
sqlalchemy

#sqlalchem

y

Table of Contents

About 1

Chapter 1: Getting started with sqlalchemy 2

Remarks 2

Versions 2

Examples 2

Installation or Setup 3

Hello, World! (SQLAlchemy Core) 3

h11 4

Hello, World! (SQLAlchemy ORM) 4

Chapter 2: Connecting 6

Examples 6

Engine 6

Using a Connection 6

Implicit Execution 6

Transactions 6

Chapter 3: Flask-SQLAlchemy 8

Remarks 8

Examples 8

A Minimal Application 8

Chapter 4: SQLAlchemy Core 9

Examples 9

Converting result to dict 9

Chapter 5: The ORM 10

Remarks 10

Examples 10

Converting a query result to dict 10

Filtering 11

Order By 12

Accessing query results 12

Chapter 6: The Session 14

Remarks 14

Examples 14

Creating a Session 14

Adding Instances 14

Deleting Instances 15

Credits 16

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: sqlalchemy

It is an unofficial and free sqlalchemy ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official sqlalchemy.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/sqlalchemy
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with sqlalchemy

Remarks

SQLALCHEMY'S PHILOSOPHY

From the SQLAlchemy Website:

SQL databases behave less like object collections the more size and performance start
to matter; object collections behave less like tables and rows the more abstraction
starts to matter. SQLAlchemy aims to accommodate both of these principles.

SQLAlchemy considers the database to be a relational algebra engine, not just a
collection of tables. Rows can be selected from not only tables but also joins and other
select statements; any of these units can be composed into a larger structure.
SQLAlchemy's expression language builds on this concept from its core.

SQLAlchemy is most famous for its object-relational mapper (ORM), an optional
component that provides the data mapper pattern, where classes can be mapped to
the database in open ended, multiple ways - allowing the object model and database
schema to develop in a cleanly decoupled way from the beginning.

SQLAlchemy's overall approach to these problems is entirely different from that of
most other SQL / ORM tools, rooted in a so-called complimentarity- oriented approach;
instead of hiding away SQL and object relational details behind a wall of automation, all
processes are fully exposed within a series of composable, transparent tools. The
library takes on the job of automating redundant tasks while the developer remains in
control of how the database is organized and how SQL is constructed.

The main goal of SQLAlchemy is to change the way you think about databases and
SQL!

Versions

Version Release Status Change Log Release Date

1.1 Beta 1.1 2016-07-26

1.0 Current Release 1.0 2015-04-16

0.9 Maintenance 0.9 2013-12-30

0.8 Security 0.8 2013-03-09

Examples

https://riptutorial.com/ 2

http://www.sqlalchemy.org/
http://docs.sqlalchemy.org/en/latest/changelog/changelog_11.html#change-1.1.0b3
http://docs.sqlalchemy.org/en/latest/changelog/changelog_10.html#change-1.0.14
http://docs.sqlalchemy.org/en/latest/changelog/changelog_09.html#change-0.9.10
http://docs.sqlalchemy.org/en/latest/changelog/changelog_08.html#change-0.8.7

Installation or Setup

pip install sqlalchemy

For most common applications, particularly web applications, it is usually recommended that
beginners consider using a supplementary library, such as flask-sqlalchemy.

pip install flask-sqlalchemy

Hello, World! (SQLAlchemy Core)

This example shows how to create a table, insert data, and select from the database using
SQLAlchemy Core. For information re: the SQLAlchemy ORM, see here.

First, we'll need to connect to our database.

from sqlalchemy import create_engine

engine = create_engine('sqlite://')

The engine is the starting point for any SQLAlchemy application. It’s a “home base” for
the actual database and its DBAPI, delivered to an SQLAlchemy application through a
connection pool and a dialect, which describes how to talk to a specific kind of
database/DBAPI combination. The Engine references both a dialect and a connection
pool, which together interpret the DBAPI’s module functions as well as the behaviour of
the database.

After creating our engine, we need to define and create our tables.

from sqlalchemy import Column, Integer, Text, MetaData, Table

metadata = MetaData()
messages = Table(
 'messages', metadata,
 Column('id', Integer, primary_key=True),
 Column('message', Text),
)

messages.create(bind=engine)

To futher explain the MetaData object, see the below from the docs:

A collection of Table objects and their associated child objects is referred to as
database metadata

We define our tables all within a catalog called MetaData, using the Table construct,
which resembles regular SQL CREATE TABLE statements.

Now that we have our tables defined and created, we can start inserting data! Inserting involves
two steps. Composing the insert construct, and executing the final query.

https://riptutorial.com/ 3

http://docs.sqlalchemy.org/en/latest/orm/tutorial.html
http://docs.sqlalchemy.org/en/latest/core/tutorial.html#connecting
http://docs.sqlalchemy.org/en/latest/core/tutorial.html#define-and-create-tables
http://docs.sqlalchemy.org/en/latest/core/tutorial.html#insert-expressions
http://docs.sqlalchemy.org/en/latest/core/tutorial.html#executing

insert_message = messages.insert().values(message='Hello, World!')
engine.execute(insert_message)

Now that we have data, we can use the select function to query our data. Column objects are
available as named attributes of the c attribute on the Table object, making it easy to select
columns directly. Executing this select statement returns a ResultProxy object which has access to
a few methods, fetchone(), fetchall(), and fetchmany(), all of which return a number of database
rows queried in our select statement.

from sqlalchemy import select
stmt = select([messages.c.message])
message, = engine.execute(stmt).fetchone()
print(message)

Hello, World!

And that's it! See the SQLAlchemy SQL Expressions Tutorial for more examples and information.

Hello, World! (SQLAlchemy ORM)

This example shows how to create a table, insert data, and select from the database using the
SQLAlchemy ORM. For information re: SQLAlchemy Core, see here.

First things first, we need to connect to our database, which is identical to how we would connect
using SQLAlchemy Core (Core).

from sqlalchemy import create_engine

engine = create_engine('sqlite://')

After connecting and creating our engine, we need to define and create our tables. This is where
the SQLAlchemy ORM language starts to differ greatly from Core. In ORM, the table creation and
definition process begins by defining the tables and the classes we'll use to map to those tables.
This process is done in one step in ORM, which SQLAlchemy calls the Declarative system.

from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()

Now that our base mapper is declared, we can subclass from it to build our declarative mappings,
or models.

from sqlalchemy import Column, Integer, String

class Message(Base):
 __tablename__ = 'messages'

 id = Column(Integer, primary_key=True)
 message = Column(String)

https://riptutorial.com/ 4

http://docs.sqlalchemy.org/en/latest/core/tutorial.html#selecting
http://docs.sqlalchemy.org/en/latest/core/connections.html#sqlalchemy.engine.ResultProxy.fetchone
http://docs.sqlalchemy.org/en/latest/core/connections.html#sqlalchemy.engine.ResultProxy.fetchall
http://docs.sqlalchemy.org/en/latest/core/connections.html#sqlalchemy.engine.ResultProxy.fetchone
http://docs.sqlalchemy.org/en/latest/core/tutorial.html
http://docs.sqlalchemy.org/en/latest/core/tutorial.html
http://docs.sqlalchemy.org/en/latest/orm/extensions/declarative/index.html
http://docs.sqlalchemy.org/en/latest/orm/tutorial.html#declare-a-mapping

Using the declarative base class, we end up creating a Table and Mapper object. From the docs:

The Table object is a member of a larger collection known as MetaData. When using
Declarative, this object is available using the .metadata attribute of our declarative
base class.

With that in mind, to create all tables that do not yet exist, we can call the below command, which
utilizes SQLAlchemy Core's MetaData registry.

Base.metadata.create_all(engine)

Now that our tables are mapped and created, we can insert data! Inserting is done through the
creation of mapper instances.

message = Message(message="Hello World!")
message.message # 'Hello World!

At this point, all we have is an instance of message at the level of the ORM abstraction level, but
nothing has been saved to the database yet. To do this, first we need to create a session.

from sqlalchemy.orm import sessionmaker

Session = sessionmaker(bind=engine)
session = Session()

This session object is our database handler. As per the SQLAlchemy docs:

it retrieves a connection from a pool of connections maintained by the Engine, and
holds onto it until we commit all changes and/or close the session object.

Now that we have our session, we can add our new message to the session and commit our
changes to the database.

session.add(message)
session.commit()

Now that we have data, we can take advantage of the ORM query language to pull up our data.

query = session.query(Message)
instance = query.first()
print (instance.message) # Hello World!

But thats just the beginning! There are much more features that can be used to compose queries,
like filter, order_by, and much more. See the SQLAlchemy ORM Tutorial for more examples and
information.

Read Getting started with sqlalchemy online: https://riptutorial.com/sqlalchemy/topic/1697/getting-
started-with-sqlalchemy

https://riptutorial.com/ 5

http://docs.sqlalchemy.org/en/latest/orm/tutorial.html#create-an-instance-of-the-mapped-class
http://docs.sqlalchemy.org/en/latest/orm/tutorial.html#creating-a-session
http://docs.sqlalchemy.org/en/latest/orm/tutorial.html#adding-and-updating-objects
http://docs.sqlalchemy.org/en/latest/orm/tutorial.html#adding-and-updating-objects
https://riptutorial.com/sqlalchemy/topic/1697/getting-started-with-sqlalchemy
https://riptutorial.com/sqlalchemy/topic/1697/getting-started-with-sqlalchemy

Chapter 2: Connecting

Examples

Engine

The engine is used to connect to different databases using a connection URL:

from sqlalchemy import create_engine

engine = create_engine('postgresql://user:pass@localhost/test')

Note, however, that the engine does not actually establish a connection until it is first used.

The engine automatically creates a connection pool, but opens new connections lazily (i.e.
SQLAlchemy won't open 5 connections if you only ask for one).

Using a Connection

You can open a connection (i.e. request one from the pool) using a context manager:

with engine.connect() as conn:
 result = conn.execute('SELECT price FROM products')
 for row in result:
 print('Price:', row['price'])

Or without, but it must be closed manually:

conn = engine.connect()
result = conn.execute('SELECT price FROM products')
for row in result:
 print('Price:', row['price'])
conn.close()

Implicit Execution

If you only want to execute a single statement, you can use the engine directly and it will open and
close the connection for you:

result = engine.execute('SELECT price FROM products')
for row in result:
 print('Price:', row['price'])

Transactions

You can use engine.begin to open a connection and begin a transaction that will be rolled back if
an exception is raised, or committed otherwise. This is an implicit way of using a transaction, since

https://riptutorial.com/ 6

you don't have the option of rolling back manually.

with engine.begin() as conn:
 conn.execute(products.insert(), price=15)

More explicitly, you can begin a transaction using a connection:

with conn.begin() as trans:
 conn.execute(products.insert(), price=15)

Note that we still call execute on the connection. As before, this transaction will be committed or
rolled back if an exception is raised, but we also have access to the transaction, allowing us to
rollback manually using trans.rollback().

This could be done more explicitly like so:

trans = conn.begin()
try:
 conn.execute(products.insert(), price=15)
 trans.commit()
except:
 trans.rollback()
 raise

Read Connecting online: https://riptutorial.com/sqlalchemy/topic/2025/connecting

https://riptutorial.com/ 7

https://riptutorial.com/sqlalchemy/topic/2025/connecting

Chapter 3: Flask-SQLAlchemy

Remarks

Flask-SQLAlchemy adds some additional functionality such as automatic destruction of the
session assuming some things for you which are very often not what you need.

Examples

A Minimal Application

For the common case of having one Flask application all you have to do is to create your Flask
application, load the configuration of choice and then create the SQLAlchemy object by passing it
the application.

Once created, that object then contains all the functions and helpers from both sqlalchemy and
sqlalchemy.orm. Furthermore it provides a class called Model that is a declarative base which can
be used to declare models:

from flask import Flask
from flask_sqlalchemy import SQLAlchemy

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class User(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 username = db.Column(db.String(80), unique=True)
 email = db.Column(db.String(120), unique=True)

 def __init__(self, username, email):
 self.username = username
 self.email = email

 def __repr__(self):
 return '<User %r>' % self.username

Read Flask-SQLAlchemy online: https://riptutorial.com/sqlalchemy/topic/4601/flask-sqlalchemy

https://riptutorial.com/ 8

https://riptutorial.com/sqlalchemy/topic/4601/flask-sqlalchemy

Chapter 4: SQLAlchemy Core

Examples

Converting result to dict

In SQLAlchemy core, the result is RowProxy. In cases where you want an explicit dictionary, you
can call dict(row).

First the setup for the example:

import datetime as dt
from sqlalchemy import (
 Column, Date, Integer, MetaData, Table, Text, create_engine, select)

metadata = MetaData()
users = Table(
 'users', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', Text, nullable=False),
 Column('birthday', Date),
)

engine = create_engine('sqlite://')
metadata.create_all(bind=engine)

engine.execute(users.insert(), name='Alice', birthday=dt.date(1990, 1, 1))

Then to create a dictionary from a result row:

with engine.connect() as conn:
 result = conn.execute(users.select())
 for row in result:
 print(dict(row))

 result = conn.execute(select([users.c.name, users.c.birthday]))
 for row in result:
 print(dict(row))

Read SQLAlchemy Core online: https://riptutorial.com/sqlalchemy/topic/2022/sqlalchemy-core

https://riptutorial.com/ 9

https://riptutorial.com/sqlalchemy/topic/2022/sqlalchemy-core

Chapter 5: The ORM

Remarks

The SQLAlchemy ORM is built on top of SQLAlchemy Core. For example, although model classes
use Column objects, they are part of the core and more relevant documentation will be found there.

The main parts of the ORM are the session, query, and mapped classes (typically using the
declarative extension in modern SQLAlchemy.)

Examples

Converting a query result to dict

First the setup for the example:

import datetime as dt
from sqlalchemy import Column, Date, Integer, Text, create_engine, inspect
from sqlalchemy.orm import sessionmaker
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()
Session = sessionmaker()

class User(Base):
 __tablename__ = 'users'

 id = Column(Integer, primary_key=True)
 name = Column(Text, nullable=False)
 birthday = Column(Date)

engine = create_engine('sqlite://')
Base.metadata.create_all(bind=engine)
Session.configure(bind=engine)

session = Session()
session.add(User(name='Alice', birthday=dt.date(1990, 1, 1)))
session.commit()

If you're querying columns individually, the row is a KeyedTuple which has an _asdict method. The
method name starts with a single underscore, to match the namedtuple API (it's not private!).

query = session.query(User.name, User.birthday)
for row in query:
 print(row._asdict())

When using the ORM to retrieve objects, this is not available by default. The SQLAlchemy
inspection system should be used.

def object_as_dict(obj):

https://riptutorial.com/ 10

http://www.riptutorial.com/sqlalchemy/topic/2022/sqlalchemy-core
http://www.riptutorial.com/sqlalchemy/topic/2258/the-session
https://docs.python.org/3/library/collections.html#collections.namedtuple
http://docs.sqlalchemy.org/en/latest/core/inspection.html

 return {c.key: getattr(obj, c.key)
 for c in inspect(obj).mapper.column_attrs}

query = session.query(User)
for user in query:
 print(object_as_dict(user))

Here, we created a function to do the conversion, but one option would be to add a method to the
base class.

Instead of using declarative_base as above, you can create it from your own class:

from sqlalchemy.ext.declarative import as_declarative

@as_declarative()
class Base:
 def _asdict(self):
 return {c.key: getattr(self, c.key)
 for c in inspect(self).mapper.column_attrs}

Filtering

Given the following model

class User(Base):
 __tablename__ = 'users'

 id = Column(Integer, primary_key=True)
 name = Column(Text, nullable=False)
 birthday = Column(Date)

You can filter columns in the query:

import datetime as dt
session.query(User).filter(User.name == 'Bob')
session.query(User).filter(User.birthday < dt.date(2000, 1, 1))

For the first case, there is a shortcut:

session.query(User).filter_by(name='Bob')

Filters can be composed using an AND relation by chaining the filter method:

(session.query(User).filter(User.name.like('B%'))
 .filter(User.birthday < dt.date(2000, 1, 1)))

Or more flexibly, using the overloaded bitwise operators & and |:

session.query(User).filter((User.name == 'Bob') | (User.name == 'George'))

Don't forget the inner parentheses to deal with operator precedence.

https://riptutorial.com/ 11

Order By

Given a basic model:

class SpreadsheetCells(Base):
 __tablename__ = 'spreadsheet_cells'

 id = Column(Integer, primary_key=True)
 y_index = Column(Integer)
 x_index = Column(Integer)

You can retrieve an ordered list by chaining the order_by method.

query = session.query(SpreadsheetCells).order_by(SpreadsheetCells.y_index)

This could be chained on after a filter,

query = session.query(...).filter(...).order_by(...)

or to further compose an existing query.

query = session.query(...).filter(...)
ordered_query = query.order_by(...)

You can also determine the sort direction in one of two ways:

Accessing the field properties asc and dsc:1.

query.order_by(SpreadsheetCells.y_index.desc()) # desc
query.order_by(SpreadsheetCells.y_index.asc()) # asc

Using the asc and desc module functions:2.

from sqlalchemy import asc, desc

query.order_by(desc(SpreadsheetCells.y_index)) # desc
query.order_by(asc(SpreadsheetCells.y_index)) # asc

Accessing query results

Once you have a query, you can do more with it than just iterating the results in a for loop.

Setup:

from datetime import date

class User(Base):
 __tablename__ = 'users'

 id = Column(Integer, primary_key=True)

https://riptutorial.com/ 12

 name = Column(Text, nullable=False)
 birthday = Column(Date)

Find users who are older than a cutoff.
query = session.query(User).filter(User.birthday < date(1995, 3, 3))

To return the results as a list, use all():

reslist = query.all() # all results loaded in memory
nrows = len(reslist)

You can get a count using count():

nrows = query.count()

To get only the first result, use first(). This is most useful in combination with order_by().

oldest_user = query.order_by(User.birthday).first()

For queries that should return only one row, use one():

bob = session.query(User).filter(User.name == 'Bob').one()

This raises an exception if the query returns multiple rows or if it returns none. If the row might not
exist yet, use one_or_none():

bob = session.query(User).filter(User.name == 'Bob').one_or_none()
if bob is None:
 create_bob()

This will still raise an exception if multiple rows have the name 'Bob'.

Read The ORM online: https://riptutorial.com/sqlalchemy/topic/2020/the-orm

https://riptutorial.com/ 13

https://riptutorial.com/sqlalchemy/topic/2020/the-orm

Chapter 6: The Session

Remarks

A session keeps track of ORM objects and their changes, manages transactions and is used to
perform queries.

Examples

Creating a Session

A session is usually obtained using sessionmaker, which creates a Session class unique to your
application. Most commonly, the Session class is bound to an engine, allowing instances to use the
engine implicitly.

from sqlalchemy.orm import sessionmaker

Initial configuration arguments
Session = sessionmaker(bind=engine)

The engine and Session should only be created once.

A session is an instance of the class we created:

This session is bound to provided engine
session = Session()

Session.configure() can be used to configure the class later, e.g. application startup rather than
import time.

Session = sessionmaker()

later
Session.configure(bind=engine)

Arguments passed to Session directly override the arguments passed to sessionmaker.

session_bound_to_engine2 = Session(bind=engine2)

Adding Instances

New or detached objects may be added to the session using add():

session.add(obj)

A sequence of objects may be added using add_all():

https://riptutorial.com/ 14

http://docs.sqlalchemy.org/en/latest/orm/query.html#sqlalchemy.orm.query.Query
http://docs.sqlalchemy.org/en/latest/orm/session_basics.html
http://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.sessionmaker
http://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.sessionmaker.configure
http://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session.add
http://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session.add_all

session.add_all([obj1, obj2, obj3])

An INSERT will be emitted to the database during the next flush, which happens automatically.
Changes are persisted when the session is committed.

Deleting Instances

To delete persisted objects use delete():

session.delete(obj)

Actual deletion from the database will happen on next flush.

Read The Session online: https://riptutorial.com/sqlalchemy/topic/2258/the-session

https://riptutorial.com/ 15

http://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session.delete
http://docs.sqlalchemy.org/en/latest/orm/session_basics.html#flushing
https://riptutorial.com/sqlalchemy/topic/2258/the-session

Credits

S.
No

Chapters Contributors

1
Getting started with
sqlalchemy

adarsh, Community, Mattew Whitt, RazerM, Stephen Fuhry

2 Connecting RazerM

3 Flask-SQLAlchemy Ilya Rusin

4 SQLAlchemy Core RazerM

5 The ORM Ilja Everilä, Mattew Whitt, RazerM, Tom Hunt

6 The Session Ilja Everilä, RazerM

https://riptutorial.com/ 16

https://riptutorial.com/contributor/1068887/adarsh
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3264217/mattew-whitt
https://riptutorial.com/contributor/2093785/razerm
https://riptutorial.com/contributor/111033/stephen-fuhry
https://riptutorial.com/contributor/2093785/razerm
https://riptutorial.com/contributor/4863734/ilya-rusin
https://riptutorial.com/contributor/2093785/razerm
https://riptutorial.com/contributor/2681632/ilja-everila
https://riptutorial.com/contributor/3264217/mattew-whitt
https://riptutorial.com/contributor/2093785/razerm
https://riptutorial.com/contributor/4580729/tom-hunt
https://riptutorial.com/contributor/2681632/ilja-everila
https://riptutorial.com/contributor/2093785/razerm

	About
	Chapter 1: Getting started with sqlalchemy
	Remarks
	Versions
	Examples
	Installation or Setup
	Hello, World! (SQLAlchemy Core)

	h11
	Hello, World! (SQLAlchemy ORM)

	Chapter 2: Connecting
	Examples
	Engine
	Using a Connection
	Implicit Execution
	Transactions

	Chapter 3: Flask-SQLAlchemy
	Remarks
	Examples
	A Minimal Application

	Chapter 4: SQLAlchemy Core
	Examples
	Converting result to dict

	Chapter 5: The ORM
	Remarks
	Examples
	Converting a query result to dict
	Filtering
	Order By
	Accessing query results

	Chapter 6: The Session
	Remarks
	Examples
	Creating a Session
	Adding Instances
	Deleting Instances

	Credits

