
spring-data-jpa

#spring-

data-jpa

Table of Contents

About 1

Chapter 1: Getting started with spring-data-jpa 2

Remarks 2

Versions 2

Examples 2

Installation or Setup 2

search by Entity property and search by Entity property in 3

Chapter 2: Repositories 4

Remarks 4

Examples 4

Creating a repository for a JPA-managed entity 4

Finding all instances of an entity class 5

Finding a particular instance of an entity class by the identifier 5

Finding all instances of an entity class with an attribute matching a specified value 6

Credits 7

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: spring-data-jpa

It is an unofficial and free spring-data-jpa ebook created for educational purposes. All the content
is extracted from Stack Overflow Documentation, which is written by many hardworking individuals
at Stack Overflow. It is neither affiliated with Stack Overflow nor official spring-data-jpa.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/spring-data-jpa
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with spring-data-
jpa

Remarks

This section provides an overview of what spring-data-jpa is, and why a developer might want to
use it.

It should also mention any large subjects within spring-data-jpa, and link out to the related topics.
Since the Documentation for spring-data-jpa is new, you may need to create initial versions of
those related topics.

Versions

Version Release Date

1.9.0.RELEASE 2015-09-01

1.8.0.RELEASE 2015-03-23

1.7.0.RELEASE 2014-09-05

1.6.0.RELEASE 2014-05-20

1.5.0.RELEASE 2014-02-24

1.4.0.RELEASE 2013-09-09

1.3.0.RELEASE 2012-02-07

1.2.0.RELEASE 2012-10-10

1.1.0.RELEASE 2012-05-16

1.0.0.RELEASE 2011-07-21

Examples

Installation or Setup

To start using Spring data JPA, you must include the dependency in your project with the one of
Spring core, all together. If you're using Maven as dependency management system (replace
version-number for the version you want to use):

https://riptutorial.com/ 2

http://docs.spring.io/autorepo/docs/spring-data-jpa/1.9.0.RELEASE/changelog.txt
http://docs.spring.io/autorepo/docs/spring-data-jpa/1.8.0.RELEASE/changelog.txt
http://docs.spring.io/autorepo/docs/spring-data-jpa/1.7.0.RELEASE/changelog.txt
http://docs.spring.io/autorepo/docs/spring-data-jpa/1.6.0.RELEASE/changelog.txt
http://docs.spring.io/autorepo/docs/spring-data-jpa/1.5.0.RELEASE/changelog.txt
http://docs.spring.io/autorepo/docs/spring-data-jpa/1.4.0.RELEASE/changelog.txt
http://docs.spring.io/autorepo/docs/spring-data-jpa/1.3.0.RELEASE/changelog.txt
http://docs.spring.io/autorepo/docs/spring-data-jpa/1.2.0.RELEASE/changelog.txt
http://docs.spring.io/autorepo/docs/spring-data-jpa/1.1.0.RELEASE/changelog.txt
http://docs.spring.io/autorepo/docs/spring-data-jpa/1.0.0.RELEASE/changelog.txt

<dependencies>
 <dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-jpa</artifactId>
 <version>version-number</version>
 </dependency>
</dependencies>

And if you're using Gradle:

dependencies {
 compile 'org.springframework.data:spring-data-jpa:version-number'
}

You can also set it up when using Spring Boot, just include the starter dependency and get rid of
the version number:

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>
</dependencies>

search by Entity property and search by Entity property in

WarehosueEntity findWarehouseById(@Param("id") Long id);

List<WarehouseEntity> findWarehouseByIdIn(@Param("idList") List<Long> warehouseIdList);

Read Getting started with spring-data-jpa online: https://riptutorial.com/spring-data-
jpa/topic/4318/getting-started-with-spring-data-jpa

https://riptutorial.com/ 3

https://riptutorial.com/spring-data-jpa/topic/4318/getting-started-with-spring-data-jpa
https://riptutorial.com/spring-data-jpa/topic/4318/getting-started-with-spring-data-jpa

Chapter 2: Repositories

Remarks

The Spring Data project allows application programmers to work with data stores using a
consistent interface that makes use of an abstraction called Repository. A Spring Data Repository is
modeled after the Repository pattern made popular by domain-driven design. Spring Data
provides a central Java interface named Repository that subprojects can extend to provide features
specific to data stores.

In addition to the Repository interface, Spring Data also provides two more core interfaces -
CrudRepository that defines the contract for basic CRUD (create, read, update and delete)
functionality; and PagingAndSortingRepository that extends CrudRepository by defining a contract for
pagination and sorting.

These three core interfaces (Repository, CrudRepository and PagingAndSortingRepository) ensure
that:

Application programmers can access data stores (such as relational databases, document
based NoSQL databases, graph databases, etc.) in a consistent way.

1.

It is easy to switch the underlying storage for a domain entity (see domain-driven design)
without having to also change the way in which the application interacts with the data store.

2.

Specific implementations can provide features specific to data stores.3.

Examples

Creating a repository for a JPA-managed entity

Entity class

@Entity
@Table(name = "USER")
public class User {
 @Id
 @Column(name = "ID")
 private Long id;

 @Column(name = "USERNAME")
 private String username;

 @ManyToOne
 @JoinColumn("ORGANIZATION_ID")
 private Organization organization;
}

Repository interface

@Repository

https://riptutorial.com/ 4

http://martinfowler.com/eaaCatalog/repository.html
https://en.wikipedia.org/wiki/Domain-driven_design
https://en.wikipedia.org/wiki/Domain-driven_design

public interface UserRepository extends CrudRepository<User, Long> {
 public User findByUsername(String username);
}

The method declaration in the interface will generate the following jpql query:

select u from User u where u.username = :username

alternatively we can define a custom query:

@Query("select u from User u where u.username = :username")
public User findByUsername(@Param("username") String username)

we can easily add sorting to the method declaration:

public interface UserRepository extends PagingAndSortingRepository<User, Long> {
 public User findByUsernameOrderByUsernameAsc(String username);
}

we can also use in-built pagination support:

public Page<User> findByOrganizationPaged(Organization organization, Pageable pageable);

the service layer (or whoever calls this method) will then pass a PageRequest to the method:

public Page<User> getByOrganizationPagedOrderByUsername(Organization organization, int page,
int size, String direction){
 return userRepository.findByOrganizationPaged(organization, new PageRequest(page, size,
Direction.valueOf(direction),
 "username")
}

Finding all instances of an entity class

All instances (objects) of an entity class can be loaded from the underlying database table as
follows (akin to retrieving all rows from the table):

Iterable<Foo> foos = fooRepository.findAll();

The findAll method is provided by the CrudRepository interface. It returns an Iterable instead of a
more concrete type like List or Set because some implementations of the interface may be unable
to return a Collection type and therefore using a Collection type for the returned value will result in
loss of functionality for them.

Invoking the findAll method results in the JPA query select foo from Foo foo being executed on
the underlying database.

Finding a particular instance of an entity class by the identifier

https://riptutorial.com/ 5

https://jira.spring.io/browse/DATACMNS-21
https://jira.spring.io/browse/DATACMNS-21
https://jira.spring.io/browse/DATACMNS-21
https://jira.spring.io/browse/DATACMNS-21
https://docs.oracle.com/javaee/6/tutorial/doc/bnbtg.html

A particular instance of an entity class can be loaded as follows:

Foo foo = fooRepository.findOne(id);

The findOne method is provided by the CrudRepository interface. It expects an identifier that
uniquely identifies an entity instance (for instance, a primary key in a database table). The Java
type for the id parameter must match the type assigned to the entity attribute annotated with the
JPA @Id annotation.

Invoking the findOne method results in the JPA query select foo from Foo foo where foo.[primary-
key-column] = :id being executed on the underlying database.

Finding all instances of an entity class with an attribute matching a specified
value

All instances of an entity class with one of the class attributes matching a specified value can be
retrieved as follows:

public interface FooRepository extends CrudRepository<Foo, Long> {
 List<Foo> findAllByName(String name);
}

Invoking the findAllByName method results in the JPA query select foo from Foo foo where foo.name
= :name will be executed on the underlying database.

Points to note

name must be an attribute on the Foo entity class.1.
The method name must begin with find, get or read. Other keywords like select will not work.2.
There is no guarantee on the order in which the results will be returned.3.

Read Repositories online: https://riptutorial.com/spring-data-jpa/topic/5688/repositories

https://riptutorial.com/ 6

https://docs.oracle.com/javaee/6/tutorial/doc/bnbtg.html
https://docs.oracle.com/javaee/6/tutorial/doc/bnbtg.html
https://riptutorial.com/spring-data-jpa/topic/5688/repositories

Credits

S.
No

Chapters Contributors

1
Getting started with
spring-data-jpa

Community, Sheldon Papa, Xtreme Biker

2 Repositories
amicoderozer, Gautam Jose, ido flax, manish, sanjaykumar81,
SirKometa

https://riptutorial.com/ 7

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1427954/sheldon-papa
https://riptutorial.com/contributor/1199132/xtreme-biker
https://riptutorial.com/contributor/6503002/amicoderozer
https://riptutorial.com/contributor/4921429/gautam-jose
https://riptutorial.com/contributor/3058468/ido-flax
https://riptutorial.com/contributor/1126526/manish
https://riptutorial.com/contributor/3782992/sanjaykumar81
https://riptutorial.com/contributor/727078/sirkometa

	About
	Chapter 1: Getting started with spring-data-jpa
	Remarks
	Versions
	Examples
	Installation or Setup
	search by Entity property and search by Entity property in

	Chapter 2: Repositories
	Remarks
	Examples
	Creating a repository for a JPA-managed entity
	Finding all instances of an entity class
	Finding a particular instance of an entity class by the identifier
	Finding all instances of an entity class with an attribute matching a specified value

	Credits

