" LEARNING
Spring-data

Free unaffiliated eBook created from
Stack Overflow contributors.

#spring-

Table of Contents

Chapter 1: Getting started with spring-data.............................. .. 2
RIS . ..
o= 10] 0] 2

INSEAllAtION OF SEIUP. ottt e e e e

Chapter 2: Pagination with Spring Data...................... 4
I OAU G ON . ..
= 10] 0] [

Pagination by passing parmeter with custom query in spring data JPA.

O =1 [(- 7

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: spring-data

It is an unofficial and free spring-data ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official spring-data.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/spring-data
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

C_hapter 1. Getting started with spring-data

Remarks

Modern software applications have the option of storing data in more than one type of data store.
Whereas traditional data stores like Relational databases remain popular, NoSQL databases and
Cloud-based storage have also become commonplace. Each of these types of data stores has its
own strengths and is therefore suited for different types of business use cases. Complex business
applications therefore end up utilizing more than one type of data store to make data storage,
retrieval and presentation operations more efficient. This presents the challenge of application
programmers having to deal with the complexity of understanding the API provided by multiple
data stores and using these API appropriately in their business applications.

Spring Data is a project that aims at providing a consistent, easy-to-use API to application
programmers, independent of the underlying data store used. It combines the power of the Spring
framework with concepts from proven data access paradigms such as domain-driven design to
provide a familiar and consistent foundation to application programmers for accessing different
types of data stores, while still retaining the specifics of an underlying data store, where
appropriate.

The Spring Data project consists of several subprojects that can be used as libraries for accessing
specific types of data stores. The full set of data stores supported by Spring Data and its
subprojects can be obtained from the main page of the project.

Examples

Installation or Setup

Spring Data is a project consisting of a number of subprojects. The most common ones are Spring
Data JPA, Spring Data MongoDB, Spring Data Elasticsearch, Spring Data Neo4J, Spring Data
Cassandra and Spring Data Redis.

Unless you are developing your own subproject based upon Spring Data, it is highly unlikely that
you will need to use it directly in your application. See the individual subprojects for details on their
installation and setup. If however, you do have the need to use Spring Data in your application
directly, the following instructions will be helpful.

Using Maven

<dependencies>
<dependency>
<groupId>org.springframework.data</groupIld>
<artifactId>spring-data-commons</artifactId>
<version>[version—-number]</version>
</dependency>
</dependencies>

https://riptutorial.com/ 2

https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Cloud_storage
http://projects.spring.io/spring-data/
http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-framework/
https://en.wikipedia.org/wiki/Domain-driven_design
http://projects.spring.io/spring-data/
http://stackoverflow.com/questions/tagged/spring-data-jpa
http://stackoverflow.com/questions/tagged/spring-data-jpa
http://stackoverflow.com/questions/tagged/spring-data-mongodb
https://stackoverflow.com/questions/tagged/spring-data-elasticsearch
http://stackoverflow.com/questions/tagged/spring-data-neo4j
http://stackoverflow.com/questions/tagged/spring-data-cassandra
http://stackoverflow.com/questions/tagged/spring-data-cassandra
http://stackoverflow.com/questions/tagged/spring-data-cassandra

Using Gradle

dependencies {
compile 'org.springframework.data:spring-data-commons: [version-number]"'

}

Substitute [version number] with the Spring Data version you wish to use.

Read Getting started with spring-data online: https://riptutorial.com/spring-data/topic/5440/getting-
started-with-spring-data

https://riptutorial.com/

https://riptutorial.com/spring-data/topic/5440/getting-started-with-spring-data
https://riptutorial.com/spring-data/topic/5440/getting-started-with-spring-data

C_hapter 2. Pagination with Spring Data

Introduction

Pagination by passing parmeter with custom query in spring data JPA

Examples

Pagination by passing parmeter with custom query in spring data JPA

| use Spring Boot 1.4.4.RELEASE , with MySQL as the Database and Spring Data JPA
abstraction to work with MySQL. Indeed ,it is the Spring Data JPA module that makes it so easy to
set up Pagination in a Spring boot app in the first place.

Scenario expose an endpoint /students/classroom/{id} . It will return a List of Students and other
paging info(which we would see in a minute) based on the page and size parameters and
classroomld that were passed along with it.

To begin with, i create a domain Student

@Entity
@Table (name = "student")
public class Student {

@Id
@GeneratedValue (strategy = GenerationType.IDENTITY)

private Long id;

@Column (name = "name")
private String name;

@NotNull
@Column (name = "rollnumber", nullable = false)

private Integer rollnumber;

@Column (name = "date_of_birth")
private LocalDate dateOfBirth;

@Column (name = "address")
private String address;

@ManyToOne (optional = false)
@NotNull
private Classroom classroom;

//getter and setter

}

Student relate with classroom

https://riptutorial.com/

@Entity
@Table (name = "classroom")
public class Classroom {

@Id
@GeneratedValue (strategy = GenerationType.IDENTITY)
private Long id;

@Column (name = "standard")
private String standard;

@QColumn (name = "section")

private String section;

@Column (name = "year")
private String year;

//getter && setter

we have RestController

@RestController
@RequestMapping ("/api")
public class StudentResource {

private final StudentService studentService;

public StudentResource (StudentService studentService) {
this.studentService = studentService;

@GetMapping ("/students/classroom/{id}")
public ResponseEntity<Page<StudentDTO>> getAllStudentsBasedOnClassroom (@ApiParam Pageable
pageable, @PathVariable Long id)
throws URISyntaxException {
Page<StudentDTO> page = studentService.findByClassroomId(id, pageable);
HttpHeaders headers = PaginationUtil.generatePaginationHttpHeaders (page,
"/api/students/classroom") ;
return new ResponseEntity<Page<StudentDTO>> (page, headers, HttpStatus.OK);

Notice that we haven't passed RequestParams to our handler method . When the endpoint
[/students/classroom/1?page=0&size=3 is hit, Spring would automatically resolve the page and
size parameters and create a Pageable instance . We would then pass this Pageable instance to
the Service layer ,which would pass it to our Repository layer .

Service class

public interface StudentService ({

Page<StudentDTO> findByClassroomId(Long id,Pageable pageable) ;

https://riptutorial.com/

service impl (here i user StudentMapper to convert Class to DTOby using mapStruct or we can do
manualy)

@Service
@Transactional
public class StudentServiceImpl implements StudentService({

private final StudentRepository studentRepository;
private final StudentMapper studentMapper;

public StudentServiceImpl (StudentRepository studentRepository, StudentMapper
studentMapper) {
this.studentRepository = studentRepository;
this.studentMapper = studentMapper;
}
@Override
public Page<StudentDTO> findByClassroomId(Long id, Pageable pageable) {
log.debug ("Request to get Students based on classroom : {}", id);
Page<Student> result = studentRepository.findByClassroomlId(id, pageable);
return result.map (student -> studentMapper.studentToStudentDTO (student));

this is mapper interface

@Mapper (componentModel = "spring", uses = {})
public interface StudentMapper

StudentDTO studentToStudentDTO (Student student);

then in StudentRepository i worte custom method

public interface StudentRepository extends JpaRepository<Student,Long> {

Page<Student> findByClassroomlId(Long id, Pageable pageable);

then it will give us all below information with respective data

"last": false,
"totalElements": 20,
"totalPages": 7,
"size": 3,

"number": O,

"sort": null,
"first": true,
"numberOfElements": 3

Read Pagination with Spring Data online: https://riptutorial.com/spring-data/topic/9142/pagination-
with-spring-data

https://riptutorial.com/

https://riptutorial.com/spring-data/topic/9142/pagination-with-spring-data
https://riptutorial.com/spring-data/topic/9142/pagination-with-spring-data

Credits

Chapters Contributors

Getting started with
spring-data

Community, manish, sunkuet02

Pagination with

. Aman Tuladhar, VISHWANATH N P
Spring Data

https://riptutorial.com/

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1126526/manish
https://riptutorial.com/contributor/2315473/sunkuet02
https://riptutorial.com/contributor/5065092/aman-tuladhar
https://riptutorial.com/contributor/6467521/vishwanath-n-p

	About
	Chapter 1: Getting started with spring-data
	Remarks
	Examples
	Installation or Setup

	Chapter 2: Pagination with Spring Data
	Introduction
	Examples
	Pagination by passing parmeter with custom query in spring data JPA

	Credits

