
svn

#svn

Table of Contents

About 1

Chapter 1: Getting started with svn 2

Remarks 2

Versions 2

Examples 3

Installation and initial setup 3

Checking out a working copy 3

Exporting the versioned data (plain download) 4

Updating a working copy 4

Making changes in your local working copy 5

Committing your local changes to the repository 6

Checking out a working copy at a specific revision 6

Using a password-protected repository 7

Creating and applying patches 8

Reviewing the logs 8

Revert or rollback of a file 8

Chapter 2: Administering SVN 10

Examples 10

Creating A New Repo 10

1. Using command line 10

Create new user 10

Create user groups 10

Managing repository permissions 11

Chapter 3: Branching, shelving and tagging in Apache Subversion 13

Syntax 13

Remarks 13

Examples 13

Creating a branch using direct URL to URL copy 13

Creating a branch through a working copy 13

Switching a working copy to a different branch 14

Using tags 14

Deleting a branch 14

Credits 16

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: svn

It is an unofficial and free svn ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official svn.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/svn
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with svn

Remarks

Apache Subversion (SVN) is a universal and centralized open source version control system.
Subversion is currently a project under Apache Software Foundation (ASF) and is licensed under
the Apache License, Version 2.0.

Subversion is designed to manage and control files and directories and track changes made to
them; it acts as a reliable time machine and management tool for the collaboratively developed
projects. It can easily answer the standard questions any version control system has to answer
reliably. For example,

How did the project/file FOO look like on 12/12/2012 ?•
What changes were introduced by USERNAME or on 20/12/2012 ?•
Who modified the particular string since the last review?•
and much-much more.•

Versions

Version What's new?
Release
Date

1.9.x Numerous usability and performance improvements
2015-08-
05

1.8.x
Improved rename tracking, automatic reintegration merges, inherited
versioned properties, built-in conflict resolution tool

2013-06-
18

1.7.x
Complete rewrite of the working copy library, improved HTTP
protocol usage

2011-10-
11

1.6.x
Identifying tree conflicts, improved interactive conflict resolution,
repo-relative URLs support

2009-03-
20

1.5.x
Merge and branch tracking (svn:mergeinfo), interactive file conflict
resolution, sparse checkouts, improved svn:externals syntax

2008-06-
19

1.4.x
svnsync tool for repository replication, new and improved working
copy library

2006-09-
10

1.3.x
High-level logging of user operations on the server side, performance
improvements

2005-12-
30

1.2.x
Support for lock-modify-unlock model (i.e. locking), DAV
autoversioning, FSFS is used by default for new repositories

2005-05-
21

https://riptutorial.com/ 2

http://subversion.apache.org/
http://www.apache.org/
http://www.apache.org/licenses/LICENSE-2.0
http://subversion.apache.org/docs/release-notes/1.9.html
http://subversion.apache.org/docs/release-notes/1.8.html
http://subversion.apache.org/docs/release-notes/1.7.html
http://subversion.apache.org/docs/release-notes/1.6.html
http://subversion.apache.org/docs/release-notes/1.5.html
http://subversion.apache.org/docs/release-notes/1.4.html
http://subversion.apache.org/docs/release-notes/1.3.html
http://subversion.apache.org/docs/release-notes/1.2.html

Version What's new?
Release
Date

1.1.x New repository backend (FSFS), symlink versioning
2004-09-
29

1.0.x Initial public release
2004-02-
23

Apache Subversion 1.9.x is currently the latest and best SVN release that is fully
supported. Subversion 1.8.x is partially supported. Subversion 1.7.x and earlier
versions are no longer supported.

Examples

Installation and initial setup

Install the svn client to start collaborating on the project that is using Subversion as its version
control system.

To install Subversion, you can build it yourself from a source code release or download a binary
package pre-built for your operating system. The list of sites where you can obtain a compiled
Subversion client (svn) for various operating systems is available at the official binary packages
page. If you feel like compiling the software for yourself, grab the source at the Source Code page.

With Subversion, you are not limited to using only the standard svn command-line client. There are
some notable graphical Subversion clients for various operating systems and most of the IDEs
nowadays provide robust integration with SVN right out of the box or via plugins. For the list of
graphical clients, check the Wikipedia page:
https://en.wikipedia.org/wiki/Comparison_of_Subversion_clients.

Right after you install the client you should be able to run it by issuing the command svn. You
should see the following:

$ svn
Type 'svn help' for usage.

Everything is mostly ready. Now you should create a local workspace called a working copy which
is going to be connected to the remote central repository. In other words, you are going to
checkout a working copy. You are going to operate with the versioned data with the help of the
working copy and can publish your changes (called committing in SVN) so that others working on
the same project can see them and benefit from your changes. To later fetch the future changes
made by others from the repository, you would update your working copy. These basic operations
are covered in other examples.

Checking out a working copy

https://riptutorial.com/ 3

http://subversion.apache.org/docs/release-notes/1.1.html
http://subversion.apache.org/packages.html
http://subversion.apache.org/packages.html
http://subversion.apache.org/source-code.html
https://en.wikipedia.org/wiki/Comparison_of_Subversion_clients

To begin making modifications to the project's data, you have to obtain a local copy of the
versioned project. Use the command line svn client or your favorite SVN client (TortoiseSVN, for
example). Your local copy of the project is called a working copy in Subversion and you get it by
issuing the command svn checkout <URL> where <URL> is a repository URL. e.g.

$ svn checkout https://svn.example.com/svn/MyRepo/MyProject/trunk

Alternatively, you can use svn co <URL> as a shorthand in order to checkout a local copy.

As a result, you will get a working copy of the /trunk of a project called MyProject that resides in
MyRepo repository. The working copy will be located in a directory called trunk on your computer
relative to the directory you issued the command in.

If you wish to have a different name for your working copy you can add that as a parameter to the
end of the command. e.g.

$ svn checkout https://svn.example.com/svn/MyRepo/MyProject/trunk MyProjectSource

This will create a working copy called MyProjectSource.

Note that instead of checking out the trunk, you could check out some branch, private shelve or a
tag (assuming they already exist in the repository); you can have unlimited number of local
working copies on your machine.

You could get the working copy of the whole repository MyRepo, too. But you should refrain from
doing so. Generally speaking, you do not need to have a working copy of the whole repository for
your work because your working copy can be instantly switched to another development branch /
tag / whatever. Moreover, Subversion repository can contain a number of (un)related projects and
it's better to have a dedicated working copy for each of them, not a single working copy for all of
the projects.

Exporting the versioned data (plain download)

If you want to get the versioned project's data, but you don't need any of the version control
capabilities offered by Subversion, you could run svn export <URL> command. Here is an example:

$ svn export https://svn.example.com/svn/MyRepo/MyProject/trunk

As a result, you will get the project's data export, but unlike with a working copy, you won't be able
to run svn commands on it. The export is just a plain download of the data.

If some time later you'd want to convert the downloaded data to a fully-functional working copy,
run svn checkout <URL> to the directory where you ran the export to.

Updating a working copy

You are not the only person working on the project, right? This means that your colleagues are
also making modifications to the project's data. To stay up to date and to fetch the modifications

https://riptutorial.com/ 4

http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.checkout.html
http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.export.html

committed by others, you should run svn update command in your working copy. As a result, your
working copy will sync with the repository and download the changes made by your colleagues.

Shorthand for svn update is svn up.

It is a rule to run svn update before committing your changes.

Making changes in your local working copy

The working copy (WC) is your local and private workspace that you use to interact with the
central Subversion repository. You use the working copy to modify the contents of your project and
fetch changes committed by others.

The working copy contains your project's data and looks and acts like a regular directory on your
local file system, but with one major difference -- the working copy tracks the status and changes
of files and directories within. You can think of the working copy as of a regular directory with a
version-control flavor added by a hidden .svn metadata directory at its root.

Most of the time, you are going to perform modifications to the project's data by modifying the
contents of the working copy. As soon as you are satisfied with the modifications and you've
reviewed them thoroughly, you are ready to publish them to the central repository.

You can perform any actions with your project's data within the working copy, but operations that
involve copying, moving, renaming and deleting must be performed using the corresponding svn
commands:

Modifying existing files. Modify the files as you usually do using your favorite text
processor, graphics editor, audio editing software, IDE, etc. As soon as you save the
changes to disk, Subversion will recognize them automatically.

•

Adding new files. Put new files to the working copy and Subversion will recognize them as
unversioned. It will not automatically start tracking the new files unless you run svn add
command:

svn add foo.cs

•

Moving files and directories. Move files and directories using svn move command:

svn move foo.cs bar.cs

•

Renaming files and directories. Rename files and directories using svn rename command:

svn rename foo.cs bar.cs

NOTE: svn rename command is an alias of svn move command.

•

Copying files and directories. Copy files and directories using svn copy command:•

https://riptutorial.com/ 5

http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.update.html
http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.update.html
http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.add.html
http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.move.html
http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.move.html
http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.copy.html

svn copy foo.cs bar.cs

Deleting files and directories. Delete files and directories using svn delete command:

svn delete foo.cs

•

Checking the status of files and directories in the working copy. Review your changes
using svn status (or svn st for short) command:

svn status

IMPORTANT: Always review your changes before committing them. This will
help you to avoid committing unnecessary or irrelevant changes.

•

Reverting changes. Revert your changes using svn revert command:

svn revert foo.c

•

Reverting all changes: From the repository's root:

svn revert -R .

IMPORTANT: Reverted uncommitted changes will be lost forever. You won't be
able to recover the reverted changes. Use svn revert with caution! If you want to
keep the changes but need to revert, save them in a patch. See example of how
to create and apply a patch.

•

Committing your local changes to the repository

To publish the changes you made in your working copy, run the svn commit command.

IMPORTANT: Review your changes before committing them! Use svn status and svn
diff to review the changes. Also, make sure you are in the correct path before
performing a commit. If you updated many files across various directories, you should
be at the appropriate level to include all of them beneath your location.

Here is an example of the commit command:

svn commit -m "My Descriptive Log Message"

Alternatively, svn ci is the shorthand for svn commit

Note the -m (--message) option. Good commit messages help others understand why a commit
was made. Also, on the server side it's possible to enforce non-empty messages, and even
enforce that each commit message mentions an existing ticket in your bug tracking system.

Checking out a working copy at a specific revision

https://riptutorial.com/ 6

http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.delete.html
http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.status.html
http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.status.html
http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.revert.html
http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.commit.html
http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.status.html
http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.diff.html
http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.diff.html
https://tortoisesvn.net/docs/nightly/TortoiseSVN_en/tsvn-howto-minlogmsgsize.html

To get version 5394 use:

svn co --revision r5394 https://svn.example.com/svn/MyRepo/MyProject/trunk

Or the shorter version:

svn co -r 5394 https://svn.example.com/svn/MyRepo/MyProject/trunk

Or by using pegged revisions:

svn co https://svn.example.com/svn/MyRepo/MyProject/trunk@5394

If already checked out, you can use the update command to move a to a particular revision, by
doing:

svn up -rXXX

Using a password-protected repository

A Subversion repository can be configured so that certain contents or commands are only
accessible to certain users. In order to access this restricted content, you will need to specify a
username and password.

Your username and password can be specified directly as part of the command:

$ svn checkout https://svn.example.com/MyRepo/trunk --username JoeUser --password topsecret

Unfortunately, this causes your password to appear in plaintext on the console. To avoid this
possible security problem, specify a username but not a password. Doing this will cause a
password prompt to appear, allowing you to enter your password without exposing it:

$ svn checkout https://svn.example.com/MyRepo/trunk --username JoeUser
Password for 'JoeUser':

Providing no authentication information at all causes Subversion to prompt you for both the
username and password:

$ svn checkout https://svn.example.com/MyRepo/trunk
Username: JoeUser
Password for 'JoeUser':

While the first method is less secure, it's frequently seen in automated scripts since it is difficult for
many types of script to provide information to an interactive prompt.

Note: commands that only operate on your working copy (such as revert or status) will never
require a password, only commands that require communicating with the repository server.

https://riptutorial.com/ 7

Creating and applying patches

A patch is a file that show the differences between two revisions or between your local repository
and the last revision your repository is pointing.

To share or save a patch of your local uncommitted changes either for peer review or to apply
later, do:

svn diff > new-feature.patch

To get a patch from the differences between two revisions:

svn diff -r NEWER_REVISION:OLDER_REVISION > feature.patch

To apply a patch, run:

svn patch new-feature.patch

In order to apply the patch successfully, you must run the command from the same
path where the patch was created.

Reviewing the logs

Running svn log will show you all the commit messages, you probably want to review only certain
revisions.

View the n most recent revisions:

svn log -n

•

View a specific revision:

svn log -c rXXX

•

View the paths affected:

svn log -v -c rXXX

•

Revert or rollback of a file

To restore a file to the latest updated svn version, i.e. undo the local changes, you can use revert:

svn revert file

To restore a file to an older version (revision XXX) use update:

svn update -r XXX file

Warning: in both cases you will lose any local changes in the file because it will be overwritten.

https://riptutorial.com/ 8

To only view the older version of a file use cat:

svn cat -r XXX file

And to view the differences with your local version of the file:

svn diff -r XXX file

Read Getting started with svn online: https://riptutorial.com/svn/topic/638/getting-started-with-svn

https://riptutorial.com/ 9

https://riptutorial.com/svn/topic/638/getting-started-with-svn

Chapter 2: Administering SVN

Examples

Creating A New Repo

New repository can be created with two different options:

1. Using command line

Execute following command. It will create a directory for the repository, but parent path has to be
present. i.e. in the following example, /var/svn should already be there, while it will create
my_repository directory.

svnadmin create /var/svn/my_repository

If you are using TortoiseSVN, you can use GUI to create repo.

Open the directory where you want to create a new repository.1.
Right click on the folder and select TortoiseSVN -> Create Repository here...2.
A repository is then created inside the selected folder. Don't edit those files yourself! If you
get any errors make sure that the folder is empty and not write protected.

3.

Create new user

To add user, use following command

htpasswd /etc/subversion/passwd user_name

Specify user_name with the username you wish to add in above command. It will prompt to provide
password for the user.

If you are creating very first user, you need to add –c switch in above command, which will create
the file.

htpasswd -c /etc/subversion/passwd user_name

You can check existence of the file or list of configured users using following command cat
/etc/subversion/passwd

You might need to execute above commands as super user.

Create user groups

Groups can be defined in /etc/subversion/svn_access_control file.

https://riptutorial.com/ 10

https://tortoisesvn.net/

Create/edit the file using following command

nano /etc/subversion/svn_access_control

Use syntax specified as below to define groups and assign members.

[groups]
groupname = <list of users, comma separated>

e.g.

[groups]
myproject-dev = john, peter
myproject-support = maria, cristine

Above example will create two groups named myproject-dev and myproject-support. It will add users
john and peter to group myproject-dev and users maria and cristine to group myproject-support.

Groups can then be used to manage repository access

Managing repository permissions

Access specifications for subversion repositories is specified etc/subversion/svn_access_control file

Create/edit the file using following command

nano /etc/subversion/svn_access_control

Use following syntax to configure access permissions for repositories to group/members

[Repository:<Path>]
@groupname = r/rw
User = r

e.g.

[myproject:/]
@myproject-dev = rw
@myproject-support = r
jack = r

[myproject:/branches/support]
@myproject-support = rw
patrick = r

Above example configuration will grant read-write access to entire myproject repository to users
belonging to group myproject-dev, while read-only access is granted to users belonging to group
myproject-support and specific user jack. Note that, group names are preceded by @.

Similarly, it will assign read-write access to support branch of myproject repository to all users
belonging to myproject-support and read-only access to patrick.

https://riptutorial.com/ 11

Read Administering SVN online: https://riptutorial.com/svn/topic/7935/administering-svn

https://riptutorial.com/ 12

https://riptutorial.com/svn/topic/7935/administering-svn

Chapter 3: Branching, shelving and tagging
in Apache Subversion

Syntax

svn copy [BRANCH-FROM-URL] [BRANCH-TO-URL] -m <COMMIT-LOG-MESSAGE>•

svn copy [^/PATH-TO-BRANCH-FROM] [^/PATH-TO-BRANCH-TO] -m <COMMIT-LOG-MESSAGE>•

Remarks

As you might have noticed, we use svn copy command to create branches, tags and shelves (we'll
skip mentioning tags and shelves in the next paragraphs). This is the same command used to
copy items in your working copy and into the repository.

svn copy is used for branching because, branch is technically a copy of the source you copy from.
However, this is not an ordinary copy are familiar with when copying files on your local file system.
Branches in Subversion are so called "Cheap Copies" that are similar to symlinks. Therefore,
creating a new branch takes minimal time to complete and takes practically no space in the
Subversion repository. Create branches and use them for any change you want regardless of the
change's size and scope.

svn copy can be shortened to svn cp as Subversion has aliases for most commands.

Examples

Creating a branch using direct URL to URL copy

Branching in Subversion is very simple. In the simplest form, creating a new branch requires you
to run the command against the remote repository's URLs. For example, let's create a new branch
out of the mainline trunk:

svn copy https://svn.example.com/svn/MyRepo/MyProject/trunk
https://svn.example.com/svn/MyRepo/MyProject/branches/MyNewBranch -m "Creating a new branch"

The new branch is ready and you can begin working with it. Check out a new working copy with
the new branch or switch your existing working copy using svn switch command.

Creating a branch through a working copy

When you interact with the remote central repository using your private local workspace -- the
working copy -- you can use repository-relative URL instead of direct URL to URL copy to create a
new branch:

https://riptutorial.com/ 13

http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.copy.html
http://svnbook.red-bean.com/en/1.8/svn.branchmerge.using.html#svn.branchmerge.using.create
http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.switch.html

svn copy "^/MyProject/trunk" "^/MyProject/branches/MyNewBranch" -m "Creating a new branch"

Switching a working copy to a different branch

An existing working copy can be quickly transformed to reflect the contents of a different branch in
the same repository. For example, you might have a working copy of the trunk and now need to
work on a development branch. Instead of checking out a completely new working copy (which
can waste a lot of time and disk space), you can use the svn switch command to efficiently modify
your existing working copy:

svn switch ^/MyProject/branches/MyNewBranch

Your working copy will now reflect the contents of the branch instead of the trunk.

Using tags

"Tags" are a type of label that can be applied to a repository at a certain point in time. They are
frequently used to give human-readable names to important milestones so that they can be easily
accessed later (for example, "version-1.2").

Creating a tag is exactly the same as creating a branch:

svn copy -r 1234 ^/MyProject/trunk ^/MyProject/tags/version-1.2

In this specific case, the -r 1234 argument was used to indicate that the tag should be created
from revision 1234 of the trunk.

Subversion doesn't make any distinction between a tag and an ordinary branch. The only
difference is in how you decide to use them. Traditionally, no commits are made to a tag once it
has been created (to ensure that it remains an accurate "snapshot" of a past repository state).
Subversion doesn't enforce any special tag-related rules by default since different people can use
tags differently. A repository administrator can, however, set up access control scripts to enforce
whatever rules their team has decided to use.

In Windows, you need to use a double caret ^^.

Deleting a branch

Just run:

svn delete https://svn.example.com/svn/MyRepo/MyProject/branches/MyNewBranch -m "Deleting no
longer needed MyNewBranch"

Or, using the short URL:

svn delete ^/branches/MyNewBranch -m "Deleting no longer needed MyNewBranch"

https://riptutorial.com/ 14

In Windows, you need to use ^^•
You can always bring back a deleted branch by creating it again specifying the
desired revision back then when the branch was alive (a deleted branch is just a
branch that is not available in the HEAD revision). For example if branch was
deleted at revision 101: svn copy
https://svn.example.com/svn/MyRepo/branches/MyNewBranch@r100
https://svn.example.com/svn/MyRepo/MyProject/branches/resurrected-branch -m
"Resurrected MyNewBranch from revision 100". See Resurrecting Deleted Items

•

Read Branching, shelving and tagging in Apache Subversion online:
https://riptutorial.com/svn/topic/668/branching--shelving-and-tagging-in-apache-subversion

https://riptutorial.com/ 15

http://svnbook.red-bean.com/en/1.7/svn-book.html#svn.branchmerge.basicmerging.resurrect
https://riptutorial.com/svn/topic/668/branching--shelving-and-tagging-in-apache-subversion

Credits

S.
No

Chapters Contributors

1
Getting started with
svn

agold, bahrep, bta, Chad Nouis, Community, Eiren Smith,
opticyclic, ronnyfm, V-R, wrothe

2 Administering SVN opticyclic, Rumit Parakhiya

3
Branching, shelving
and tagging in
Apache Subversion

bahrep, bta, opticyclic, ronnyfm

https://riptutorial.com/ 16

https://riptutorial.com/contributor/1771479/agold
https://riptutorial.com/contributor/761095/bahrep
https://riptutorial.com/contributor/79566/bta
https://riptutorial.com/contributor/1078068/chad-nouis
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/367438/eiren-smith
https://riptutorial.com/contributor/1000011/opticyclic
https://riptutorial.com/contributor/204968/ronnyfm
https://riptutorial.com/contributor/5140740/v-r
https://riptutorial.com/contributor/3335343/wrothe
https://riptutorial.com/contributor/1000011/opticyclic
https://riptutorial.com/contributor/1951058/rumit-parakhiya
https://riptutorial.com/contributor/761095/bahrep
https://riptutorial.com/contributor/79566/bta
https://riptutorial.com/contributor/1000011/opticyclic
https://riptutorial.com/contributor/204968/ronnyfm

	About
	Chapter 1: Getting started with svn
	Remarks
	Versions
	Examples
	Installation and initial setup
	Checking out a working copy
	Exporting the versioned data (plain download)
	Updating a working copy
	Making changes in your local working copy
	Committing your local changes to the repository
	Checking out a working copy at a specific revision
	Using a password-protected repository
	Creating and applying patches
	Reviewing the logs
	Revert or rollback of a file

	Chapter 2: Administering SVN
	Examples
	Creating A New Repo

	1. Using command line
	Create new user
	Create user groups
	Managing repository permissions

	Chapter 3: Branching, shelving and tagging in Apache Subversion
	Syntax
	Remarks
	Examples
	Creating a branch using direct URL to URL copy
	Creating a branch through a working copy
	Switching a working copy to a different branch
	Using tags
	Deleting a branch

	Credits

