalculationFault">
 <soap:fault name="CalculationFault" use="literal" />
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

 <!--
 Concrete service definition
 -->

 <wsdl:service name="CalculatorService">
 <wsdl:port name="CalculatorServicePort" binding="tns:CalculatorBinding">
 <soap:address location="http://localhost:8080/services/calculator" />
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

A service section defines the concrete endpoints the service will listen for incoming requests. The
binding section binds an operation to a concrete style and defines which message formats the
server expects or the client can expect.

The abstract section is composed of a portType block which defines the operations offered by the
service and which messages are exchanged. The messages are specified in their on block and
linked to the schema types the arguments and return values are instances of. Messages can
declare parameters or return values to be in, out or inout. While the first two are quite simple to
grasp the latter mimics the behavior of arguments passed by reference. As pass-by-ref is not
supported in some languages this effect is often simulated via certain handlers.

https://riptutorial.com/ 7

WSDL 2.0

The same calculator can be described in WSDL 2.0 like this:

<?xml version="1.0" encoding="utf-8" ?>
<wsdl:description xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://www.w3.org/ns/wsdl"
 xmlns:soap="http://www.w3.org/ns/wsdl/soap"
 xmlns:calc="http://example.org/calculator"
 xmlns:tns="http://example.org/calculatorService"
 targetNamespace="http://example.org/calculatorService">

 <!--
 Abstract type definitions
 -->

 <wsdl:types>
 <!--
 <xs:schema>
 <xs:import namespace="http://example.org/calculator"
schemaLocation="calc/calculator.xsd" />
 </xs:schema>
 -->
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://example.org/calculator"
 targetNamespace="http://example.org/calculator"
 elementFormDefault="qualified"
 attributeFormDefault="qualified">

 <xs:element name="AddValuesRequest" type="tns:AddValuesType" />
 <xs:element name="AddValuesResponse" type="tns:AddValuesResponseType" />

 <xs:complexType name="AddValuesType">
 <xs:sequence>
 <xs:element name="FirstValue" type="xs:int" minOccurs="1" maxOccurs="1" />
 <xs:element name="SecondValue" type="xs:int" minOccurs="1" maxOccurs="1"
/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="AddValuesResponseType">
 <xs:sequence minOccurs="1" maxOccurs="1">
 <xs:element name="Result" type="xs:int" />
 </xs:sequence>
 </xs:complexType>

 <xs:attribute name="Timestamp" type="xs:dateTime" />
 <xs:element name="CalculationFault">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ErrorCode" type="xs:int" />
 <xs:element name="Reason" type="xs:string" />
 </xs:sequence>
 <xs:attribute ref="tns:Timestamp" use="required" />
 </xs:complexType>
 </xs:element>

 </xs:schema>
 </wsdl:types>

https://riptutorial.com/ 8

 <!--
 Abstract interface
 -->

 <wsdl:interface name="CalculatorInterface">
 <wsdl:fault name="fault" element="calc:CalculationFault" />
 <wsdl:operation name="AddValues" pattern="http://www.w3.org/ns/wsdl/in-out"
style="http://www.w3.org/ns/wsdl/style/iri" wsdl:safe="true">
 <wsdl:documentation>Adds up passed values and returns the
result</wsdl:documentation>
 <wsdl:input messageLabel="in" element="calc:AddValuesRequest" />
 <wsdl:output messageLabel="out" element="calc:AddValuesResponse" />
 <wsdl:outfault messageLabel="fault" ref="tns:fault" />
 </wsdl:operation>
 </wsdl:interface>

 <!--
 Concrete binding definition
 -->

 <wsdl:binding name="CalculatorBinding" interface="tns:CalculatorInterface"
type="http://www.w3.org/ns/wsdl/soap"
soap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">
 <wsdl:operation ref="tns:AddValues" soap:mep="http://www.w3.org/2003/05/soap/mep/soap-
response" />
 <wsdl:fault ref="tns:fault" soap:code="soap:Sender" />
 </wsdl:binding>

 <!--
 Concrete service definition
 -->

 <wsdl:service name="CalculatorService" interface="tns:CalculatorInterface">
 <wsdl:endpoint name="CalculatorEndpoint" binding="tns:CalculatorBinding"
address="http://localhost:8080/services/calculator" />
 </wsdl:service>

</wsdl:description>

Differences between WSDL 1.1 and 2.0

A graphical overview on the differences between both versions can be seen in the picture below.

https://riptutorial.com/ 9

(Source)

https://riptutorial.com/ 10

http://i.stack.imgur.com/MNNAI.png
http://www.wideskills.com/wsdl/differences-between-wsdl-20-and-wsdl-11

As can be seen from the image the message section got removed which is now contained in the
interface section. Also, some of the elements got renamed, others have a different syntax but in
general both WSDL version do basically the same with version 2.0 requiring a bit less writing
overhead compared to 1.1.

Besides the smaller footprint on defining SOAP based services via WSDL 2.0, the newer version
also provides capabilities to define REST services though WSDL 2.0 or even WADL are NOT
recommended for RESTful services as they contradict the actual idea behind it.

Which style to prefer

The WSDL binding section describes how the service is bound to the SOAP messaging protocol.
The sample above used document as the binding style, which allows to structure the SOAP body
the way we want as long as the resulting output is a valid XML instance. This is the default binding
style and often referred to as Message-Oriented style.

In contrast to document style, RPC style request bodies have to contain both the operation name and
the set of method parameters. The structure of the XML instance is therefore predefined and can
not be changed.

In addition to the binding style the binding section also defines a translation model for bindings to
SOAP messages in the name of literal or encoded. The difference between the two is, that literal
model has to conform to a user-defined XSD structure, which can be used to validate the requests
and responses, while the encoded model has to use XSD datatypes like xs:integer or xs:string but
in exchange therefore has not to conform to any user-defined schema. This however makes it
harder to validate the message body or transform the message via XSLT to an other format.

The combination of the binding style with the use-model allows for actually 4 different message
outcomes. A 5th entry is added to the list which is commonly used (though not really part of the
standard).

RPC / encoded•
RPC / literal•
Document / encoded•
Document / literal•
Document /literal (wrapped)•

In document/literal style of messaging, there exists a pattern which is known as
wrapped-document/literal. This is just a pattern, and is not a part of WSDL
specification. This pattern has a mention in JSR 224 (JAX-WS: Java API for XML
based web services). (Source)

The section below gives an overview on the differences regarding WSDL or schema declaration
and their impact on the resulting SOAP message format on changing either binding style or use
model definitions.

RPC / encoded

https://riptutorial.com/ 11

http://www.ibm.com/developerworks/library/ws-restwsdl/
http://www.ibm.com/developerworks/webservices/library/ws-usagewsdl/index.html?ca=dat-

WSDL:

...
<wsdl:message name="AddValues">
 <wsdl:part name="FirstValue" type="xsd:int" />
 <wsdl:part name="SecondValue" type="xsd:int" />
</wsdl:message>
<wsdl:message name="AddValuesResponse">
 <wsdl:part name="Result" type="xsd:int" />
</wsdl:message>

<wsdl:portType name="CalculatorEndpoint">
 <wsdl:operation="AddValues">
 <wsdl:input message="AddValues" />
 <wsdl:output message="AddValuesResponse" />
 </wsdl:operation>
</wsdl:portType>

<!-- binding style set to 'RPC' and use to 'encoded' -->
...

SOAP Request

<soap:envelope>
 <soap:body>
 <AddValues>
 <FirstValue xsi:type="xsd:int">1</FirstValue>
 <SecondValue xsi:type="xsd:int">2</SecondValue>
 </AddValues>
 </soap:body>
</soap:envelope>

SOAP Response

<soap:envelope>
 <soap:body>
 <AddValuesResponse>
 <Result xsi:type="xsd:int">3</Result>
 </AddValuesResponse>
 </soap:body>
</soap:envelope>

Pros

straightforward WSDL•
Name of operation and elements available in request and response•

Cons

Explicit declaration of XSI types•
Hard to validate•
Not WS-I compliant•

RPC / literal

https://riptutorial.com/ 12

WSDL:

...
<wsdl:message name="AddValues">
 <wsdl:part name="FirstValue" type="xsd:int" />
 <wsdl:part name="SecondValue" type="xsd:int" />
</wsdl:message>
<wsdl:message name="AddValuesResponse">
 <wsdl:part name="Result" type="xsd:int" />
</wsdl:message>

<wsdl:portType name="CalculatorEndpoint">
 <wsdl:operation="AddValues">
 <wsdl:input message="AddValues" />
 <wsdl:output message="AddValuesResponse" />
 </wsdl:operation>
</wsdl:portType>

<!-- binding style set to 'RPC' and use to 'literal' -->
...

SOAP Request

<soap:envelope>
 <soap:body>
 <AddValues>
 <FirstValue>1</FirstValue>
 <SecondValue>2</SecondValue>
 </AddValues>
 </soap:body>
</soap:envelope>

SOAP Response

<soap:envelope>
 <soap:body>
 <AddValuesResult>
 <Result>3</Result>
 </AddValuesResult>
 </soap:body>
</soap:envelope>

Pros

straightforward WSDL•
Name of operation and elements available in request and response•
No XSI type specification needed•
WS-I compliant•

Cons

Hard to validate•

Document / encoded

https://riptutorial.com/ 13

Does not make any sense therefore omitted.

Document / literal

WSDL:

...
<types>
 <schema>
 <element name="FirstValueElement" type="xsd:int" />
 <element name="SecondValueElement" type="xsd:int" />
 <element name="ResultValueElement" type="xsd:int" />
 </schema>
</types>

<wsdl:message name="AddValues">
 <wsdl:part name="FirstValue" element="FirstValueElement" />
 <wsdl:part name="SecondValue" element="SecondValueElement" />
</wsdl:message>
<wsdl:message name="AddValuesResponse">
 <wsdl:part name="Result" element="ResultValueElement" />
</wsdl:message>

<wsdl:portType name="CalculatorEndpoint">
 <wsdl:operation="AddValues">
 <wsdl:input message="AddValues" />
 <wsdl:output message="AddValuesResponse" />
 </wsdl:operation>
</wsdl:portType>

<!-- binding style set to 'Document' and use to 'literal' -->
...

SOAP Request

<soap:envelope>
 <soap:body>
 <FirstValueElement>1</FirstValueElement>
 <SecondValueElement>2</SecondValueElement>
 </soap:body>
</soap:envelope>

SOAP Response

<soap:envelope>
 <soap:body>
 <ResultElement>3</ResultElement>
 </soap:body>
</soap:envelope>

Pros

No XSI type encoding•
Able to validate body•
WS-I compliant with restrictions•

https://riptutorial.com/ 14

Cons

WSDL is more complicated due to the additional XSD definition•
Operation name is lost•
WS-I only allows one child in SOAP body•

Document / literal (wrapped)

WSDL:

...
<types>
 <schema>
 <element name="AddValues">
 <complexType>
 <sequence>
 <element name="FirstValue" type="xsd:int" />
 <element name="SecondValue" type="xsd:int" />
 </sequence>
 </complexType>
 </element>
 <element name="AddValuesResponse">
 <complexType>
 <sequence>
 <element name="ResultValue" type="xsd:int" />
 </sequence>
 </complexType>
 </element>
 </schema>
</types>

<wsdl:message name="AddValues">
 <wsdl:part name="in" element="AddValues" />
</wsdl:message>
<wsdl:message name="AddValuesResponse">
 <wsdl:part name="out" element="AddValuesResponse" />
</wsdl:message>

<wsdl:portType name="CalculatorEndpoint">
 <wsdl:operation="AddValues">
 <wsdl:input message="AddValues" />
 <wsdl:output message="AddValuesResponse" />
 </wsdl:operation>
</wsdl:portType>

<!-- binding style set to 'Document' and use to 'literal' -->
...

SOAP Request

<soap:envelope>
 <soap:body>
 <AddValues>
 <FirstValue>1</FirstValue>
 <SecondValue>2</SecondValue>
 </AddValues>
 </soap:body>

https://riptutorial.com/ 15

</soap:envelope>

SOAP Response

<soap:envelope>
 <soap:body>
 <AddValuesResponse>
 <Result>3</Result>
 </AddValuesResponse>
 </soap:body>
</soap:envelope>

Pros

No XSI type encoding•
Able to validate body•
Name of operation and elements available in request and response•
WS-I compliant•

Cons

WSDL is more complicated due to the additional XSD definition•

UDDI

Universal Description, Discovery and Integration (UDDI) is an open industry initiative crated in
2000 which acts as XML based yellow-pages registry for web services which helps finding
services that solve specific tasks. In order to find an appropriate service, a service needs to be
registered first with a Web Service Registry such as the UDDI.

UDDI works on SOAP message exchange and provides access to WSDL documents which can
be used to invoke the actual web service.

The UDDI provides lookup criteria like

business identifier•
business name•
business location•
business category•
service type by name•
discovery URLs•

However, a big disadvantage of current UDDI is that it only allows to use one single criteria within
a search statement. Certain implementors therefore modularized their UDDI implementations to
allow for queries spawning multiple UDDIs simultaneously and then aggregate the returned
results.

In practice, however, UDDI is not used that often. Some are even saying that UDDI is dead since
IBM, Microsoft and SAP shut down their UDDI services in 2005.

https://riptutorial.com/ 16

https://web.archive.org/web/20070704154230/http://www.theserverside.net/news/thread.tss?thread_id=38136

Further notes:

SOAP/WSDL provide a wide range of tooling support and also allow to dynamically generate stub-
classes for both clients and servers as the type of messages and data exchanged is well defined
through the embedded or linked XSD schemata.

While WSDL 2.0 has less overhead of defining web services, certain languages still have not
adopted the new standard yet. I.e. in Java popular tools like wsimport (from Oracle/Sun) or
wsdl2java (from Apache CXF) are not able to handle WSDL 2.0 descriptions properly. Therefore,
for compatibility reasons it is still recommended to use WSDL 1.1. If you need to develop a WSDL
2.0 based SOAP service in Java have a look at wsdl2javafrom Apache Axis2 project.

More popular nowadays, however, are either HTTP based API services, which mix HTTP
operation invocations with clean human-understandable URIs and certain customizations to the
protocol in order to get their job done, REST based services, which fully comply to the actual
recommendations, or own byte-level protocols, like i.e. OFTP2.

SOAP is still useful nowadays if you can't map your task directly to resources, like HTTP/REST
base services do, as the task to fulfill represents naturally an action or has to define certain
transaction semantics. Also if you do not have the resources to define or implement your own
protocol you are probably better of using SOAP. SOAP is especially useful if you have to deal with
orchestration as the WSDL description in combination with UDDI allows to combine services
dynamically.

Java Client for Weather service open source webservice avaliable on
http://www.webserviceX.NET

 package com.test.ws.example;

 import javax.xml.soap.MessageFactory;
 import javax.xml.soap.MimeHeaders;
 import javax.xml.soap.SOAPBody;
 import javax.xml.soap.SOAPConnection;
 import javax.xml.soap.SOAPConnectionFactory;
 import javax.xml.soap.SOAPElement;
 import javax.xml.soap.SOAPEnvelope;
 import javax.xml.soap.SOAPMessage;
 import javax.xml.soap.SOAPPart;
 import javax.xml.transform.Source;
 import javax.xml.transform.Transformer;
 import javax.xml.transform.TransformerFactory;
 import javax.xml.transform.stream.StreamResult;

 /*
 * WSDL url : http://www.webservicex.com/globalweather.asmx?WSDL
 * Endpoint URL: http://www.webservicex.com/globalweather.asmx */

 public class WSClient {

 public static void main(String args[]) {

https://riptutorial.com/ 17

http://axis.apache.org/axis2/java/core/
http://www.riptutorial.com/rest/example/20145/rest-over-http
https://tools.ietf.org/html/rfc5024

 try {
 SOAPConnectionFactory soapConnectionFactory = SOAPConnectionFactory.newInstance();
 SOAPConnection soapConnection = soapConnectionFactory.createConnection();

 // Generate SOAP request XML

 MessageFactory messageFactory = MessageFactory.newInstance();
 SOAPMessage soapMessage = messageFactory.createMessage();
 MimeHeaders header = soapMessage.getMimeHeaders();
 header.setHeader("SOAPAction", "http://www.webserviceX.NET/GetCitiesByCountry");
 SOAPPart soapPart = soapMessage.getSOAPPart();
 SOAPEnvelope envelope = soapPart.getEnvelope();
 envelope.addNamespaceDeclaration("web", "http://www.webserviceX.NET");
 SOAPBody soapBody = envelope.getBody();
 SOAPElement soapBodyElem = soapBody.addChildElement("GetCitiesByCountry", "web");
 SOAPElement soapBodyElem1 = soapBodyElem.addChildElement("CountryName", "web");
 soapBodyElem1.addTextNode("INDIA");
 soapMessage.saveChanges();
 soapMessage.writeTo(System.out);

 // Call webservice endpint
 String url = "http://www.webservicex.com/globalweather.asmx";
 SOAPMessage soapResponse = soapConnection.call(soapMessage, url);
 Source sourceContent = soapResponse.getSOAPPart().getContent();

 // Print SOAP response
 TransformerFactory transformerFactory = TransformerFactory.newInstance();
 Transformer transformer = transformerFactory.newTransformer();
 System.out.println("Response SOAP Message \n");
 StreamResult result = new StreamResult(System.out);
 transformer.transform(sourceContent, result);
 soapConnection.close();

 } catch (Exception e) {

 e.printStackTrace();
 }
}

}

Creating a Simple Web Service and Clients with JAX-WS (Document / literal)

This is project directory.

A service endpoint interface1.

https://riptutorial.com/ 18

https://i.stack.imgur.com/izgZQ.png

First we will create a service endpoint interface. The javax.jws.WebService @WebService annotation
defines the class as a web service endpoint.

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.Style;
import javax.jws.soap.SOAPBinding.Use;

// Service Interface with customize targetNamespace
@WebService(targetNamespace = "http://hello-soap/ws")
@SOAPBinding(style = Style.DOCUMENT, use=Use.LITERAL) //optional
public interface HelloSoap {

 @WebMethod String getHelloSoap(String name);

}

Service endpoint implementation (SEI)2.

Next we will create service endpoint implementation. We will create an explicit interface by adding
the endpointInterface element to the @WebService annotation in the implementation class. Here are
some set of rules 28.1.1 Requirements of a JAX-WS Endpoint that JAX-WS endpoints must follow.
The getHelloSoap method returns a greeting to the client with the name passed to it.

import javax.jws.WebService;

// Customized Service Implementation (portName,serviceName,targetNamespace are optional)

@WebService(portName = "HelloSoapPort", serviceName = "HelloSoapService",
endpointInterface = "com.wonderland.hellosoap.HelloSoap", targetNamespace = "http://hello-
soap/ws")
public class HelloSoapImpl implements HelloSoap {

 @Override
 public String getHelloSoap(String name) {
 return "[JAX-WS] Hello : " + name;
 }

}

Web service endpoint publisher3.

import javax.xml.ws.Endpoint;

public class HelloSoapPublisher {

 public static void main(String[] args) {
 // creating web service endpoint publisher
 Endpoint.publish("http://localhost:9000/ws/hello-soap", new HelloSoapImpl());
 }

https://riptutorial.com/ 19

https://docs.oracle.com/javaee/7/tutorial/jaxws001.htm#BNAYN

}

Next steps, we will run HelloSoapPublisher.java as java application. Then we will view the
WSDL file by requesting the URL http://localhost:9000/ws/hello-soap?wsdl in a web browser.

4.

http://localhost:9000/ws/hello-soap?wsdl

If XML data format is display at the web browser, then we are ready to go next step.

Note:
If you get some kind of error message, maybe you need to use wsgen tool to generate
necessary JAX-WS portable artifacts. We are not covered about wsgen tool here.

Web Service Client5.

Final step, we will create a client that accesses our published service.

import java.net.URL;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class HelloSoapClient {

 public static void main(String[] args) throws Exception {

 // create wsdl url

https://riptutorial.com/ 20

https://i.stack.imgur.com/O2rcA.png

 URL wsdlDocumentUrl = new URL("http://localhost:8000/ws/hello-soap?wsdl");
 QName helloSoapService = new QName("http://hello-soap/ws", "HelloSoapService");
 // create web service
 Service service = Service.create(wsdlDocumentUrl, helloSoapService);
 // get object of pointed service port
 HelloSoap helloSoap = service.getPort(HelloSoap.class);
 // testing request
 System.out.println(helloSoap.getHelloSoap("Soap "));

 }

}

Output: [JAX-WS] Hello : Soap

Note: Port number changed to 8000 in our web service client. The reason here is, I used Eclipse
IDE, build-in TCP/IP monitor tool to trace messages (More Info: How to trace SOAP message in
Eclipse IDE). For functional testing purpose try SoapUI | Functional Testing for SOAP and REST
APIs.

Read Getting started with soap online: https://riptutorial.com/soap/topic/5375/getting-started-with-
soap

https://riptutorial.com/ 21

http://www.mkyong.com/webservices/jax-ws/how-to-trace-soap-message-in-eclipse-ide/
http://www.mkyong.com/webservices/jax-ws/how-to-trace-soap-message-in-eclipse-ide/
https://www.soapui.org
https://www.soapui.org
https://riptutorial.com/soap/topic/5375/getting-started-with-soap
https://riptutorial.com/soap/topic/5375/getting-started-with-soap

Chapter 2: Consuming SOAP Web Service

Introduction

This section should provide details of all the possible ways to consume a SOAP web service.

Parameters

Parameter Details

CountryName String such as UK

Examples

Without creating Stub or Java files

public String getCitiesByCountry(String countryName) throws MalformedURLException, IOException
{

 //Code to make a webservice HTTP request
 String responseString = "";
 String outputString = "";
 String wsURL = "http://www.webservicex.com/globalweather.asmx";// Endpoint of the
webservice to be consumed
 URL url = new URL(wsURL);
 URLConnection connection = url.openConnection();
 HttpURLConnection httpConn = (HttpURLConnection)connection;
 ByteArrayOutputStream bout = new ByteArrayOutputStream();
 String xmlInput =
 "<soap:Envelope xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"
xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\">
 <soap:Body>
 <GetCitiesByCountry xmlns=\"http://www.webserviceX.NET\">
 <CountryName>" + countryName + "</CountryName>
 </GetCitiesByCountry>
 </soap:Body>
 </soap:Envelope>"; //entire SOAP Request

 byte[] buffer = new byte[xmlInput.length()];
 buffer = xmlInput.getBytes();
 bout.write(buffer);
 byte[] b = bout.toByteArray();
 String SOAPAction = "http://www.webserviceX.NET/GetCitiesByCountry"; // SOAP action of the
webservice to be consumed
 // Set the appropriate HTTP parameters.
 httpConn.setRequestProperty("Content-Length",
 String.valueOf(b.length));
 httpConn.setRequestProperty("Content-Type", "text/xml; charset=utf-8");
 httpConn.setRequestProperty("SOAPAction", SOAPAction);
 httpConn.setRequestMethod("POST");

https://riptutorial.com/ 22

 httpConn.setDoOutput(true);
 httpConn.setDoInput(true);
 OutputStream out = httpConn.getOutputStream();
 //Write the content of the request to the outputstream of the HTTP Connection.
 out.write(b);
 out.close();
 //Ready with sending the request.

 //Read the response.
 InputStreamReader isr = null;
 if (httpConn.getResponseCode() == 200) {
 isr = new InputStreamReader(httpConn.getInputStream());
 } else {
 isr = new InputStreamReader(httpConn.getErrorStream());
 }

 BufferedReader in = new BufferedReader(isr);

 //Write the SOAP message response to a String.
 while ((responseString = in.readLine()) != null) {
 outputString = outputString + responseString;
 }
 //Parse the String output to a org.w3c.dom.Document and be able to reach every node with
the org.w3c.dom API.
 Document document = parseXmlFile(outputString);
 NodeList nodeLst = document.getElementsByTagName("GetCitiesByCountryResult"); // TagName
of the element to be retrieved
 String elementValue = nodeLst.item(0).getTextContent();
 System.out.println(elementValue);

 return elementValue;
}

public Document parseXmlFile(String in) {
 try {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 InputSource is = new InputSource(new StringReader(in));
 return db.parse(is);
 } catch (ParserConfigurationException e) {
 throw new RuntimeException(e);
 } catch (SAXException e) {
 throw new RuntimeException(e);
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
}

Read Consuming SOAP Web Service online: https://riptutorial.com/soap/topic/8292/consuming-
soap-web-service

https://riptutorial.com/ 23

https://riptutorial.com/soap/topic/8292/consuming-soap-web-service
https://riptutorial.com/soap/topic/8292/consuming-soap-web-service

Credits

S.
No

Chapters Contributors

1
Getting started with
soap

Alice, Community, Ray, Roman Vottner, ssanrao

2
Consuming SOAP
Web Service

RAS

https://riptutorial.com/ 24

https://riptutorial.com/contributor/3268354/alice
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/4887159/ray
https://riptutorial.com/contributor/1377895/roman-vottner
https://riptutorial.com/contributor/3915609/ssanrao
https://riptutorial.com/contributor/366898/ras

	About
	Chapter 1: Getting started with soap
	Remarks
	Versions
	Examples
	General Information

	SOAP
	Differences between SOAP 1.1 and 1.2
	Web Service Interoperability

	WSDL
	WSDL 1.1
	WSDL 2.0
	Differences between WSDL 1.1 and 2.0
	Which style to prefer
	RPC / encoded
	RPC / literal
	Document / encoded
	Document / literal
	Document / literal (wrapped)

	UDDI
	Further notes:
	Java Client for Weather service open source webservice avaliable on http://www.webserviceX.NET
	Creating a Simple Web Service and Clients with JAX-WS (Document / literal)

	Chapter 2: Consuming SOAP Web Service
	Introduction
	Parameters
	Examples
	Without creating Stub or Java files

	Credits

