
sorting

#sorting

Table of Contents

About 1

Chapter 1: Getting started with sorting 2

Remarks 2

Examples 2

Installation or Setup 2

Chapter 2: Quick Sort 3

Examples 3

Python 3

Chapter 3: Selection 5

Remarks 5

Examples 6

Selection Sort (Python) 6

Selection Sort (Java) 7

Credits 10

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: sorting

It is an unofficial and free sorting ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official sorting.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/sorting
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with sorting

Remarks

This section provides an overview of what sorting is, and why a developer might want to use it.

It should also mention any large subjects within sorting, and link out to the related topics. Since the
Documentation for sorting is new, you may need to create initial versions of those related topics.

Examples

Installation or Setup

Detailed instructions on getting sorting set up or installed.

Read Getting started with sorting online: https://riptutorial.com/sorting/topic/5842/getting-started-
with-sorting

https://riptutorial.com/ 2

https://riptutorial.com/sorting/topic/5842/getting-started-with-sorting
https://riptutorial.com/sorting/topic/5842/getting-started-with-sorting

Chapter 2: Quick Sort

Examples

Python

The below image shows the working of a quick sort.

Below example shows the working program for quick sort in python:

def quickSort(alist):
 quickSortHelper(alist,0,len(alist)-1)

def quickSortHelper(alist,first,last):
 if first<last:

 splitpoint = partition(alist,first,last)

 quickSortHelper(alist,first,splitpoint-1)
 quickSortHelper(alist,splitpoint+1,last)

def partition(alist,first,last):
 pivotvalue = alist[first]

https://riptutorial.com/ 3

https://i.stack.imgur.com/SVplm.gif

 leftmark = first+1
 rightmark = last

 done = False
 while not done:

 while leftmark <= rightmark and alist[leftmark] <= pivotvalue:
 leftmark = leftmark + 1

 while alist[rightmark] >= pivotvalue and rightmark >= leftmark:
 rightmark = rightmark -1

 if rightmark < leftmark:
 done = True
 else:
 temp = alist[leftmark]
 alist[leftmark] = alist[rightmark]
 alist[rightmark] = temp

 temp = alist[first]
 alist[first] = alist[rightmark]
 alist[rightmark] = temp

 return rightmark

alist = [54,26,93,17,77,31,44,55,20]
print("Input:")
print(alist)
quickSort(alist)
print("Output:")
print(alist)

Below is the output of the code:

Complexity of the above logic is : O(n log n)

Read Quick Sort online: https://riptutorial.com/sorting/topic/7585/quick-sort

https://riptutorial.com/ 4

https://i.stack.imgur.com/2TiLz.png
https://riptutorial.com/sorting/topic/7585/quick-sort

Chapter 3: Selection

Remarks

In computer science, a selection sort is a sorting algorithm, specifically an in-place comparison
sort. It has O(n2) time complexity, making it inefficient on large lists, and generally performs worse
than the similar insertion sort. Selection sort is noted for its simplicity, and it has performance
advantages over more complicated algorithms in certain situations, particularly where auxiliary
memory is limited.

The below image shows how the selection sort works-

Below pseudo code helps in creating a program(in any language) or understanding selection sort.

procedure selection sort
list : array of items
n : size of list

for i = 1 to n - 1
/* set current element as minimum*/
 min = i

 /* check the element to be minimum */

https://riptutorial.com/ 5

http://i.stack.imgur.com/qa2Cg.gif

 for j = i+1 to n
 if list[j] < list[min] then
 min = j;
 end if
 end for

 /* swap the minimum element with the current element*/
 if indexMin != i then
 swap list[min] and list[i]
 end if

end for

end procedure

Advantages :

it’s too simple to understand•
it performs well on a small list•
no additional temporary storage is required beyond what is needed to hold the original list•

Image Reference: RMIT University

Examples

Selection Sort (Python)

Animation to show how selection sort works

The below example shows selection sort in Python

def sort_selection(my_list):

for pos_upper in xrange(len(my_list)-1, 0, -1):

https://riptutorial.com/ 6

http://i.stack.imgur.com/avlC6.gif

 max_pos = 0
 for i in xrange(1, pos_upper + 1):
 if(my_list[i] > my_list[max_pos]):
 max_pos = i
 print "resetting max_pos = " + str(max_pos)

 my_list[pos_upper], my_list[max_pos] = my_list[max_pos], my_list[pos_upper]
 print "pos_upper: " + str(pos_upper) + " max_pos: " + str(max_pos) + " my_list: " +
str(my_list)

return my_list

if __name__ == "__main__":

 my_list = [54,26,93,17,77,31,44,55,20]
 print "my_list: " + str(my_list)
 print sort_selection(my_list)

Output of the program:

my_list: [54, 26, 93, 17, 77, 31, 44, 55, 20]
resetting max_pos = 2
pos_upper: 8 max_pos: 2 my_list: [54, 26, 20, 17, 77, 31, 44, 55, 93]
resetting max_pos = 4
pos_upper: 7 max_pos: 4 my_list: [54, 26, 20, 17, 55, 31, 44, 77, 93]
resetting max_pos = 4
pos_upper: 6 max_pos: 4 my_list: [54, 26, 20, 17, 44, 31, 55, 77, 93]
pos_upper: 5 max_pos: 0 my_list: [31, 26, 20, 17, 44, 54, 55, 77, 93]
resetting max_pos = 4
pos_upper: 4 max_pos: 4 my_list: [31, 26, 20, 17, 44, 54, 55, 77, 93]
pos_upper: 3 max_pos: 0 my_list: [17, 26, 20, 31, 44, 54, 55, 77, 93]
resetting max_pos = 1
pos_upper: 2 max_pos: 1 my_list: [17, 20, 26, 31, 44, 54, 55, 77, 93]
resetting max_pos = 1
pos_upper: 1 max_pos: 1 my_list: [17, 20, 26, 31, 44, 54, 55, 77, 93]
[17, 20, 26, 31, 44, 54, 55, 77, 93]

Image Reference: Pirate Learner

Selection Sort (Java)

Animation to show how selection sort works

https://riptutorial.com/ 7

Below example shows selection sort in ascending order:

public class MySelectionSort {

 public static int[] doSelectionSort(int[] arr){

 for (int i = 0; i < arr.length - 1; i++)
 {
 int index = i;
 for (int j = i + 1; j < arr.length; j++)
 if (arr[j] < arr[index])
 index = j;

 int smallerNumber = arr[index];
 arr[index] = arr[i];
 arr[i] = smallerNumber;
 }
 return arr;
 }

I've written a sample main() method to show the output of the selection sort:

 public static void main(String a[]){

 int[] arr1 = {10,34,2,56,7,67,88,42};
 int[] arr2 = doSelectionSort(arr1);
 for(int i:arr2){
 System.out.print(i);
 System.out.print(", ");
 }
 }
}

Output of the program :

https://riptutorial.com/ 8

http://i.stack.imgur.com/yaMvt.gif

2, 7, 10, 34, 42, 56, 67, 88

Below example shows selection sort in descending order:

public static void doDescendingSelectionSort (int [] num)
{
 int i, j, first, temp;
 for (i = num.length - 1; i > 0; i - -)
 {
 first = 0; //initialize to subscript of first element
 for(j = 1; j <= i; j ++) //locate smallest element between positions 1 and i.
 {
 if(num[j] < num[first])
 first = j;
 }
 temp = num[first]; //swap smallest found with element in position i.
 num[first] = num[i];
 num[i] = temp;
 }
}

Image Reference : Wikipedia

Read Selection online: https://riptutorial.com/sorting/topic/6170/selection

https://riptutorial.com/ 9

https://riptutorial.com/sorting/topic/6170/selection

Credits

S.
No

Chapters Contributors

1
Getting started with
sorting

Community

2 Quick Sort Tejus Prasad

3 Selection Tejus Prasad

https://riptutorial.com/ 10

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3409405/tejus-prasad
https://riptutorial.com/contributor/3409405/tejus-prasad

	About
	Chapter 1: Getting started with sorting
	Remarks
	Examples
	Installation or Setup

	Chapter 2: Quick Sort
	Examples
	Python

	Chapter 3: Selection
	Remarks
	Examples
	Selection Sort (Python)
	Selection Sort (Java)

	Credits

