
sprite-kit

#sprite-kit

Table of Contents

About 1

Chapter 1: Getting started with sprite-kit 2

Remarks 2

Versions 2

Examples 2

Your first SpriteKit Game (Hello World) 3

Chapter 2: Detecting touch input on iOS devices 6

Examples 6

Detecting touch 6

Chapter 3: Physics 7

Examples 7

How to correctly remove node in didBeginContact method (multiple contacts) 7

Chapter 4: SKAction 8

Examples 8

Create and Run a Simple SKAction 8

Creating a Repeating Sequence of Actions 8

Running a Block of Code in an SKAction 8

Named actions that can be started or removed from elsewhere. 8

Chapter 5: SKNode Collision 10

Remarks 10

Examples 10

Enable Physics World 10

Enable Node to Collide 10

Handle Contacts 11

Alternative didBeginContact 11

Simple Sprite Kit project showing collisions, contacts & touch events. 12

Alternative to Handling contact when dealing with multi category sprites 16

Difference between contacts and collisions 16

Manipulating contactTest and collison bitmasks to enable/disable specific contact and coll 16

Chapter 6: SKScene 20

Remarks 20

Examples 20

Subclassing SKScene to Implement Primary SpriteKit Functionality 20

Create an SKScene that Fills the SKView 20

Create an SKScene that Scales to fit the SKView 21

Create an SKScene with an SKCameraNode (iOS 9 and later) 21

Chapter 7: SKSpriteNode (Sprites) 23

Syntax 23

Examples 23

Adding a Sprite to the Scene 23

Creating a Sprite 23

Subclassing SKSpriteNode 24

Chapter 8: SKView 26

Parameters 26

Remarks 26

Examples 26

Create a full screen SKView using Interface Builder 26

Displaying Debug Information 27

Create a small SKView with other controls using Interface Builder 28

Chapter 9: Timed functions in SpriteKit: SKActions vs NSTimers 34

Remarks 34

Examples 34

Implementing a method that fires after one second 34

Chapter 10: UIKit elements with SpriteKit 35

Examples 35

UITableView in SKScene 35

Protocol/Delegate to call a game ViewController method from the game scene 36

StackView in SKScene 37

Multiple UIViewController in a game: how to jump from the scene to a viewController 39

Storyboard: 39

GameViewController: 40

GameScene: 41

Credits 42

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: sprite-kit

It is an unofficial and free sprite-kit ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official sprite-kit.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/sprite-kit
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with sprite-kit

Remarks

SpriteKit is a 2D Game Engine developed by Apple. It provides high level APIs and a wide range
of functionalities to developers. It also contains an internal Physics Engine.

It is available on every Apple platform

iOS•
macOS•
tvOS•
watchOS (>= 3.0)•

Note: If you wish to develop using 3D graphics you need to use SceneKit instead.

The core building blocks of SpriteKit are:

SKView: a view in which SKScenes are presented.•
SKScene: a 2D scene that is presented in an SKView and contains one or more
SKSpriteNodes.

•

SKSpriteNode: an individual 2D image that can be animated around the scene.•

Other related building blocks are:

SKNode: a more general node that can be used in a scene to group other nodes together for
more complex behaviour.

•

SKAction: single or groups of actions that are applied to SKNodes to implement animations
and other effects.

•

SKPhysicsBody - allows physics to be applied to SKNodes to allow them to behave in a
realistic manner, including falling under gravity, bouncing off each other and following
ballistic trajectories.

•

Official documentation.

Versions

iOS 7.0 and Later

OS X 10.9 Mavericks and Later

watchOS 3.0 and Later

tvOS 9.0 and later

Examples

https://riptutorial.com/ 2

http://www.riptutorial.com/sprite-kit/topic/3572/skview
http://www.riptutorial.com/sprite-kit/topic/4519/skscene
http://www.riptutorial.com/sprite-kit/topic/3001/skspritenode--sprites-
https://developer.apple.com/library/ios/documentation/GraphicsAnimation/Conceptual/SpriteKit_PG/Introduction/Introduction.html

Your first SpriteKit Game (Hello World)

Open Xcode and select Create a new Xcode Project.

Now select iOS > Application on the left and Game on the main selection area.

Press Next.

Write into Product Name the name of your first great game.•
Into Organization Name the name of your company (or simply your own name).•
Organisation Identifier should contain your reversed domain name (www.yourdomain.com
becomes com.yourdomain). If you don't have a domain write anything you want (this is just and
test).

•

Then select Swift, SpriteKit and iPhone.•

https://riptutorial.com/ 3

http://i.stack.imgur.com/aBnQl.png

Press Next.

Select a folder of your Mac where you want to save the project and click on Create.

Congrats, you create your first Game with SpriteKit! Just press CMD + R to run it into the simulator!

https://riptutorial.com/ 4

http://i.stack.imgur.com/HLydx.png

Read Getting started with sprite-kit online: https://riptutorial.com/sprite-kit/topic/2956/getting-
started-with-sprite-kit

https://riptutorial.com/ 5

http://i.stack.imgur.com/6wXUA.png
https://riptutorial.com/sprite-kit/topic/2956/getting-started-with-sprite-kit
https://riptutorial.com/sprite-kit/topic/2956/getting-started-with-sprite-kit

Chapter 2: Detecting touch input on iOS
devices

Examples

Detecting touch

You can override 4 methods of SKScene to detect user touch

class GameScene: SKScene {

 override func touchesBegan(touches: Set<UITouch>, withEvent event: UIEvent?) {

 }

 override func touchesMoved(touches: Set<UITouch>, withEvent event: UIEvent?) {

 }

 override func touchesEnded(touches: Set<UITouch>, withEvent event: UIEvent?) {

 }

 override func touchesCancelled(touches: Set<UITouch>?, withEvent event: UIEvent?) {

 }
}

Please note that each method receives a touches parameter which (under particular
circumstances) can contain more then one single touch event.

Read Detecting touch input on iOS devices online: https://riptutorial.com/sprite-
kit/topic/3660/detecting-touch-input-on-ios-devices

https://riptutorial.com/ 6

https://riptutorial.com/sprite-kit/topic/3660/detecting-touch-input-on-ios-devices
https://riptutorial.com/sprite-kit/topic/3660/detecting-touch-input-on-ios-devices

Chapter 3: Physics

Examples

How to correctly remove node in didBeginContact method (multiple contacts)

// PHYSICS CONSTANTS
struct PhysicsCategory {
 static let None : UInt32 = 0
 static let All : UInt32 = UInt32.max
 static let player : UInt32 = 0b1 // 1
 static let bullet : UInt32 = 0b10 // 2
}

var nodesToRemove = [SKNode]()

 // #-#-#-#-#-#-#-#-#-#-#-#-#-#-#
 //MARK: - Physic Contact Delegate methods
 // #-#-#-#-#-#-#-#-#-#-#-#-#-#-#

 func didBegin(_ contact: SKPhysicsContact) {
 var one: SKPhysicsBody
 var two: SKPhysicsBody

 if contact.bodyA.categoryBitMask < contact.bodyB.categoryBitMask {
 one = contact.bodyA
 two = contact.bodyB
 } else {
 one = contact.bodyB
 two = contact.bodyA
 }

 // PLAYER AND BULLET
 if one.categoryBitMask == PhysicsCategory.player && two.categoryBitMask ==
PhysicsCategory.bullet {
 nodesToRemove.append(one.node!) // remove player
 nodesToRemove.append(two.node!) // remove bullet
 }
 }
 override func didFinishUpdate()
 {
 nodesToRemove.forEach(){$0.removeFromParent()}
 nodesToRemove = [SKNode]()
 }
}

Read Physics online: https://riptutorial.com/sprite-kit/topic/8991/physics

https://riptutorial.com/ 7

https://riptutorial.com/sprite-kit/topic/8991/physics

Chapter 4: SKAction

Examples

Create and Run a Simple SKAction

A very simple example would be to fade out an SKSpriteNode.

In Swift:

let node = SKSpriteNode(imageNamed: "image")
let action = SKAction.fadeOutWithDuration(1.0)
node.runAction(action)

Creating a Repeating Sequence of Actions

Sometimes it is necessary to do an action on repeat or in a sequence. This example will make the
node fade in and out a total of 3 times.

In Swift:

let node = SKSpriteNode(imageNamed: "image")
let actionFadeOut = SKAction.fadeOutWithDuration(1.0)
let actionFadeIn = SKAction.fadeInWithDuration(1.0)
let actionSequence = SKAction.sequence([actionFadeOut, actionFadeIn])
let actionRepeat = SKAction.repeatAction(actionSequence, count: 3)
node.runAction(actionRepeat)

Running a Block of Code in an SKAction

One helpful case is to have the action run a block of code.

In Swift:

let node = SKSpriteNode(imageNamed: "image")
let actionBlock = SKAction.runBlock({
 //Do what you want here
 if let gameScene = node.scene as? GameScene {
 gameScene.score += 5
 }
})
node.runAction(actionBlock)

Named actions that can be started or removed from elsewhere.

Sometimes you would want to start or remove an action on a specific node at a certain time. For
example, you might want to stop a moving object when the user taps the screen. This becomes
very helpful when a node has multiple actions and you only wants to access one of them.

https://riptutorial.com/ 8

let move = SKAction.moveTo(x: 200, duration: 2)
object.run(move, withKey: "moveX")

Here we set the key "moveX" for the action move in order to access it later in another part of the
class.

 override func touchesBegan(_ touches: Set<UITouch>, with event: UIEvent?) {
 object.removeAction(forKey: "moveX")
 }

When the user touches the screen the action will get removed and the object will stop moving.

Read SKAction online: https://riptutorial.com/sprite-kit/topic/6229/skaction

https://riptutorial.com/ 9

https://riptutorial.com/sprite-kit/topic/6229/skaction

Chapter 5: SKNode Collision

Remarks

The determinants of Sprite Kit collision and contact event processing are the relationship settings,
created by you, of categoryBitMask, collisionBitMask and contactTestBitMask for each of your
interacting object types. By rationally setting these in service of your desired outcomes from
contacts and collisions, you determine which types can collide and inform of contacts with others,
and avoid undesired collision, contact and physics processing overhead.

For each type of 'entity' you can set all three:

categoryBitMask : a category specific to this type of node1.
collisionBitMask : a collision differentiator, can be different from above2.
contactTestBitMask : a contact differentiator, can be different from both above3.

The general steps to implement collisions & contacts are:

set physic body size, shape and (sometimes) mass1.
add necessary BitMasks for your node type from category, collision and contact above2.
set scene as a contact delegate enabling it to check and inform of collisions and contacts3.
implement contact handlers and any other pertinent logic for physics events4.

Examples

Enable Physics World

// World physics
 self.physicsWorld.gravity = CGVectorMake(0, -9.8);

Enable Node to Collide

Firstly, we set node category

let groundBody: UInt32 = 0x1 << 0
let boxBody: UInt32 = 0x1 << 1

Then add Ground type node and Box type node.

let ground = SKSpriteNode(color: UIColor.cyanColor(), size: CGSizeMake(self.frame.width, 50))
ground.position = CGPointMake(CGRectGetMidX(self.frame), 100)
ground.physicsBody = SKPhysicsBody(rectangleOfSize: ground.size)
ground.physicsBody?.dynamic = false
ground.physicsBody?.categoryBitMask = groundBody
ground.physicsBody?.collisionBitMask = boxBody
ground.physicsBody?.contactTestBitMask = boxBody

https://riptutorial.com/ 10

addChild(ground)

// Add box type node

let box = SKSpriteNode(color: UIColor.yellowColor(), size: CGSizeMake(20, 20))
box.position = location
box.physicsBody = SKPhysicsBody(rectangleOfSize: box.size)
box.physicsBody?.dynamic = true
box.physicsBody?.categoryBitMask = boxBody
box.physicsBody?.collisionBitMask = groundBody | boxBody
box.physicsBody?.contactTestBitMask = boxBody
box.name = boxId

let action = SKAction.rotateByAngle(CGFloat(M_PI), duration:1)

box.runAction(SKAction.repeatActionForever(action))

self.addChild(box)

Handle Contacts

Set scene as delegate

//set your scene as SKPhysicsContactDelegate

class yourScene: SKScene, SKPhysicsContactDelegate

self.physicsWorld.contactDelegate = self;

Then you have to implement one or the other of the contact functions: optional func
didBegin(contact:) and/or optional fund didEnd(contact:) method to fill in your contact logic e.g. like

//order

let bodies = (contact.bodyA.categoryBitMask <= contact.bodyB.categoryBitMask) ?
(A:contact.bodyA,B:contact.bodyB) : (A:contact.bodyB,B:contact.bodyA)

//real handler
if ((bodies.B.categoryBitMask & boxBody) == boxBody){
 if ((bodies.A.categoryBitMask & groundBody) == groundBody) {
 let vector = bodies.B.velocity
 bodies.B.velocity = CGVectorMake(vector.dx, vector.dy * 4)

 }else{
 let vector = bodies.A.velocity
 bodies.A.velocity = CGVectorMake(vector.dx, vector.dy * 10)

 }
}

Alternative didBeginContact

IF you are using simple categories, with each physics body belonging to only one category, then
this alternative form of didBeginContact may be more readable:

https://riptutorial.com/ 11

func didBeginContact(contact: SKPhysicsContact) {
 let contactMask = contact.bodyA.categoryBitMask | contact.bodyB.categoryBitMask

switch contactMask {

case categoryBitMask.player | categoryBitMask.enemy:
 print("Collision between player and enemy")
 let enemyNode = contact.bodyA.categoryBitMask == categoryBitMask.enemy ?
contact.bodyA.node! : contact.bodyB.node!
 enemyNode.explode()
 score += 10

case categoryBitMask.enemy | categoryBitMask.enemy:
 print("Collision between enemy and enemy")
 contact.bodyA.node.explode()
 contact.bodyB.node.explode()

default :
 //Some other contact has occurred
 print("Some other contact")
}
}

Simple Sprite Kit project showing collisions, contacts & touch events.

Here is a simple Sprite-Kit GameScene.swift. Create a new, empty SpriteKit project and replace
the GameScene.swift with this. Then build and run.

Click on any of the objects on screen to give make them move. Check the logs and the comments
to see which ones collide and which ones make contact.

//
// GameScene.swift
// bounceTest
//
// Created by Stephen Ives on 05/04/2016.
// Copyright (c) 2016 Stephen Ives. All rights reserved.
//

import SpriteKit

class GameScene: SKScene, SKPhysicsContactDelegate {

 let objectSize = 150
 let initialImpulse: UInt32 = 300 // Needs to be proportional to objectSize

 //Physics categories
 let purpleSquareCategory: UInt32 = 1 << 0
 let redCircleCategory: UInt32 = 1 << 1
 let blueSquareCategory: UInt32 = 1 << 2
 let edgeCategory: UInt32 = 1 << 31

 let purpleSquare = SKSpriteNode()
 let blueSquare = SKSpriteNode()
 let redCircle = SKSpriteNode()

https://riptutorial.com/ 12

 override func didMove(to view: SKView) {

 physicsWorld.gravity = CGVector(dx: 0, dy: 0)

 //Create an boundary else everything will fly off-screen
 let edge = frame.insetBy(dx: 0, dy: 0)
 physicsBody = SKPhysicsBody(edgeLoopFrom: edge)
 physicsBody?.isDynamic = false //This won't move
 name = "Screen_edge"

 scene?.backgroundColor = SKColor.black

 // Give our 3 objects their attributes

 blueSquare.color = SKColor.blue
 blueSquare.size = CGSize(width: objectSize, height: objectSize)
 blueSquare.name = "shape_blueSquare"
 blueSquare.position = CGPoint(x: size.width * -0.25, y: size.height * 0.2)

 let circleShape = SKShapeNode(circleOfRadius: CGFloat(objectSize))
 circleShape.fillColor = SKColor.red
 redCircle.texture = view.texture(from: circleShape)
 redCircle.size = CGSize(width: objectSize, height: objectSize)
 redCircle.name = "shape_redCircle"
 redCircle.position = CGPoint(x: size.width * 0.4, y: size.height * -0.4)

 purpleSquare.color = SKColor.purple
 purpleSquare.size = CGSize(width: objectSize, height: objectSize)
 purpleSquare.name = "shape_purpleSquare"
 purpleSquare.position = CGPoint(x: size.width * -0.35, y: size.height * 0.4)

 addChild(blueSquare)
 addChild(redCircle)
 addChild(purpleSquare)

 redCircle.physicsBody = SKPhysicsBody(circleOfRadius: redCircle.size.width/2)
 blueSquare.physicsBody = SKPhysicsBody(rectangleOf: blueSquare.frame.size)
 purpleSquare.physicsBody = SKPhysicsBody(rectangleOf: purpleSquare.frame.size)

 setUpCollisions()

 checkPhysics()

 }

 func setUpCollisions() {

 //Assign our category bit masks to our physics bodies
 purpleSquare.physicsBody?.categoryBitMask = purpleSquareCategory
 redCircle.physicsBody?.categoryBitMask = redCircleCategory
 blueSquare.physicsBody?.categoryBitMask = blueSquareCategory
 physicsBody?.categoryBitMask = edgeCategory // This is the edge for the scene itself

 // Set up the collisions. By default, everything collides with everything.

 redCircle.physicsBody?.collisionBitMask &= ~purpleSquareCategory // Circle doesn't
collide with purple square
 purpleSquare.physicsBody?.collisionBitMask = 0 // purpleSquare collides with nothing
 // purpleSquare.physicsBody?.collisionBitMask |= (redCircleCategory |
blueSquareCategory) // Add collisions with red circle and blue square

https://riptutorial.com/ 13

 purpleSquare.physicsBody?.collisionBitMask = (redCircleCategory) // Add collisions
with red circle
 blueSquare.physicsBody?.collisionBitMask = (redCircleCategory) // Add collisions with
red circle

 // Set up the contact notifications. By default, nothing contacts anything.
 redCircle.physicsBody?.contactTestBitMask |= purpleSquareCategory // Notify when red
circle and purple square contact
 blueSquare.physicsBody?.contactTestBitMask |= redCircleCategory // Notify when
blue square and red circle contact

 // Make sure everything collides with the screen edge and make everything really
'bouncy'
 enumerateChildNodes(withName: "//shape*") { node, _ in
 node.physicsBody?.collisionBitMask |= self.edgeCategory //Add edgeCategory to the
collision bit mask
 node.physicsBody?.restitution = 0.9 // Nice and bouncy...
 node.physicsBody?.linearDamping = 0.1 // Nice and bouncy...
 }

 //Lastly, set ourselves as the contact delegate
 physicsWorld.contactDelegate = self
 }

 func didBegin(_ contact: SKPhysicsContact) {
 let contactMask = contact.bodyA.categoryBitMask | contact.bodyB.categoryBitMask

 switch contactMask {
 case purpleSquareCategory | blueSquareCategory:
 print("Purple square and Blue square have touched")
 case redCircleCategory | blueSquareCategory:
 print("Red circle and Blue square have touched")
 case redCircleCategory | purpleSquareCategory:
 print("Red circle and purple Square have touched")
 default: print("Unknown contact detected")
 }
 }

 override func touchesBegan(_ touches: Set<UITouch>, with event: UIEvent?) {

 for touch in touches {
 let touchedNode = selectNodeForTouch(touch.location(in: self))

 if let node = touchedNode {
 node.physicsBody?.applyImpulse(CGVector(dx:
CGFloat(arc4random_uniform(initialImpulse)) - CGFloat(initialImpulse/2), dy:
CGFloat(arc4random_uniform(initialImpulse)) - CGFloat(initialImpulse/2)))
 node.physicsBody?.applyTorque(CGFloat(arc4random_uniform(20)) - CGFloat(10))
 }

 }
 }

 // Return the sprite where the user touched the screen
 func selectNodeForTouch(_ touchLocation: CGPoint) -> SKSpriteNode? {

 let touchedNode = self.atPoint(touchLocation)
 print("Touched node is \(touchedNode.name)")
 // let touchedColor = getPixelColorAtPoint(touchLocation)
 // print("Touched colour is \(touchedColor)")

https://riptutorial.com/ 14

 if touchedNode is SKSpriteNode {
 return (touchedNode as! SKSpriteNode)
 } else {
 return nil
 }
 }

 //MARK: - Analyse the collision/contact set up.
 func checkPhysics() {

 // Create an array of all the nodes with physicsBodies
 var physicsNodes = [SKNode]()

 //Get all physics bodies
 enumerateChildNodes(withName: "//.") { node, _ in
 if let _ = node.physicsBody {
 physicsNodes.append(node)
 } else {
 print("\(node.name) does not have a physics body so cannot collide or be
involved in contacts.")
 }
 }

 //For each node, check it's category against every other node's collion and contctTest
bit mask
 for node in physicsNodes {
 let category = node.physicsBody!.categoryBitMask
 // Identify the node by its category if the name is blank
 let name = node.name != nil ? node.name! : "Category \(category)"

 let collisionMask = node.physicsBody!.collisionBitMask
 let contactMask = node.physicsBody!.contactTestBitMask

 // If all bits of the collisonmask set, just say it collides with everything.
 if collisionMask == UInt32.max {
 print("\(name) collides with everything")
 }

 for otherNode in physicsNodes {
 if (node.physicsBody?.dynamic == false) {
 print("This node \(name) is not dynamic")
 }
 if (node != otherNode) && (node.physicsBody?.isDynamic == true) {
 let otherCategory = otherNode.physicsBody!.categoryBitMask
 // Identify the node by its category if the name is blank
 let otherName = otherNode.name != nil ? otherNode.name! : "Category
\(otherCategory)"

 // If the collisonmask and category match, they will collide
 if ((collisionMask & otherCategory) != 0) && (collisionMask != UInt32.max)
{
 print("\(name) collides with \(otherName)")
 }
 // If the contactMAsk and category match, they will contact
 if (contactMask & otherCategory) != 0 {print("\(name) notifies when
contacting \(otherName)")}
 }
 }
 }
 }

https://riptutorial.com/ 15

}

Alternative to Handling contact when dealing with multi category sprites

let bodies = (contact.bodyA.categoryBitMask <= contact.bodyB.categoryBitMask) ?
(A:contact.bodyA,B:contact.bodyB) : (A:contact.bodyB,B:contact.bodyA)

switch (bodies.A.categoryBitMask,bodies.B.categoryBitMask)
{
 case let (a, _) where (a && superPower): //All we care about is if category a has a super
power
 //do super power effect
 fallthrough //continue onto check if we hit anything else
 case let (_, b) where (b && superPower): //All we care about is if category b has a super
power
 //do super power effect
 fallthrough //continue onto check if we hit anything else
 case let (a, b) where (a && groundBody) && (b && boxBody): //Check if box hit ground
 //boxBody hit ground
 case let (b, _) where (b && boxBody): //Check if box hit anything else
 //box body hit anything else
 default:()

}

Difference between contacts and collisions

In Sprite-Kit, there is the concept of collisions which refers to the SK physics engine handling
how physics objects interact when they collide i.e. which ones bounce off which other ones.

It also has the concept of contacts, which is the mechanism by which your program gets informed
when 2 physics objects intersect.

Objects may collide but not generate contacts, generate contacts without colliding, or collide and
generate a contact (or do neither and not interact at all)

Collisions can also be one-sided i.e. object A can collide (bounce off) object B, whilst object B
carries on as though nothing had happened. If you want 2 object to bounce off each other, they
must both be told to collide with the other.

Contacts however are not one-sided; if you want to know when object A touched (contacted)
object B, it is enough to set up contact detection on object A with regards to object B. You do not
have to set up contact detection on object B for object A.

Manipulating contactTest and collison bitmasks to enable/disable specific
contact and collisions.

For this example, we will used 4 bodies and will show only the last 8 bits of the bit masks for
simplicity. The 4 bodies are 3 SKSpriteNodes, each with a physics body and a boundary:

https://riptutorial.com/ 16

 let edge = frame.insetBy(dx: 0, dy: 0)
 physicsBody = SKPhysicsBody(edgeLoopFrom: edge)

Note that the 'edge' physics body is the physics body of the scene, not a node.

We define 4 unique categories

let purpleSquareCategory: UInt32 = 1 << 0 // bitmask is ...00000001
let redCircleCategory: UInt32 = 1 << 1 // bitmask is ...00000010
let blueSquareCategory: UInt32 = 1 << 2 // bitmask is ...00000100
let edgeCategory: UInt32 = 1 << 31 // bitmask is 10000...00000000

Each physics body is assigned the categories that it belongs to:

 //Assign our category bit masks to our physics bodies
 purpleSquare.physicsBody?.categoryBitMask = purpleSquareCategory
 redCircle.physicsBody?.categoryBitMask = redCircleCategory
 blueSquare.physicsBody?.categoryBitMask = blueSquareCategory
 physicsBody?.categoryBitMask = edgeCategory // This is the edge for the scene itself

If a bit in a body's collisionBitMask is set to 1, then it collides (bounces off) any body that has a '1'
in the same position in it's categoryBitMask. Similarly for contactTestBitMask.

Unless you specify otherwise, everything collides with everything else and no contacts are
generated (your code won't be notified when anything contacts anything else):

purpleSquare.physicsBody.collisonBitMask = 11111111111111111111111111111111 // 32 '1's.

Every bit in every position is '1', so when compared to any other categoryBitMask, Sprite Kit will
find a '1' so a collision will occur. If you do not want this body to collide with a certain category, you
will have to set the correct bit in the collisonBitMask to '0'

and its contactTestbitMask is set to all 0s:

redCircle.physicsBody.contactTestBitMask = 00000000000000000000000000000000 // 32 '0's

Same as for collisionBitMask, except reversed.

Contacts or collisions between bodies can be turned off (leaving existing contact or collision
unchanged) using:

nodeA.physicsBody?.collisionBitMask &= ~nodeB.category

We logically AND nodeA's collision bit mask with the inverse (logical NOT, the ~ operator) of
nodeB's category bitmask to 'turn off' that bit nodeA's bitMask. e.g to stop the red circle from
colliding with the purple square:

redCircle.physicsBody?.collisionBitMask = redCircle.physicsBody?.collisionBitMask &
~purpleSquareCategory

https://riptutorial.com/ 17

which can be shortened to:

redCircle.physicsBody?.collisionBitMask &= ~purpleSquareCategory

Explanation:

redCircle.physicsBody.collisonBitMask = 11111111111111111111111111111111
purpleSquareCategory = 00000000000000000000000000000001
~purpleSquareCategory = 11111111111111111111111111111110
11111111111111111111111111111111 & 11111111111111111111111111111110 =
11111111111111111111111111111110
redCircle.physicsBody.collisonBitMask now equals 11111111111111111111111111111110

redCircle no longer collides with bodies with a category of0001 (purpleSquare)

Instead of turning off individual bits in the collsionsbitMask, you can set it directly:

blueSquare.physicsBody?.collisionBitMask = (redCircleCategory | purpleSquareCategory)

i.e. blueSquare.physicsBody?.collisionBitMask = (....00000010 OR00000001)

which equals blueSquare.physicsBody?.collisionBitMask =00000011

blueSquare will only collide with bodies with a category or ..01 or ..10

Contacts or collisions between 2 bodies can be turned ON (without affecting any existing contacts
or collisions) at any point using:

redCircle.physicsBody?.contactTestBitMask |= purpleSquareCategory

We logically AND redCircle's bitMask with purpleSquare's category bitmask to 'turn on' that bit in
redcircle's bitMask. This leaves any other bits in redCircel's bitMas unaffected.

You can make sure that every shape 'bounces off' a screen edge as follows:

// Make sure everything collides with the screen edge
enumerateChildNodes(withName: "//*") { node, _ in
 node.physicsBody?.collisionBitMask |= self.edgeCategory //Add edgeCategory to the
collision bit mask
}

Note:

Collisions can be one-sided i.e. object A can collide (bounce off) object B, whilst object B carries
on as though nothing had happened. If you want 2 object to bounce off each other, they must both
be told to collide with the other:

blueSquare.physicsBody?.collisionBitMask = redCircleCategory
redcircle.physicsBody?.collisionBitMask = blueSquareCategory

https://riptutorial.com/ 18

Contacts however are not one-sided; if you want to know when object A touched (contacted)
object B, it is enough to set up contact detection on object A with regards to object B. You do not
have to set up contact detection on object B for object A.

blueSquare.physicsBody?.contactTestBitMask = redCircleCategory

We don't need redcircle.physicsBody?.contactTestBitMask= blueSquareCategory

Advanced usage:

Not covered here, but physics bodies can belong to more than one category. E.g. we could set our
game up as follows:

let squareCategory: UInt32 = 1 << 0 // bitmask is ...00000001
let circleCategory: UInt32 = 1 << 1 // bitmask is ...00000010
let blueCategory: UInt32 = 1 << 2 // bitmask is ...00000100
let redCategory: UInt32 = 1 << 3 // bitmask is ...00001000
let purpleCategory: UInt32 = 1 << 4 // bitmask is ...00010000
let edgeCategory: UInt32 = 1 << 31 // bitmask is 10000...0000000

Each physics body is assigned the categories that it belongs to:

 //Assign our category bit masks to our physics bodies
 purpleSquare.physicsBody?.categoryBitMask = squareCategory | purpleCategory
 redCircle.physicsBody?.categoryBitMask = circleCategory | redCategory
 blueSquare.physicsBody?.categoryBitMask = squareCategory | blueCategory

their categorybitMasks are now:

purpleSquare.physicsBody?.categoryBitMask = ...00010001
redCircle.physicsBody?.categoryBitMask = ...00001010
blueSquare.physicsBody?.categoryBitMask = ...00000101

This will affect how you manipulate the bit fields. It can be useful (for example) to indicate that a
physics body (e.g. a bomb) has changed somehow (e.g. it might have gained the 'super' ability
which is another category, and you might check that a certain object (an alien mothersh

Read SKNode Collision online: https://riptutorial.com/sprite-kit/topic/6261/sknode-collision

https://riptutorial.com/ 19

https://riptutorial.com/sprite-kit/topic/6261/sknode-collision

Chapter 6: SKScene

Remarks

SKScene represents a single scene in a SpriteKit application. An SKScene is 'presented' into an
SKView. SKSpriteNodes are added to the scene to implement the actual sprites.

Simple applications may have a single SKScene that contains all the SpriteKit content. More
complex apps may have several SKScenes that are presented at different times (e.g. an opening
scene to present the game options, a second scene to implement the game itself and a third
scene to present the 'Game Over' results).

Examples

Subclassing SKScene to Implement Primary SpriteKit Functionality

SpriteKit functionality can be implemented in a subclass of SKScene. For example, a game may
implement the main game functionality within an SKScene subclass called GameScene.

In Swift:

import SpriteKit

class GameScene: SKScene {

 override func didMoveToView(view: SKView) {
 /* Code here to setup the scene when it is first shown. E.g. add sprites. */
 }

 override func touchesBegan(touches: Set<UITouch>, withEvent event: UIEvent?) {
 for touch in touches {
 let location = touch.locationInNode(self)
 /* Code here to respond to a user touch in the scene at location */
 }
 }

 override func update(currentTime: CFTimeInterval) {
 /* Code here to perform operations before each frame is updated */
 }
}

Secondary functionality could then be implemented in subclasses of the SKSpriteNodes that are
used within the scene (see Subclassing SKSpriteNode).

Create an SKScene that Fills the SKView

A simple use case it to create an SKScene that exactly fills the SKView. This avoids the need to
consider scaling the view to fit or setting a camera to show a part of the scene.

https://riptutorial.com/ 20

http://www.riptutorial.com/sprite-kit/topic/3572/skview
http://www.riptutorial.com/sprite-kit/topic/3001/skspritenode--sprites-
http://www.riptutorial.com/sprite-kit/example/10208/subclassing-skspritenode

The following code assumes an SKView called skView already exists (e.g. as defined in Create a
Full Screen SKView using Interface Builder) and a subclass of SKScene called GameView has
been defined:

In Swift:

let sceneSize = CGSizeMake(skView.frame.width, skView.frame.height)
let scene = SKScene(size: sceneSize)

skView.presentScene(scene)

However if the SKView can change size (e.g. if the user rotates their device and this causes the
view to be stretched because of its constraints) then the SKScene will no longer fit the SKView.
You could manage this by resizing the SKScene each time the SKView changes size (e.g. in the
didChangeSize method).

Create an SKScene that Scales to fit the SKView

An SKScene has a scaleMode parameter that defines how it will change its size to fit within the
SKView it is presented into the SKView if it is not the same size and/or shape.

There are four options for scaleMode:

AspectFit: the scene is scaled (but not stretched) until it fits within the view. This ensures
that the scene is not distorted but there may be some areas of the view that are not covered
by the scene if the scene is not the same shape as the view.

•

AspectFill: the scene is scaled (but not stretched) to fill the view completely. This ensures
that the scene is not distorted and that the view is completely filled but some parts of the
scene may be cropped if the scene is not the same shape as the view.

•

Fill: the scene is scaled (and if necessary stretched) to fill the view completely. This ensure
that the view is completely filled and that none of your scene is cropped but the scene will be
distorted if the scene is not the same shape as the view.

•

ResizeFill: the scene is not scaled at all but rather its size is changed to fit the size of the
view.

•

The following code assumes an SKView called skView already exists (e.g. as defined in Create a
Full Screen SKView using Interface Builder) and a subclass of SKScene called GameView has
been defined and then uses the AspectFill scaleMode:

In Swift 3:

 let sceneSize = CGSize(width:1000, height:1000)
 let scene = GameScene(size: sceneSize)
 scene.scaleMode = .aspectFill

 skView.presentScene(scene)

Create an SKScene with an SKCameraNode (iOS 9 and later)

https://riptutorial.com/ 21

http://www.riptutorial.com/sprite-kit/example/12321/create-a-full-screen-skview-using-interface-builder
http://www.riptutorial.com/sprite-kit/example/12321/create-a-full-screen-skview-using-interface-builder
http://www.riptutorial.com/sprite-kit/example/12321/create-a-full-screen-skview-using-interface-builder
http://www.riptutorial.com/sprite-kit/example/12321/create-a-full-screen-skview-using-interface-builder

You can place an SKCameraNode into an SKScene to define which part of the scene is shown in
the SKView. Think of the SKScene as a 2D world with a camera floating above it: the SKView will
show what the camera 'sees'.

E.g. the camera could be attached to the main character's sprite to follow the action of a scrolling
game.

The SKCameraNode has four parameters that define what part of the scene is shown:

position: this is the position of the camera in the scene. The scene is rendered to place this
position in the middle of the SKView.

•

xScale and yScale: these define how the scene is zoomed in the view. Keep these two
values the same to avoid distorting the view. A value of 1 means no zoom, values less than
one will zoom in (make the sprites appear larger) and values above 1 will zoom out (make
the sprites appear smaller).

•

zRotation: this defines how the view is rotated in the view. A value of zero will be no
rotation. The value is in radians, so a value of Pi (3.14...) will rotate the view upside-down.

•

The following code assumes an SKView called skView already exists (e.g. as defined in Create a
Full Screen SKView using Interface Builder) and a subclass of SKScene called GameView has
been defined. This example just sets the camera's initial position, you would need to move the
camera (in the same way as you would other SKSpriteNodes in the scene) to scroll your view:

In Swift 3:

 let sceneSize = CGSize(width:1000, height:1000)
 let scene = GameScene(size: sceneSize)
 scene.scaleMode = .aspectFill

 let camera = SKCameraNode()
 camera.position = CGPointM(x:500, y:500)
 camera.xScale = 1
 camera.yScale = 1
 camera.zRotation = 3.14
 scene.addChild(camera)
 scene.camera = camera

 skView.presentScene(scene)

Read SKScene online: https://riptutorial.com/sprite-kit/topic/4519/skscene

https://riptutorial.com/ 22

http://www.riptutorial.com/sprite-kit/example/12321/create-a-full-screen-skview-using-interface-builder
http://www.riptutorial.com/sprite-kit/example/12321/create-a-full-screen-skview-using-interface-builder
https://riptutorial.com/sprite-kit/topic/4519/skscene

Chapter 7: SKSpriteNode (Sprites)

Syntax

convenience init(imageNamed name: String) // Create an SKSpriteNode from a named
image in the assets catalogue

•

var position: CGPoint // SKNode property, inherited by SKSpriteNode. The position of the
node in the parents co-ordinate system.

•

func addChild(_ node: SKNode) // SKNode method, inherited by SKScene. Used to add an
SKSpriteNode to the scene (also used to add SKNodes to other SKNodes).

•

Examples

Adding a Sprite to the Scene

In SpriteKit a Sprite is represented by the SKSpriteNode class (which inherits from SKNode).

First of all create a new Xcode Project based on the SpriteKit template as described in Your First
SpriteKit Game.

Creating a Sprite

Now you can create a SKSpriteNode using an image loaded into the Assets.xcassets folder.

let spaceship = SKSpriteNode(imageNamed: "Spaceship")

Spaceship is the name of the image item into the Assets.xcassets.

After the sprite has been created you can add it to your scene (or to any other node).

Open GameScene.swift, remove all its content and add the following

class GameScene: SKScene {
 override func didMoveToView(view: SKView) {
 let enemy = SKSpriteNode(imageNamed: "Spaceship")
 enemy.position = CGPoint(x:self.frame.midX, y:self.frame.midY)
 self.addChild(enemy)
 }
}

Now press CMD + R in Xcode to launch the Simulator.

https://riptutorial.com/ 23

http://www.riptutorial.com/sprite-kit/example/10201/your-first-spritekit-game--hello-world-
http://www.riptutorial.com/sprite-kit/example/10201/your-first-spritekit-game--hello-world-

Subclassing SKSpriteNode

You can subclass SKSpriteNode and define your own type of sprite.

class Hero: SKSpriteNode {
 //Use a convenience init when you want to hard code values
 convenience init() {
 let texture = SKTexture(imageNamed: "Hero")
 self.init(texture: texture, color: .clearColor(), size: texture.size())
 }

https://riptutorial.com/ 24

http://i.stack.imgur.com/MWDjs.png

 //We need to override this to allow for class to work in SpriteKit Scene Builder
 required init?(coder aDecoder: NSCoder) {
 super.init(coder:aDecoder)
 }

 //Override this to allow Hero to have access all convenience init methods
 override init(texture: SKTexture?, color: UIColor, size: CGSize)
 {
 super.init(texture: texture, color: color, size: size)
 }
}

Read SKSpriteNode (Sprites) online: https://riptutorial.com/sprite-kit/topic/3001/skspritenode--
sprites-

https://riptutorial.com/ 25

https://riptutorial.com/sprite-kit/topic/3001/skspritenode--sprites-
https://riptutorial.com/sprite-kit/topic/3001/skspritenode--sprites-

Chapter 8: SKView

Parameters

Parameter Details

showsFPS
Display a count of the current frame rate in Frames Per Second in the
view.

showsNodeCount
Display a count of the current number of SKNodes being displayed in the
view.

showsPhysics Display a visual representation of the SKPhysicsBodys in the view.

showsFields
Display an image representing the effects of the physics fields in the
view.

showsDrawCount
Display a count of the number of drawing passes required to render the
view.

showsQuadCount Display a count of the number of rectangles required to render the view.

Remarks

An SKView is a subclass of UIView that is used to present SpriteKit 2D animations.

An SKView can be added to Interface Builder or programatically in the same way as 'normal'
UIViews. SpriteKit content is then presented in the SKView in an SKScene.

See also SKView Class Reference from Apple Documentation.

Examples

Create a full screen SKView using Interface Builder

A typical use case for SpriteKit is where the SKView fills the whole screen.

To do this in Xcode's Interface Builder, first create a normal ViewController, then select the
contained view and change its Class from UIView to SKView:

https://riptutorial.com/ 26

https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SKView/

Within the code for the View Controller, in the viewDidLoad method, grab a link to this SKView
using self.view:

In Swift:

guard let skView = self.view as? SKView else {
 // Handle error
 return
}

(The guard statement here protects against the theoretical error that the view is not an SKView.)

You can then use this to perform other operations such as presenting an SKScene:

In Swift:

skView.presentScene(scene)

Displaying Debug Information

The current frame rate (in FPS, Frames Per Second) and total number of SKNodes in the scene
(nodeCount, each sprite is an SKNode but other objects in the scene are also SKNodes) can be
shown in the bottom right hand corner of the view.

https://riptutorial.com/ 27

http://i.stack.imgur.com/wOgg1.png

These can be useful when turned on (set to true) for debugging and optimising your code but
should be turned off (set to false) before submitting the app to the AppStore.

In Swift:

skView.showsFPS = true
skView.showsNodeCount = true

Result:

Create a small SKView with other controls using Interface Builder

An SKView does not need to fill the whole screen and can share space with other UI controls. You
can even have more than one SKView displayed at once if you wish.

To create a smaller SKView amongst other controls with Interface Builder, first create a normal
ViewController, then drag and drop a new view onto the view controller:

https://riptutorial.com/ 28

http://i.stack.imgur.com/Rg6lA.png

It can be helpful to set the colour of this view to something other than white (here black is used) so
that it can be seen more clearly in Interface Builder (this colour will not be shown on the final app).
Add other controls (a UIView, two buttons and a label are shown here as examples) and use
constraints as normal to lay them out on the display:

https://riptutorial.com/ 29

http://i.stack.imgur.com/yJjUO.png

Then select the view you want to be an SKView and change its class to SKView:

https://riptutorial.com/ 30

http://i.stack.imgur.com/04mft.png

Then, using the assistant editor, control-drag from this SKView to your code and create an Outlet:

https://riptutorial.com/ 31

http://i.stack.imgur.com/lJsCL.png

Use this outlet to present your SKScene.

In Swift:

skView.presentScene(scene)

Result (based on the Hello World example):

https://riptutorial.com/ 32

http://i.stack.imgur.com/PTRUc.png
http://www.riptutorial.com/sprite-kit/example/10201/your-first-spritekit-game--hello-world-

Read SKView online: https://riptutorial.com/sprite-kit/topic/3572/skview

https://riptutorial.com/ 33

http://i.stack.imgur.com/6C8Yy.png
https://riptutorial.com/sprite-kit/topic/3572/skview

Chapter 9: Timed functions in SpriteKit:
SKActions vs NSTimers

Remarks

When should you use SKActions to perform timer functions? Almost always. The reason for this is
because Sprite Kit operates on an update interval, and the speed of this interval can be changed
throughout the life time of the process using the speed property. Scenes can also be paused as
well. Since SKActions work inside the scene, when you alter these properties, there is no need to
alter your time functions. If your scene is 0.5 seconds into the process, and you pause the scene,
you do not need to stop any timers and retain that 0.5 second difference. It is given to you
automatically, so that when you unpause, the remaining time continues.

When should you use NSTimers to perform timer functions? Whenever you have something that
needs to be timed outside of the SKScene environment, and also needs to be fired even when the
scene is paused, or needs to fire at a constant rate even when the scene speed changes.

This is best used when working with both UIKit controls and SpriteKit controls. Since UIKit has no
idea about what goes on with SpriteKit, NSTimers will fire regardless of the state of the SKScene. An
example would be we have a UILabel that receives an update every second, and it needs data
from inside your SKScene.

Examples

Implementing a method that fires after one second

SKAction:

let waitForOneSecond = SKAction.waitForDuration(1) let action = SKAction.runBlock(){action()}
let sequence = SKAction.sequence([waitForOneSecond,action]) self.runAction(sequence)

NSTimer:

NSTimer.scheduledTimerWithTimeInterval(1, target: self, selector: #selector(action), userInfo:
nil, repeats: false)

Read Timed functions in SpriteKit: SKActions vs NSTimers online: https://riptutorial.com/sprite-
kit/topic/5962/timed-functions-in-spritekit---skactions-vs-nstimers

https://riptutorial.com/ 34

https://riptutorial.com/sprite-kit/topic/5962/timed-functions-in-spritekit---skactions-vs-nstimers
https://riptutorial.com/sprite-kit/topic/5962/timed-functions-in-spritekit---skactions-vs-nstimers

Chapter 10: UIKit elements with SpriteKit

Examples

UITableView in SKScene

import SpriteKit
import UIKit
class GameRoomTableView: UITableView,UITableViewDelegate,UITableViewDataSource {
 var items: [String] = ["Player1", "Player2", "Player3"]
 override init(frame: CGRect, style: UITableViewStyle) {
 super.init(frame: frame, style: style)
 self.delegate = self
 self.dataSource = self
 }
 required init?(coder aDecoder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
 }
 // MARK: - Table view data source
 func numberOfSections(in tableView: UITableView) -> Int {
 return 1
 }
 func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return items.count
 }
 func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
 let cell:UITableViewCell = tableView.dequeueReusableCell(withIdentifier: "cell")! as
UITableViewCell
 cell.textLabel?.text = self.items[indexPath.row]
 return cell
 }
 func tableView(_ tableView: UITableView, titleForHeaderInSection section: Int) -> String?
{
 return "Section \(section)"
 }
 func tableView(_ tableView: UITableView, didSelectRowAt indexPath: IndexPath) {
 print("You selected cell #\(indexPath.row)!")
 }
}
class GameScene: SKScene {
 var gameTableView = GameRoomTableView()
 private var label : SKLabelNode?
 override func didMove(to view: SKView) {
 self.label = self.childNode(withName: "//helloLabel") as? SKLabelNode
 if let label = self.label {
 label.alpha = 0.0
 label.run(SKAction.fadeIn(withDuration: 2.0))
 }
 // Table setup
 gameTableView.register(UITableViewCell.self, forCellReuseIdentifier: "cell")
 gameTableView.frame=CGRect(x:20,y:50,width:280,height:200)
 view.addSubview(gameTableView)
 gameTableView.reloadData()
 }
}

https://riptutorial.com/ 35

Output:

Protocol/Delegate to call a game ViewController method from the game scene

GameScene code example:

import SpriteKit
protocol GameViewControllerDelegate: class {
 func callMethod(inputProperty:String)
}
class GameScene: SKScene {
 weak var gameViewControllerDelegate:GameViewControllerDelegate?
 override func didMove(to view: SKView) {
 gameViewControllerDelegate?.callMethod(inputProperty: "call game view controller
method")
 }
}

GameViewController code example:

class GameViewController: UIViewController, GameViewControllerDelegate {
 override func viewDidLoad() {
 super.viewDidLoad()
 if let view = self.view as! SKView? {
 // Load the SKScene from 'GameScene.sks'
 if let scene = SKScene(fileNamed: "GameScene") {
 let gameScene = scene as! GameScene

https://riptutorial.com/ 36

https://i.stack.imgur.com/b54eT.png

 gameScene.gameViewControllerDelegate = self
 gameScene.scaleMode = .aspectFill
 view.presentScene(gameScene)
 }
 view.ignoresSiblingOrder = true
 view.showsFPS = true
 view.showsNodeCount = true
 }
 }
 func callMethod(inputProperty:String) {
 print("inputProperty is: ",inputProperty)
 }
}

Output:

StackView in SKScene

import SpriteKit
import UIKit
protocol StackViewDelegate: class {
 func didTapOnView(at index: Int)
}
class GameMenuView: UIStackView {
 weak var delegate: StackViewDelegate?
 override init(frame: CGRect) {
 super.init(frame: frame)
 self.axis = .vertical
 self.distribution = .fillEqually
 self.alignment = .fill
 self.spacing = 5
 self.isUserInteractionEnabled = true
 //set up a label
 for i in 1...5 {
 let label = UILabel()
 label.text = "Menu voice \(i)"
 label.textColor = UIColor.white
 label.backgroundColor = UIColor.blue
 label.textAlignment = .center
 label.tag = i
 self.addArrangedSubview(label)
 }
 configureTapGestures()
 }
 required init(coder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
 }
 private func configureTapGestures() {
 arrangedSubviews.forEach { view in
 view.isUserInteractionEnabled = true
 let tapGesture = UITapGestureRecognizer(target: self, action:
#selector(didTapOnView))
 view.addGestureRecognizer(tapGesture)
 }
 }
 func didTapOnView(_ gestureRecognizer: UIGestureRecognizer) {
 if let index = arrangedSubviews.index(of: gestureRecognizer.view!) {

https://riptutorial.com/ 37

https://i.stack.imgur.com/c0ciU.png

 delegate?.didTapOnView(at: index)
 }
 }
}
class GameScene: SKScene, StackViewDelegate {
 var gameMenuView = GameMenuView()
 private var label : SKLabelNode?
 override func didMove(to view: SKView) {
 self.label = self.childNode(withName: "//helloLabel") as? SKLabelNode
 if let label = self.label {
 label.alpha = 0.0
 label.run(SKAction.fadeIn(withDuration: 2.0))
 }
 // Menu setup with stackView
 gameMenuView.frame=CGRect(x:20,y:50,width:280,height:200)
 view.addSubview(gameMenuView)
 gameMenuView.delegate = self
 }
 func didTapOnView(at index: Int) {
 switch index {
 case 0: print("tapped voice 1")
 case 1: print("tapped voice 2")
 case 2: print("tapped voice 3")
 case 3: print("tapped voice 4")
 case 4: print("tapped voice 5")
 default:break
 }
 }
}

Output:

https://riptutorial.com/ 38

Multiple UIViewController in a game: how to jump from the scene to a
viewController

Storyboard:

https://riptutorial.com/ 39

https://i.stack.imgur.com/pOtM3.png

Initial viewController: an empty viewController with a button to present the GameViewController

GameViewController: the typical GameViewController of the "Hello World" Sprite-kit template.

Goal: I want to present the first viewController from my SKScene game with the correct deallocation
of my scene.

Description: To obtain the result I've extended the SKSceneDelegate class to build a custom
protocol/delegate that make the transition from the GameViewController to the first initial controller
(main menu). This method could be extended to other viewControllers of your game.

GameViewController:

import UIKit
import SpriteKit
class GameViewController: UIViewController,TransitionDelegate {
 override func viewDidLoad() {
 super.viewDidLoad()
 if let view = self.view as! SKView? {
 if let scene = SKScene(fileNamed: "GameScene") {

https://riptutorial.com/ 40

https://i.stack.imgur.com/s4vXY.png

 scene.scaleMode = .aspectFill
 scene.delegate = self as TransitionDelegate
 view.presentScene(scene)
 }
 view.ignoresSiblingOrder = true
 view.showsFPS = true
 view.showsNodeCount = true
 }
 }
 func returnToMainMenu(){
 let appDelegate = UIApplication.shared.delegate as! AppDelegate
 guard let storyboard = appDelegate.window?.rootViewController?.storyboard else {
return }
 if let vc = storyboard.instantiateInitialViewController() {
 print("go to main menu")
 self.present(vc, animated: true, completion: nil)
 }
 }
}

GameScene:

import SpriteKit
protocol TransitionDelegate: SKSceneDelegate {
 func returnToMainMenu()
}
class GameScene: SKScene {
 override func didMove(to view: SKView) {
 self.run(SKAction.wait(forDuration: 2),completion:{[unowned self] in
 guard let delegate = self.delegate else { return }
 self.view?.presentScene(nil)
 (delegate as! TransitionDelegate).returnToMainMenu()
 })
 }
 deinit {
 print("\n THE SCENE \((type(of: self))) WAS REMOVED FROM MEMORY (DEINIT) \n")
 }
}

Read UIKit elements with SpriteKit online: https://riptutorial.com/sprite-kit/topic/8807/uikit-
elements-with-spritekit

https://riptutorial.com/ 41

https://riptutorial.com/sprite-kit/topic/8807/uikit-elements-with-spritekit
https://riptutorial.com/sprite-kit/topic/8807/uikit-elements-with-spritekit

Credits

S.
No

Chapters Contributors

1
Getting started with
sprite-kit

Ali Beadle, Community, Luca Angeletti

2
Detecting touch input
on iOS devices

Knight0fDragon, Luca Angeletti

3 Physics Alessandro Ornano

4 SKAction Abdou023, Kendel

5 SKNode Collision Chen Wei, Confused, Knight0fDragon, RamenChef, Steve Ives

6 SKScene Ali Beadle

7
SKSpriteNode
(Sprites)

Ali Beadle, Knight0fDragon, Luca Angeletti

8 SKView Ali Beadle, Kendel

9
Timed functions in
SpriteKit: SKActions
vs NSTimers

Knight0fDragon

10
UIKit elements with
SpriteKit

Alessandro Ornano, Knight0fDragon

https://riptutorial.com/ 42

https://riptutorial.com/contributor/2466193/ali-beadle
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1761687/luca-angeletti
https://riptutorial.com/contributor/2709645/knight0fdragon
https://riptutorial.com/contributor/1761687/luca-angeletti
https://riptutorial.com/contributor/1894067/alessandro-ornano
https://riptutorial.com/contributor/4059714/abdou023
https://riptutorial.com/contributor/4392508/kendel
https://riptutorial.com/contributor/3423029/chen-wei
https://riptutorial.com/contributor/2109038/confused
https://riptutorial.com/contributor/2709645/knight0fdragon
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1430420/steve-ives
https://riptutorial.com/contributor/2466193/ali-beadle
https://riptutorial.com/contributor/2466193/ali-beadle
https://riptutorial.com/contributor/2709645/knight0fdragon
https://riptutorial.com/contributor/1761687/luca-angeletti
https://riptutorial.com/contributor/2466193/ali-beadle
https://riptutorial.com/contributor/4392508/kendel
https://riptutorial.com/contributor/2709645/knight0fdragon
https://riptutorial.com/contributor/1894067/alessandro-ornano
https://riptutorial.com/contributor/2709645/knight0fdragon

	About
	Chapter 1: Getting started with sprite-kit
	Remarks
	Versions
	Examples
	Your first SpriteKit Game (Hello World)

	Chapter 2: Detecting touch input on iOS devices
	Examples
	Detecting touch

	Chapter 3: Physics
	Examples
	How to correctly remove node in didBeginContact method (multiple contacts)

	Chapter 4: SKAction
	Examples
	Create and Run a Simple SKAction
	Creating a Repeating Sequence of Actions
	Running a Block of Code in an SKAction
	Named actions that can be started or removed from elsewhere.

	Chapter 5: SKNode Collision
	Remarks
	Examples
	Enable Physics World
	Enable Node to Collide
	Handle Contacts
	Alternative didBeginContact
	Simple Sprite Kit project showing collisions, contacts & touch events.
	Alternative to Handling contact when dealing with multi category sprites
	Difference between contacts and collisions
	Manipulating contactTest and collison bitmasks to enable/disable specific contact and collisions.

	Chapter 6: SKScene
	Remarks
	Examples
	Subclassing SKScene to Implement Primary SpriteKit Functionality
	Create an SKScene that Fills the SKView
	Create an SKScene that Scales to fit the SKView
	Create an SKScene with an SKCameraNode (iOS 9 and later)

	Chapter 7: SKSpriteNode (Sprites)
	Syntax
	Examples
	Adding a Sprite to the Scene

	Creating a Sprite
	Subclassing SKSpriteNode

	Chapter 8: SKView
	Parameters
	Remarks
	Examples
	Create a full screen SKView using Interface Builder
	Displaying Debug Information
	Create a small SKView with other controls using Interface Builder

	Chapter 9: Timed functions in SpriteKit: SKActions vs NSTimers
	Remarks
	Examples
	Implementing a method that fires after one second

	Chapter 10: UIKit elements with SpriteKit
	Examples
	UITableView in SKScene
	Protocol/Delegate to call a game ViewController method from the game scene
	StackView in SKScene
	Multiple UIViewController in a game: how to jump from the scene to a viewController

	Storyboard:
	GameViewController:
	GameScene:

	Credits

