| EARNING
socket.lo

Free unaffiliated eBook created from
Stack Overflow contributors.




Table of Contents

A OUL . .. 1
Chapter 1: Getting started with socket.io........................ 2
REMIAIKS . . 2
Y4157 0] I P 2
= 1 ] 0] [ T 3
INSEAllAtiON OF SEIUP. . . ..o et e e e e 3
"Hello world!" With SOCKET MESSAGES. . . ...ttt e e e e e e e e e 4
Chapter 2: BroadCast. . ... .. ... 6
BN S . ..o 6
Broadcasting 10 @ll USEIS. ... ... ot 6
Broadcast to all Other SOCKELS. . . ... ..o e 6
Chapter 3: Fire EVENTS. ... ... 7
= 0 1] 0] 5 7
FIre CUSIOM EVENTS. ..o 7
Chapter 4. Handling users with socket.io......................... ... 8
I OAUCTION. . e 8
€= 0 1] 0] 5 8
Example Server Side code for handling USers. ... ... e e 8
Simple Way To Emit Messages By USer Id. . ... ... i e 10
Handling users accessing MOalS. . .. ... i e e e 10
Chapter 5: Listen to EVeNtS. ... ... 12
o= 11 ] 0] (= 12
Listening to internal and CUSIOM EVENES: . ... ... .. i e e e e e e 12



About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: socket-io

It is an unofficial and free socket.io ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official socket.io.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1


http://riptutorial.com/ebook/socket-io
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

C_hapter 1. Getting started with socket.io

Remarks

socket .10 IS @ javascript library for reaitine web applications. It enables realtime, bi-directional
communication between web clients and servers. It has two parts: a client-side library that runs in
the browser, and a server-side library for node. 5s. Both components have a nearly identical API.
Like node.js, it is event-driven.

socket .10 primarily uses the websocket protocol with polling as a fallback option,while providing the
same interface. Although it can be used as simply a wrapper for websocket, it provides many more
features, including broadcasting to multiple sockets, storing data associated with each client, and
asynchronous 1/0O.

Versions

Version | Release Date

1.4.8 2016-06-23
1.4.7 2016-06-23
1.4.6 2016-05-02
145 2016-01-26
144 2016-01-10
143 2016-01-08
1.4.2 2016-01-07
14.1 2016-01-07
1.4.0 2015-11-28
1.3.7 2015-09-21
1.3.6 2015-07-14
1.3.5 2015-03-03
134 2015-02-14
1.3.3 2015-02-03

1.3.2 2015-01-19

https://riptutorial.com/



Version | Release Date

13.1 2015-01-19
1.3.0 2015-01-19
121 2014-11-21
1.2.0 2014-10-27
1.1.0 2014-09-04
1.0.6 2014-06-19
1.0.5 2014-06-16
1.04 2014-06-02
1.0.3 2014-05-31
1.0.2 2014-05-28
1.0.1 2014-05-28

1.0.0 2014-05-28

Examples

Installation or Setup
First, install socket.io module in node. 35 application.

npm install socket.io —--save

Basic HTTP Setup

The following example attaches socket.io t0 @ plain node.js HTTP server listening on port 3000.

var server = require('http') .createServer();
var io = require('socket.io') (server);
io.on ('connection', function (socket) {
console.log('user connected with socketId '+socket.id);
socket.on ('event', function (data) {
console.log('event fired');

}) i

socket.on ('disconnect', function () {
console.log('user disconnected');

https://riptutorial.com/



P
P
server.listen (3000);

Setup with Express

Express app can be passed to nttp server which will be attached to socket . io.

var app = require ('express') (); //express app
var server = require('http') .createServer (app) ; //passed to http server
var io = require('socket.io') (server); //http server passed to socket.io

io.on('connection', function () {
console.log('user connected with socketId '+socket.id);

socket.on('event', function (data) {
console.log('event fired');
)i

socket.on('disconnect', function () {
console.log('user disconnected');
)i

)i

server.listen(3000);

Client Side Setup

Check the Hello World example above for the client side implementation.
"Hello world!" with socket messages.
Install node modules

npm install express
npm install socket.io

Node.js server

const express = require ('express');

const app = express();

const server = app.listen(3000,console.log("Socket.io Hello Wolrd server started!"));
const io = require('socket.io') (server);

io.on('connection', (socket) => {
//console.log ("Client connected!");
socket.on ('message-from-client-to-server', (msg) => {
console.log(msq) ;
})

socket.emit ('message-from-server-to-client', 'Hello World!');

https://riptutorial.com/



Browser client

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Hello World with Socket.io</title>
</head>
<body>
<script src="https://cdn.socket.io/socket.io-1.4.5.js"></script>
<script>
var socket = io("http://localhost:3000");
socket.on ("message-from-server-to-client", function (msg) {
document .getElementById ('message') .innerHTML = msg;
1)
socket.emit ('message-from-client-to-server', 'Hello World!');
</script>
<p>Socker.io Hello World client started!</p>
<p id="message"></p>
</body>
</html>

In the above example, the path to the socket.io library is defined as /socket.io/socket.io.Js.

Even though we didn't write any code to serve the socket.io library, Socket.io automatically does
that.

Read Getting started with socket.io online: https://riptutorial.com/socket-io/topic/3588/getting-
started-with-socket-io

https://riptutorial.com/


https://riptutorial.com/socket-io/topic/3588/getting-started-with-socket-io
https://riptutorial.com/socket-io/topic/3588/getting-started-with-socket-io

C_hapter 2. Broadcast

Examples

Broadcasting to all users

It is possible to send a message or data to all avaible connections. This can be achieved by first
initializing the server and then using the socket.io object to find all sockets and then emit as you
normally would emit to a single socket

var io = require('socket.io') (80) // 80 is the HTTP port
io.on('connection', function (socket) {
//Callback when a socket connects
)i
io.sockets.emit ('callbackFunction',data);

Broadcast to all other sockets
It is possible to emit a message or data to all users except the one making the request:

var io = require('socket.io') (80);
io.on('connection', function (socket) {
socket .broadcast.emit ('user connected');

)i

Read Broadcast online: https://riptutorial.com/socket-io/topic/6295/broadcast

https://riptutorial.com/


https://riptutorial.com/socket-io/topic/6295/broadcast

C_hapter 3: Fire Events

Examples

Fire Custom Events
Server syntax.

var io = require('socket.io') (80);

io.on('connection', function (mysocket) {
//emit to all but the one who started it
mysocket .broadcast.emit ('user connected');

//emit to all sockets
io.emit ('my event', { messg: 'for all'});

}) i

// a javascript client would listen like this:
// var mysocket = io('http://example.com');

// mysocket.on('my event', function (data) {
// console.log(data);

/7 Y)

Client syntax.

var mysocket = io('http://example.com');
mysocket.emit ('another event', { messg: 'hello' });

// a node.js server would listen like this:
// require ('socket.io') (80) .on('connection', function (mysocket) {
// mysocket.on ('another event', function (data) {

// console.log('data from client : '+ data);
// })i
/7 1)

Read Fire Events online: https://riptutorial.com/socket-io/topic/6625/fire-events

https://riptutorial.com/


https://riptutorial.com/socket-io/topic/6625/fire-events

C_hapter 4. Handling users with socket.io

Introduction

Handling users within socket.io is as simple or as complex as you decided, though there are some
more ‘obvious' approaches for doing this, this documentation is going to outline an approach using

map () .

Examples

Example Server Side code for handling Users

Firstly it's important to note that when a new socket is created it is assigned a unique Id which is
retrieved by calling socket.1d. This id can then be stored within a user Object and we can assign an
identifier such as a username which has been used in this example to retrieve user objects.

/**
* Created by Liam Read on 27/04/2017.
*/

var express = require ('express');

var app = express|();
var http = require('http') .Server (app);
var io = require('socket.io') (http);

function User (socketId) {

this.id = socketId;

this.status = "online";
this.username = "bob";
this.getId = function () {

return this.id;
bi

this.getName = function () {
return this.username;
bi

this.getStatus = function () {
return this.status;
}i

this.setStatus = function (newStatus) {
this.status = newStatus;

var userMap = new Map();

/**

* Once a connection has been opened this will be called.

https://riptutorial.com/ 8



*/

io.on('connection', function (socket) {
var user;

/**

* When a user has entered there username and password we create a new entry within the
userMap.

v

socket.on ('registerUser', function (data) {
userMap.set (data.name, new User (socket.id));

//Lets make the user object available to all other methods to make our code DRY.
user = userMap.get (data.name);

P

socket.on('loginUser', function (data) {
if (userMap.has (data.name)) {
//user has been found

user = userMap.get (data.name);
} else {
//Let the client know that no account was found when attempting to sign in.
socket.emit ('noAccountFound', {
msg: "No account was found"

socket.on ('disconnect', function () {
//Let's set this users status to offline.
user.setStatus ("offline");

P

/**
* Dummy server event that represents a client looking to send a message to another user.
*/

socket.on ('sendAnotherUserAMessage', function (data) {

//Make note here that by checking to see if the user exists within the map we can be
sure that when
// retrieving the value after && that we won't have any unexpected errors.
if (userMap.has (data.name) && userMap.get (data.name) .getStatus () !== "offline") {
var OtherUser = userMap.get (data.name);
} else {
//We use a return here so further code isn't executed, you could replace this with
some for of
//error handling or a different event back to the user.

return;

//Lets send our message to the user.
io.to (OtherUser.getId()) .emit ('recMessage', {
msg: "Nice code!"

})

https://riptutorial.com/



This is by no means a complete example of even close to what is possible but should give a basic
understanding of an approach to handling users.

Simple Way To Emit Messages By User Id
On the server:

var express = require ('express');
var socketio = require('socket.io');

var app = express|();
var server = http.createServer (app);
var io = socketio(server);

io.on('connect', function (socket) {
socket.on ('userConnected', socket.join);
socket.on ('userDisconnected', socket.leave);
)i

function message (userId, event, data) {
io.sockets.to(userId) .emit (event, data);

On the client;

var socket = io('http://localhost:9000'"); // Server endpoint
socket.on ('connect', connectUser);

socket.on ('message', function (data) {
console.log(data);

}) i

function connectUser () { // Called whenever a user signs in
var userId = ... // Retrieve userId
if ('userId) return;
socket.emit ('userConnected', userId);

function disconnectUser () { // Called whenever a user signs out
var userId = ... // Retrieve userId
if ('userId) return;
socket.emit ('userDisconnected', userId);

This method allows sending messages to specific users by unique id without holding a reference
to all sockets on the server.

Handling users accessing modals

This example shows how you might handle users interacting with modals on a 1-1 basis.

//client side

function modals (socket) {

https://riptutorial.com/ 10



this.sendModalOpen = (modalIdentifier) => {

socket.emit ('openedModal', {
modal: modalIdentifier
1)
bi

this.closeModal = () => {
socket.emit ('closedModal', {
modal: modalIdentifier
1)
bi

socket.on('recModalInfo', (data) => {
for (let x = 0; x < data.info.length; x++) {
console.log(data.info[x] [0] + " has open " + data.info[x][1l]);

P

//server side
let modal = new Map();

io.on('connection', (socket) => {

//Here we are sending any new connections a list of all current modals being viewed with
Identifiers.
//You could send all of the items inside the map() using map.entries

let currentInfo = [];

modal.forEach ((value, key) => {
currentInfo.push ([key, value]);
P

socket.emit ('recModalInfo', {
info: currentInfo

P

socket.on ('openedModal', (data) => {
modal.set (socket.id, data.modallIdentifier);
P

socket.on('closedModal', (data) => {
modal .delete (socket.id);
P

1)
By handling all of the modal interactions here all newly connected users will have all information

about which ones are currently being viewed allow us to make decisions based on current users
within our system.

Read Handling users with socket.io online: https://riptutorial.com/socket-io/topic/9837/handling-
users-with-socket-io

https://riptutorial.com/

11


https://riptutorial.com/socket-io/topic/9837/handling-users-with-socket-io
https://riptutorial.com/socket-io/topic/9837/handling-users-with-socket-io

C_hapter 5: Listen to Events

Examples

Listening to internal and custom events:
Server Syntax

var io = require('socket.io') (80);
io.on('connection', function (mysocket) {

//custom event called “private message’
mysocket.on ('private message', function (from, msg) {

console.log('I received a private message by ', from, ' saying ', msqg);
1)

//internal “disconnect’ event fired, when a socket disconnects
mysocket.on ('disconnect', function () {
console.log('user disconnected');
1)
1)

Client syntax.

var mysocket = io('http://example.com');
mysocket.on ('private message', function (data) {
console.log(data);

}) i

Read Listen to Events online: https://riptutorial.com/socket-io/topic/4455/listen-to-events

https://riptutorial.com/

12


https://riptutorial.com/socket-io/topic/4455/listen-to-events

Credits

Chapters

Getting started with
socket.io

2 Broadcast
3 Fire Events

Handling users with
socket.io

5 Listen to Events

Contributors

Blubberguy22, Cerbrus, Community, Forivin, Iceman, Mohit
Gangrade, Mukesh Sharma

Delapouite, Marc Rasmussen

Florian Hammerle, Ilceman

li X, Sky

lceman

https://riptutorial.com/

13


https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2879085/forivin
https://riptutorial.com/contributor/6237235/iceman
https://riptutorial.com/contributor/3736538/mohit-gangrade
https://riptutorial.com/contributor/3736538/mohit-gangrade
https://riptutorial.com/contributor/2100197/mukesh-sharma
https://riptutorial.com/contributor/232943/delapouite
https://riptutorial.com/contributor/1647457/marc-rasmussen
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/6237235/iceman
https://riptutorial.com/contributor/3342835/li-x
https://riptutorial.com/contributor/4446093/sky
https://riptutorial.com/contributor/6237235/iceman

	About
	Chapter 1: Getting started with socket.io
	Remarks
	Versions
	Examples
	Installation or Setup
	"Hello world!" with socket messages.


	Chapter 2: Broadcast
	Examples
	Broadcasting to all users
	Broadcast to all other sockets


	Chapter 3: Fire Events
	Examples
	Fire Custom Events


	Chapter 4: Handling users with socket.io
	Introduction
	Examples
	Example Server Side code for handling Users
	Simple Way To Emit Messages By User Id
	Handling users accessing modals


	Chapter 5: Listen to Events
	Examples
	Listening to internal and custom events:


	Credits



