
solid-principles

#solid-

principles

Table of Contents

About 1

Chapter 1: Getting started with solid-principles 2

Remarks 2

Examples 2

Installation or Setup 2

Liskov Substitution Principle 2

Chapter 2: Dependency Inversion Principle (DIP) 5

Introduction 5

Examples 5

Dependency Inversion Principle C# 5

Chapter 3: Interface Segregation Principle (ISP) 7

Introduction 7

Examples 7

Interface Segregation Principle C# 7

Chapter 4: Open Closed Principle (OCP) 9

Introduction 9

Examples 9

Open Closed Principle C# 9

Chapter 5: Single Responsibility Principle (SRP) 11

Introduction 11

Remarks 11

Examples 11

Single Responsibility Principle C# 11

Single Responsibility Principle 12

Credits 17

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: solid-principles

It is an unofficial and free solid-principles ebook created for educational purposes. All the content
is extracted from Stack Overflow Documentation, which is written by many hardworking individuals
at Stack Overflow. It is neither affiliated with Stack Overflow nor official solid-principles.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/solid-principles
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with solid-
principles

Remarks

This section provides an overview of what solid-principles is, and why a developer might want to
use it.

It should also mention any large subjects within solid-principles, and link out to the related topics.
Since the Documentation for solid-principles is new, you may need to create initial versions of
those related topics.

Examples

Installation or Setup

You can use any IDE and OOP language to implement S.O.L.I.D Principles. In the sample code I
have used C# as it is the most widely used language in .NET word and is closely resembles Java
and C++.

Liskov Substitution Principle

Why to use LSP

Scenario: Suppose we have 3 databases (Mortgage Customers, Current Accounts Customers
and Savings Account Customers) that provide customer data and we need customer details for
given customer's last name. Now we may get more than 1 customer detail from those 3 databases
against given last name.

Implementation

BUSINESS MODEL LAYER:

public class Customer
{
 // customer detail properties...
}

DATA ACCESS LAYER:

public interface IDataAccess
{
 Customer GetDetails(string lastName);

https://riptutorial.com/ 2

}

Above interface is implemented by the abstract class

public abstract class BaseDataAccess : IDataAccess
{
 /// <summary> Enterprise library data block Database object. </summary>
 public Database Database;
 public Customer GetDetails(string lastName)
 {
 // use the database object to call the stored procedure to retirve the customer
detials
 }
}

This abstract class has a common method "GetDetails" for all 3 databases which is extended by
each of the database classes as shown below

MORTGAGE CUSTOMER DATA ACCESS:

public class MortgageCustomerDataAccess : BaseDataAccess
{
 public MortgageCustomerDataAccess(IDatabaseFactory factory)
 {
 this.Database = factory.GetMortgageCustomerDatabase();
 }
}

CURRENT ACCOUNT CUSTOMER DATA ACCESS:

public class CurrentAccountCustomerDataAccess : BaseDataAccess
{
 public CurrentAccountCustomerDataAccess(IDatabaseFactory factory)
 {
 this.Database = factory.GetCurrentAccountCustomerDatabase();
 }
}

SAVINGS ACCOUNT CUSTOMER DATA ACCESS:

public class SavingsAccountCustomerDataAccess : BaseDataAccess
{
 public SavingsAccountCustomerDataAccess(IDatabaseFactory factory)
 {
 this.Database = factory.GetSavingsAccountCustomerDatabase();
 }
}

Once these 3 data access classes are set, now we draw our attention to the client. In the Business
layer we have CustomerServiceManager class that returns the customer detials to its clients.

BUSINESS LAYER:

https://riptutorial.com/ 3

public class CustomerServiceManager : ICustomerServiceManager, BaseServiceManager
{
 public IEnumerable<Customer> GetCustomerDetails(string lastName)
 {
 IEnumerable<IDataAccess> dataAccess = new List<IDataAccess>()
 {
 new MortgageCustomerDataAccess(new DatabaseFactory()),
 new CurrentAccountCustomerDataAccess(new DatabaseFactory()),
 new SavingsAccountCustomerDataAccess(new DatabaseFactory())
 };

 IList<Customer> customers = new List<Customer>();

 foreach (IDataAccess nextDataAccess in dataAccess)
 {
 Customer customerDetail = nextDataAccess.GetDetails(lastName);
 customers.Add(customerDetail);
 }

 return customers;
 }
}

I havent shown the Dependency Injection to keep it simple as its already getting complicated now.

Now if we have a new customer detail database we can just add a new class that extends
BaseDataAccess and provides its database object.

Of course we need identical stored procedures in all participating databases.

Lastly, the client for CustomerServiceManagerclass will only call GetCustomerDetails method,
pass the lastName and should not care about how and where the data is coming from.

Hope this will give you a practical approach to understand LSP.

Read Getting started with solid-principles online: https://riptutorial.com/solid-
principles/topic/9700/getting-started-with-solid-principles

https://riptutorial.com/ 4

https://riptutorial.com/solid-principles/topic/9700/getting-started-with-solid-principles
https://riptutorial.com/solid-principles/topic/9700/getting-started-with-solid-principles

Chapter 2: Dependency Inversion Principle
(DIP)

Introduction

The principle basically says, Class should depend on abstractions (e.g interface, abstract classes),
not specific details (implementations). That means, You should let the caller create the
dependencies instead of letting the class itself create the dependencies.

Examples

Dependency Inversion Principle C#

To understand Dependency Inversion Principle (DIP) we need to clear concept about Inversion Of
Control(IOC) and Dependency Injection(DI). So here we discuss all about the terms with

https://riptutorial.com/ 5

https://i.stack.imgur.com/NWXzv.png

Dependency Inversion Principle (DIP).

Inversion Of Control(IOC) : The control or logic which is not the part of that entity is taken care
by someone else. Or, IOC is a programming technique where the unconcerned LOGIC is
delegated to some other entity.

Dependency Injection(DI) : Dependency injection is a technique which helps to inject dependent
objects of a class that makes architecture more loosely coupled.

There are lots of IOC container for .NET framework that helps us to resolved dependency. Some
are listed here.

Read Dependency Inversion Principle (DIP) online: https://riptutorial.com/solid-
principles/topic/9730/dependency-inversion-principle--dip-

https://riptutorial.com/ 6

https://www.hanselman.com/blog/ListOfNETDependencyInjectionContainersIOC.aspx
https://riptutorial.com/solid-principles/topic/9730/dependency-inversion-principle--dip-
https://riptutorial.com/solid-principles/topic/9730/dependency-inversion-principle--dip-

Chapter 3: Interface Segregation Principle
(ISP)

Introduction

The principle states that no client should be forced to depend on methods that it doesn't use. A
client should never be forced to implement an interface that it doesn't use or client shouldn't be
forced to depend on methods that they don't use.

Examples

Interface Segregation Principle C#

Here we give an example of ISP violation and then refactor that violation. Without talking
unnecessary things let's jump into the code.

ISP violation :

public interface IMessage{
 IList<string> ToAddress {get; set;}
 IList<string> BccAddresses {get; set;}
 string MessageBody {get; set;}
 string Subject {get; set;}
 bool Send();
}

public class SmtpMessage : IMessage{
 public IList<string> ToAddress {get; set;}
 public IList<string> BccAddresses {get; set;}
 public string MessageBody {get; set;}
 public string Subject {get; set;}
 public bool Send(){
 // Code for sending E-mail.
 }
}

public class SmsMessage : IMessage{
 public IList<string> ToAddress {get; set;}
 public IList<string> BccAddresses {
 get { throw new NonImplementedException(); }
 set { throw new NonImplementedException(); }
 }
 public string MessageBody {get; set;}
 public string Subject {
 get { throw new NonImplementedException(); }
 set { throw new NonImplementedException(); }
 }
 public bool Send(){
 // Code for sending SMS.
 }
}

https://riptutorial.com/ 7

In the SmsMessage we don't need BccAddresses and Subject, but we forced to implement it
because of IMessage interface . So it's violate the ISP principle.

Remove violation according to ISP:

public interface IMessage{
 bool Send(IList<string> toAddress, string messageBody);
}

public interface IEmailMessage : IMessage{
 string Subject {get; set;}
 IList<string> BccAddresses {get; set;}
}

public class SmtpMessage : IEmailMessage{
 public IList<string> BccAddresses {get; set;}
 public string Subject {get; set;}
 public bool Send (IList<string> toAddress, string messageBody){
 // Code for sending E-mail.
 }
}

public class SmsMessage : IMessage{
 public bool Send (IList<string> toAddress, string messageBody){
 // Code for sending SMS.
 }
}

SmsMessage need only toAddress and messageBody, so now we can use IMessage interface to
avoid unnecessary implementations.

Read Interface Segregation Principle (ISP) online: https://riptutorial.com/solid-
principles/topic/9731/interface-segregation-principle--isp-

https://riptutorial.com/ 8

https://riptutorial.com/solid-principles/topic/9731/interface-segregation-principle--isp-
https://riptutorial.com/solid-principles/topic/9731/interface-segregation-principle--isp-

Chapter 4: Open Closed Principle (OCP)

Introduction

Software entities (class, modules, functions etc) should be open for extension but closed for
modification.

Examples

Open Closed Principle C#

Here, we try to explain OCP using codebase. First we'll show a scenario that violate OCP and
then we'll remove that violation.

Area Calculation (OCP violation Code) :

public class Rectangle{
 public double Width {get; set;}
 public double Height {get; set;}
}

public class Circle{
 public double Radious {get; set;}
}

public double getArea (object[] shapes){
 double totalArea = 0;

 foreach(var shape in shapes){
 if(shape is Rectangle){
 Rectangle rectangle = (Rectangle)shape;
 totalArea += rectangle.Width * rectangle.Height;
 }
 else{
 Circle circle = (Circle)shape;
 totalArea += circle.Radious * circle.Radious * Math.PI;
 }
 }
}

Now if we need to calculate another another type of object (say, Trapezium) then we've to add
another condition. But from the rule's of OCP we know Software entities should be closed for
modification. So it violates OCP.

Ok. Let's try to solve this violation implementing OCP.

public abstract class shape{
 public abstract double Area();
}

public class Rectangle : shape{

https://riptutorial.com/ 9

 public double Width {get; set;}
 public double Height {get; set;}

 public override double Area(){
 return Width * Height;
 }
}

public class Circle : shape{
 public double Radious {get; set;}

 public override double Area(){
 return Radious * Radious * Math.PI;
 }
}

public double getArea (shape[] shapes){
 double totalArea = 0;

 foreach(var shape in shapes){
 totalArea += shape.Area();
 }

 return totalArea;
}

Now if we need to calculate another type of object, we don't need to change logic (in getArea()),
we just need to add another class like Rectangle or Circle.

Read Open Closed Principle (OCP) online: https://riptutorial.com/solid-principles/topic/9727/open-
closed-principle--ocp-

https://riptutorial.com/ 10

https://riptutorial.com/solid-principles/topic/9727/open-closed-principle--ocp-
https://riptutorial.com/solid-principles/topic/9727/open-closed-principle--ocp-

Chapter 5: Single Responsibility Principle
(SRP)

Introduction

There should never be more than one reason for change anything in software entities (class,
function, file etc). A class, function, file etc should have only one reason to change.

Remarks

Just because you can, doesn't mean you should.

Examples

Single Responsibility Principle C#

Let's go through the problem first. Have a look on the code below:

public class BankAccount
{
 public BankAccount() {}

 public string AccountNumber { get; set; }
 public decimal AccountBalance { get; set; }

 public decimal CalculateInterest()
 {
 // Code to calculate Interest
 }
}

Here, BankAccount class contains the properties of account and also calculate the interest of
account. Now look at the few change Request we received from business:

Please add a new Property AccountHolderName .1.
Some new rule has been introduced to calculate interest.2.

This are totally different type of change request. One is changing on features; where as other one
is impacting the functionality. We have 2 different types of reason to change one class. This
violates Single Responsibility Principle.

Now let's try to implement SRP to resolved this violation. Look at the code below:

public interface IBankAccount
{
 string AccountNumber { get; set; }
 decimal AccountBalance { get; set; }

https://riptutorial.com/ 11

}

public interface IInterstCalculator
{
 decimal CalculateInterest();
}

public class BankAccount : IBankAccount
{
 public string AccountNumber { get; set; }
 public decimal AccountBalance { get; set; }
}

public class InterstCalculator : IInterstCalculator
{
 public decimal CalculateInterest(IBankAccount account)
 {
 // Write your logic here
 return 1000;
 }
}

Now our BankAccount class is just responsible for properties of the bank account. If we want to
add any new business rule for the Calculation of Interest, we don't need to change BankAccount
class.

And also InterestCalculator class requires no changes, in case we need to add a new Property
AccountHolderName. So this is the implementation of Single Responsibility Principle.

We have also used Interfaces to communicate between InterestCalculator and BankAccount
class. This will help us to manage dependencies between classes.

Single Responsibility Principle

Introduction

SRP can be defined as “a class handles only one responsibility”. This is a very short definition for
something influential on to the other principles of S.O.L.I.D. I believe that if we get this right, it will
have a positive knock-on effect on the upcoming principles, so let’s get started! Practical Example
Let’s say we have an online store where people can order some items or products and in the code
base we have a class OrderProcessor that processes the new orders when people click on Pay
Now button.

The reason OrderProcessor is written is to carry out the following tasks, in other words
OrderProcessor class has the following responsibilities:

Check the credit card has been accepted – finance1.
Check the money has been charged – finance2.
Check the item is in stock – inventory3.
Request the item for reservation4.
Get the estimated delivery time5.
Email the confirmation to the customer6.

https://riptutorial.com/ 12

Here is the definition of OrderProcessor class

public class OrderProcessor
{
 public bool ProcessOrder(Order orderToProcess)
 {
 // 1) Check the credit card has been accepted.
 int creditCardId = orderToProcess.CreditCardId;

 CreditCard creditCardDetails = new CreditCard();

 using (SqlConnection connect = new SqlConnection())
 {
 using (SqlCommand command = new SqlCommand())
 {
 command.Connection = connect;
 command.CommandText = "<schema>.<spName>";
 command.CommandType = CommandType.StoredProcedure;
 SqlParameter idParam = new SqlParameter();
 idParam.Direction = ParameterDirection.Input;
 idParam.Value = creditCardId;
 idParam.ParameterName = "@Id";
 idParam.DbType = DbType.Int32;
 command.Parameters.Add(idParam);
 using (SqlDataReader reader = command.ExecuteReader())
 {
 while (reader.Read())
 {
 creditCardDetails.CardId = int.Parse(reader["Id"].ToString());
 creditCardDetails.CardLongNumber =
reader["CardLongNumber"].ToString();
 creditCardDetails.CvcNumber =
int.Parse(reader["CvcNumber"].ToString());
 creditCardDetails.ExpiryDate =
DateTime.Parse(reader["ExpiryDate"].ToString());
 creditCardDetails.NameOnTheCard = reader["NameOnTheCard"].ToString();
 creditCardDetails.StartDate =
DateTime.Parse(reader["StartDate"].ToString());
 }
 }

 }
 }

 // charge the total amount using the credit card details..

 decimal amountToCharge = orderToProcess.OrderTotal;
 using (WebClient webClient = new WebClient())
 {
 string response =
webClient.DownloadString($"https://CreditCardProcessor/api/ProcessesPayments?amount={amountToCharge}&CreditCard={creditCardDetails}");

 // processes response: check if its been successful or failure then proceed
further....
 }

 // check the item is in the stock

https://riptutorial.com/ 13

 Dictionary<int, bool> productAvailability = new Dictionary<int, bool>();

 foreach (int productId in orderToProcess.ProductIds)
 {
 using (SqlConnection connection = new SqlConnection())
 {
 using (SqlCommand command = new SqlCommand())
 {
 command.Connection = connection;
 command.CommandText = "<schema>.<spName>";
 command.CommandType = CommandType.StoredProcedure;
 SqlParameter idParam = new SqlParameter();
 idParam.Direction = ParameterDirection.Input;
 idParam.Value = productId;
 idParam.ParameterName = "@Id";
 idParam.DbType = DbType.Int32;
 command.Parameters.Add(idParam);

 object resultObject = command.ExecuteScalar();
 bool prductAvailable = bool.Parse(resultObject.ToString());
 if (prductAvailable)
 productAvailability.Add(productId, true);
 }
 }
 }

 // request item for reservation

 ReservationServiceClientProxy client = new ReservationServiceClientProxy();

 foreach (KeyValuePair<int, bool> nextProduct in productAvailability)
 {
 ReservationRequest requst = new ReservationRequest() { ProductId = nextProduct.Key
};
 ReservationResponse response = client.ReserveProduct(requst);
 }

 // calculate estimated time of delivery...
 DeliveryService ds = new DeliveryService();
 int totalMinutes = 0;
 foreach (KeyValuePair<int, bool> nextProduct in productAvailability)
 {
 totalMinutes += ds.EstimateDeliveryTimeInMinutes(nextProduct.Key);
 }

 // email customer

 int customerId = orderToProcess.CustomerId;
 string customerEmail = string.Empty;

 using (SqlConnection connection = new SqlConnection())
 {
 using (SqlCommand command = new SqlCommand())
 {
 command.Connection = connection;
 command.CommandText = "<schema>.<spName>";
 command.CommandType = CommandType.StoredProcedure;
 SqlParameter idParam = new SqlParameter();
 idParam.Direction = ParameterDirection.Input;

https://riptutorial.com/ 14

 idParam.Value = customerId;
 idParam.ParameterName = "@customerId";
 idParam.DbType = DbType.Int32;
 command.Parameters.Add(idParam);

 object resultObject = command.ExecuteScalar();
 customerEmail = resultObject.ToString();
 }
 }

 MailMessage message = new MailMessage(new
MailAddress("Some.One@SuperCheapStore.co.uk"), new MailAddress(customerEmail));
 message.Body = $"You item has been dispatched and will be delivered in {totalMinutes /
1440} days";
 message.Subject = "Your order update!";

 SmtpClient smtpClient = new SmtpClient("HostName/IPAddress");
 smtpClient.Send(message);

 return true;

 }
}

As we can see in the class definition that OrderProcessor has taken more than one responsibility.
Lets turn our attention to the version 2 of OrderProcesser class that is written by keeping SRP in
mind.

public class OrderProcessorV2
{
 public bool ProcessOrder(Order orderToProcess)
 {
 // 1) Check the credit card has been accepted.
 CreditCardDataAccess creditCardAccess = new CreditCardDataAccess();
 CreditCard cardDetails =
creditCardAccess.GetCreditCardDetails(orderToProcess.CreditCardId);

 // 2) Check the money has been charged – finance

 PaymentProcessor paymentProcessor = new PaymentProcessor();
 paymentProcessor.DebitAmount(orderToProcess.OrderTotal, cardDetails);

 // 3) Check the item is in stock – inventory

 InventoryService inventory = new InventoryService();

 Dictionary<int, bool> productAvailability =
inventory.CheckStockAvailability(orderToProcess.ProductIds);

 foreach (int nextProductId in orderToProcess.ProductIds)
 {
 inventory.CheckStockAvailability(nextProductId);
 }

 // 4) Request the item for reservation
 ReservationService reservation = new ReservationService();

 foreach (int nextProductId in orderToProcess.ProductIds)

https://riptutorial.com/ 15

 {
 reservation.ReserveProduct(nextProductId);
 }

 // 5) Get the estimated delivery time
 // calculate estimated time of delivery...
 DeliveryService ds = new DeliveryService();
 int totalMinutes = 0;
 foreach (KeyValuePair<int, bool> nextProduct in productAvailability)
 {
 totalMinutes += ds.EstimateDeliveryTimeInMinutes(nextProduct.Key);
 }

 // 6) Email the confirmation to the customer

 CustomerDataAccess customerDataAccess = new CustomerDataAccess();

 Customer cust = customerDataAccess.GetCustomerDetails(orderToProcess.CustomerId);

 EmailService mailService = new EmailService();
 mailService.NotifyCustomer(cust.Email);

 // if everything step is successful then return true..

 }
}

The amount of code lines in OrderProcessorV2 has radically changed so does the readability. The
overall responsibility of OrderProcessorV2 can be understood within the amount of time that has
taken to read this line. This results in more productivity.

Read Single Responsibility Principle (SRP) online: https://riptutorial.com/solid-
principles/topic/9726/single-responsibility-principle--srp-

https://riptutorial.com/ 16

https://riptutorial.com/solid-principles/topic/9726/single-responsibility-principle--srp-
https://riptutorial.com/solid-principles/topic/9726/single-responsibility-principle--srp-

Credits

S.
No

Chapters Contributors

1
Getting started with
solid-principles

Community, Yawar Murtaza

2
Dependency
Inversion Principle
(DIP)

Arif

3
Interface
Segregation
Principle (ISP)

Arif

4
Open Closed
Principle (OCP)

Arif

5
Single Responsibility
Principle (SRP)

Arif, Yawar Murtaza

https://riptutorial.com/ 17

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1039644/yawar-murtaza
https://riptutorial.com/contributor/3835843/arif
https://riptutorial.com/contributor/3835843/arif
https://riptutorial.com/contributor/3835843/arif
https://riptutorial.com/contributor/3835843/arif
https://riptutorial.com/contributor/1039644/yawar-murtaza

	About
	Chapter 1: Getting started with solid-principles
	Remarks
	Examples
	Installation or Setup
	Liskov Substitution Principle

	Chapter 2: Dependency Inversion Principle (DIP)
	Introduction
	Examples
	Dependency Inversion Principle C#

	Chapter 3: Interface Segregation Principle (ISP)
	Introduction
	Examples
	Interface Segregation Principle C#

	Chapter 4: Open Closed Principle (OCP)
	Introduction
	Examples
	Open Closed Principle C#

	Chapter 5: Single Responsibility Principle (SRP)
	Introduction
	Remarks
	Examples
	Single Responsibility Principle C#
	Single Responsibility Principle

	Credits

