
swagger

#swagger

Table of Contents

About 1

Chapter 1: Getting started with swagger 2

Remarks 2

Examples 2

Introduction - Installation - Setup (Developing in Node.js) 2

Chapter 2: springfox 4

Examples 4

Override default response messages 4

Turn of default response messages 4

Set your own default response messages 4

Setup springfox using swagger-ui in spring-boot 4

#1 Getting springfox with Maven 5

#2 Configure your application to use swagger 5

#3 Document your API 5

Chapter 3: swagger-ui 7

Remarks 7

Examples 7

swagger-ui with jersey REST WS 7

Credits 15

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: swagger

It is an unofficial and free swagger ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official swagger.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/swagger
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with swagger

Remarks

This section provides an overview of what swagger is, and why a developer might want to use it.

It should also mention any large subjects within swagger, and link out to the related topics. Since
the Documentation for swagger is new, you may need to create initial versions of those related
topics.

Examples

Introduction - Installation - Setup (Developing in Node.js)

Introduction:

Swagger is a set of rules/specifications for a format describing REST APIs. It provides a powerful
and actively developed ecosystem of tools around this formal specification like code generators
and editors. The best part of Swagger is that the documentation of methods, parameters, and
models are tightly integrated into the server code, allowing APIs to always stay in sync. Here’s a
link giving a brief overview of what is swagger: getting-started.

Writing specifications:

The specifications can be written in either JSON or YAML. And so we make the swagger.json or
swagger.yaml file accordingly. The online editor can be used for creating the file. Here’s a link
describing the syntax for specifications: http://swagger.io/specification/

Ways to use swagger:

API-first approach (Top down approach): Use swagger editor → Write swagger definitions →
Use swagger-codegen and swagger-ui to generate APIs

1.

Service first approach (Bottom up approach): Develop JAX-RS resource classes using
swagger annotations → Use swagger-core to automatically generate the swagger definitions
→ Using swagger-codegen and swagger-ui to generate client APIs and documentations. The
above can be done during maven build during swagger maven plugin.

2.

Installation and Setup

In this section, we will install swagger, setup the swagger UI and generate server side and client
SDK using it. For installing swagger using Node package manager execute the following
command:

npm install -g swagger

Use of '-g' flag will ensure the module is installed globally. Next, we will create a project using the

https://riptutorial.com/ 2

http://swagger.io/specification/

following command:

swagger project create <project-name>

This will ask the user to select a framework for developing the REST APIs. Express can be
selected for the same. This will create the project directory with following items and a
README.md file in each of them:

api/
controllers/○

helpers/○

mocks/○

swagger/○

•

config/•
test/

api/
controllers/○

helpers○

○

•

app.js•
package.json•

The server is basically ready now and can be started using this command to be executed in
project root:

swagger project start

If the host server is set as localhost and port number is not modified in app.js file, then the server
is started at: http://localhost:10010 Now the swagger UI can be used to further develop our REST
APIs. This can be started in a new terminal using:

swagger project edit

This will open up the swagger editor in a browser tab on a randomly generated port. A sample
hello GET request can be seen already present in the swagger.yaml file. Any further change to
this file will cause the server to restart on its own.

In the paths section, the value used for x-swagger-router-controller should be the javascript file
name in controllers folder. As a sample, hello_world.js should be present in the controllers
directory. Also, the value for operationId parameter represents the function name in the above
javascript file. This is where business logic should be written. Thus, our swagger setup is complete
and can be used to further develop our API.

Read Getting started with swagger online: https://riptutorial.com/swagger/topic/5361/getting-
started-with-swagger

https://riptutorial.com/ 3

https://riptutorial.com/swagger/topic/5361/getting-started-with-swagger
https://riptutorial.com/swagger/topic/5361/getting-started-with-swagger

Chapter 2: springfox

Examples

Override default response messages

Springfox defines a set default response messages that are applied to all API controllers by
default. This includes e.g. 201 - Created and 204 - No Content, as well as several 40x responses.
There might be cases, in which the default response messages don't apply for your API. You have
to build-in possibilities to deal with this:

You can turn of the default response message and define your own using the @ApiResponses
annotation.

•

You can define your own response messages globally•

Turn of default response messages

docket.useDefaultResponseMessages(false);

You can now set your individual response messages on a per-controller level. E.g.

 @ApiResponses(value = {
 @ApiResponse(code=400, message = "This is a bad request, please stick to the API
description", response = RestApiExceptionModel.class),
 @ApiResponse(code=401, message = "Your request cannot be authorized.", response =
RestApiExceptionModel.class)
 })

Set your own default response messages

ModelRef errorModel = new ModelRef("RestApiExceptionModel");
List<ResponseMessage> responseMessages = Arrays.asList(
 new
ResponseMessageBuilder().code(401).message("Unauthorized").responseModel(errorModel).build(),
 new
ResponseMessageBuilder().code(403).message("Forbidden").responseModel(errorModel).build(),
 new
ResponseMessageBuilder().code(404).message("NotFound").responseModel(errorModel).build());

docket.globalResponseMessage(RequestMethod.POST, responseMessages)
 .globalResponseMessage(RequestMethod.PUT, responseMessages)
 .globalResponseMessage(RequestMethod.GET, responseMessages)
 .globalResponseMessage(RequestMethod.DELETE, responseMessages);

Setup springfox using swagger-ui in spring-boot

Get springfox into your application by using Maven or Gradle1.

https://riptutorial.com/ 4

Create a new Docket bean in your application and configure it2.
Document your API according to your needs3.
Launch your application and see your achieved results4.

#1 Getting springfox with Maven

Add the dependencies for swagger2 and swagger-ui in your pom.xml

<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger2</artifactId>
 <version>2.6.0</version>
</dependency>
<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger-ui</artifactId>
 <version>2.6.0</version>
</dependency>

#2 Configure your application to use swagger

Add the annotation @EnableSwagger2 to your @SpringBootApplication annotated main class and
create a swagger Docket bean within this (or any other) configuration class.

@Bean
public Docket api() {
 return new Docket(DocumentationType.SWAGGER_2)
 .select()
 .apis(RequestHandlerSelectors.any())
 .paths(PathSelectors.any())
 .build();
}

This configuration will generate an API documentation over all spring controllers within your
application. If you need to limit the API documentation generation to certain controllers you can
choose between various RequestHandlerSelectors. E.g. you can generate your API
documentation based on your package structure using
RequestHandlerSelectors.basePackage("your.package.structure") or based specific classes that
you've annotated using RequestHandlerSelectors.withClassAnnotation(Api.class).

#3 Document your API

Use the annotations as described in the documentation, to enhance your controller classes and
methods with additional information. To describe the general information of your api, like general
title, description or the version, make use of the ApiInfoBuilder() within your Docket bean.

Example for the metadata definition using ApiInfoBuilder:

// Within your configuration class

https://riptutorial.com/ 5

https://github.com/swagger-api/swagger-core/wiki/Annotations-1.5.X

public static ApiInfo metadata(){
 return new ApiInfoBuilder()
 .title("Your Title")
 .description("Your Description")
 .version("1.x")
 .build();
}

// Within your method that definies the Docket bean...
docket.apiInfo(metadata());

Read springfox online: https://riptutorial.com/swagger/topic/7637/springfox

https://riptutorial.com/ 6

https://riptutorial.com/swagger/topic/7637/springfox

Chapter 3: swagger-ui

Remarks

It's nice if you have fair amount of idea on following components :

REST WS Concepts (JAX-RS) Use of annotations Web application REST API standards Maven
and its dependency

Examples

swagger-ui with jersey REST WS

As the official website of Swagger says :

Swagger is to define a standard, language-agnostic interface to REST APIs which allows both
humans and computers to discover and understand the capabilities of the service without access
to source code, documentation, or through network traffic inspection. When properly defined via
Swagger, a consumer can understand and interact with the remote service with a minimal amount
of implementation logic. Similar to what interfaces have done for lower-level programming,
Swagger removes the guesswork in calling the service.

Assuming you use Maven and jersey, you will require following dependency to be added : Maven
Swagger Dependency along with dependencies of JAX-RS. Now you have to create "maven
webapp" and under the webapp you need to paste contents present on this URL. The folder
structure of webapp should look like following after you paste those contents in your project :

After that follow this steps :

Create a java file with any name (in our case its "ApiOriginFilter.java") similar to below :1.

import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;

https://riptutorial.com/ 7

http://swagger.io/getting-started/
https://mvnrepository.com/artifact/io.swagger/swagger-jersey2-jaxrs
https://mvnrepository.com/artifact/io.swagger/swagger-jersey2-jaxrs
https://github.com/swagger-api/swagger-ui/tree/master/dist
http://i.stack.imgur.com/7kfDO.png

import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

public class ApiOriginFilter implements javax.servlet.Filter {
 /**
 * doFilter
 */
 @Override
 public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)
 throws IOException, ServletException {
 HttpServletResponse res = (HttpServletResponse) response;
 res.addHeader("Access-Control-Allow-Origin", "*");
 res.addHeader("Access-Control-Allow-Methods", "GET, POST, DELETE, PUT");
 res.addHeader("Access-Control-Allow-Headers", "Content-Type, api_key, Authorization");
 chain.doFilter(request, response);
 }

 /**
 * destroy
 */
 @Override
 public void destroy() {
 }

 /**
 * init
 */
 @Override
 public void init(FilterConfig filterConfig) throws ServletException {
 }
}

This file will ensure to filter the incoming requests as provided in the class.

Create a java file of any name suppose in our case its name is "SwaggerJaxrsConfig.java" as
follows :

2.

import org.eclipse.persistence.jaxb.MarshallerProperties;
import org.eclipse.persistence.jaxb.BeanValidationMode;
import org.glassfish.jersey.moxy.json.MoxyJsonConfig;
import org.glassfish.jersey.moxy.json.MoxyJsonFeature;
import org.glassfish.jersey.moxy.xml.MoxyXmlFeature;
import org.glassfish.jersey.server.ResourceConfig;

import org.glassfish.jersey.server.ServerProperties;
import org.glassfish.jersey.server.filter.RolesAllowedDynamicFeature;
import io.swagger.jaxrs.config.BeanConfig;

public class SwaggerJaxrsConfig extends ResourceConfig {

public SwaggerJaxrsConfig() {
 BeanConfig beanConfig = new BeanConfig();
 beanConfig.setTitle("Swagger API Title");
 beanConfig.setVersion("1.0.0");
 beanConfig.setSchemes(new String[] { "http" });
 beanConfig.setHost("localhost:8080/swagger-ui");

https://riptutorial.com/ 8

 beanConfig.setBasePath("/rest");
 beanConfig.setResourcePackage(
 "your.restws.package");
 beanConfig.setScan(true);
 property(ServerProperties.BV_SEND_ERROR_IN_RESPONSE, Boolean.TRUE);
 packages("your.restws.package");
 packages("io.swagger.jaxrs.listing");
 register(MoxyJsonFeature.class);
 // register(BadRequestExceptionMapper.class);
 register(new MoxyJsonConfig().setFormattedOutput(true)
 // Turn off BV otherwise the entities on server would be validated by MOXy as well.
 .property(MarshallerProperties.BEAN_VALIDATION_MODE, BeanValidationMode.NONE).resolver());

 register(MoxyXmlFeature.class);
 register(RolesAllowedDynamicFeature.class);
}
}

As you can see, in above class we have provided all the details required to use swagger UI like
Host on which this swagger project will be hosted along with facility to set base path of your choice
and all the http protocols supported like "http" or "https" and even more details as per your
requirement.There is also provision to let Swagger know all of your REST WS's location which can
be set using setResourcePackage along with packages This class enables us to use Swagger UI with
our customization.

Now make entry of above 2 files in web.xml so as to use them after deploying our application on
server like follow :

<servlet>
 <servlet-name>jersey-servlet</servlet-name>
 <servlet-class>org.glassfish.jersey.servlet.ServletContainer</servlet-class>
 <init-param>
 <param-name>javax.ws.rs.Application</param-name>
 <param-value>your.package.SwaggerJaxrsConfig</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>jersey-servlet</servlet-name>
 <url-pattern>/rest/*</url-pattern>
</servlet-mapping>

<filter>
 <filter-name>ApiOriginFilter</filter-name>
 <filter-class>your.package.ApiOriginFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>ApiOriginFilter</filter-name>
 <url-pattern>/rest/*</url-pattern>
</filter-mapping>

Now, we will move to actual code where we will use Swagger provided Annotations :

Create a bean Employee.java as below :

import io.swagger.annotations.ApiModel;

https://riptutorial.com/ 9

import io.swagger.annotations.ApiModelProperty;

@ApiModel("Employee bean")
public class Employee {

 private String name;
 private String id;
 private String dept;

 @ApiModelProperty(value = "Name of employee", example = "Test Employee")
 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @ApiModelProperty(value = "Id of employee", example = "123456")
 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }

 @ApiModelProperty(value = "Department of employee", example = "IT Division",
allowableValues = "IT, Sales, Admin")
 public String getDept() {
 return dept;
 }

 public void setDept(String dept) {
 this.dept = dept;
 }
}

The components of Swagger we used here are :

@ApiModel("Employee bean") - This will decide name of the Bean class that needs to be
displayed on Swagger UI.

1.

@ApiModelProperty(value ="ABC", example="DeptName") - This will provide information of each
field used in the bean. value provides description of the field and example provides sample
value of that field.

2.

Now we will create a REST Controller as follows to create a GET webservice as follows :

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.GenericEntity;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.swagger.ws.bean.Employee;

https://riptutorial.com/ 10

import org.swagger.ws.service.EmployeeService;

import io.swagger.annotations.Api;
import io.swagger.annotations.ApiOperation;
import io.swagger.annotations.ApiResponse;
import io.swagger.annotations.ApiResponses;

@Path("/employee")
@Api(tags = {"Employee"})
public class EmployeeController {
 private static final Logger LOGGER = LoggerFactory.getLogger(EmployeeController.class);

@GET
@Produces(MediaType.APPLICATION_JSON + ";charset=utf-8")
@ApiOperation(produces="application/json", value = "Fetch employee details", httpMethod="GET",
notes = "
This service fetches Employee details", response = Employee.class)
@ApiResponses(value = { @ApiResponse(code = 200,response = Employee.class, message =
"Successful operation"),@ApiResponse(code = 400, message = "Bad Request", response =
Error.class), @ApiResponse(code = 422, message = "Invalid data", response = Error.class),
@ApiResponse(code = 500, message = "Internal Server Error", response = Error.class) })
public Response getEmployee() {
 EmployeeService employeeService = new EmployeeService();
 Employee empDetails = employeeService.getEmployee();
 Response response;
 LOGGER.debug("Fetching employee");
 GenericEntity<Employee> entity = new GenericEntity<Employee>(empDetails){};
 response = Response.status(200).entity(entity).build();
 return response;
 }
}

The components of Swagger we used here are :

@Api(tags = {"Employee"}) - This annotation will tell Swagger what should be the title of the
web service. In this case the title is "Employee". Please note that few standards while writing
REST WS is also applicable while writing Swagger Documentation like title should not be like
"GetEmployee" or "DeleteEmployee",etc.

1.

@ApiOperation(produces="application/json", value = "Fetch employee details",
httpMethod="GET", notes = "
This service fetches Employee details", response =
Employee.class) - This annotation provides brief idea about your webservice.

produces describes format of response,•
value describes brief idea about the webservice•
notes describes detailed information about this webservice in case of any.•

2.

@ApiResponses(value = { @ApiResponse(code = 200,response = Employee.class, message =
"Successful operation"),@ApiResponse(code = 400, message = "Bad Request", response =
Error.class), @ApiResponse(code = 422, message = "Invalid data", response = Error.class),
@ApiResponse(code = 500, message = "Internal Server Error", response = Error.class) }) -
This annotations provides us a way to handle different types of HTTP Status codes that can be
received as a response as while consuming this webservice. It allows us to set the error
code, custom message against it and even allows us to catch that error in separate error
class, if required.

3.

Finally, we have to create actual Service class which will fetch the details of employees when the
webservice is consumed by client. You can implement it as required. Following is the sample
service for the Demo purpose :

https://riptutorial.com/ 11

public class EmployeeService {

public Employee getEmployee() {
 Employee employee = new Employee();
 employee.setId("1");
 employee.setName("Test");
 employee.setDept("IT");
 return employee;
 }
}

Now you are ready to see your documentation on Swagger UI. Deploy your Swagger project and
start the server. Now go to browser and hit the URL of your project. In this case its

http://localhost:8080/swagger-ui/

If swagger is properly configured then you should be able to see following screen :

Now, to see your webservice documentation provide your project's "base_url/rest/swagger.json" in
the textbox (http://exampl.com/api) you can see in above image. After providing that URL in
textbox, you can see following screen providing documentation of your REST webservice :

https://riptutorial.com/ 12

http://localhost:8080/swagger-ui/
http://i.stack.imgur.com/wVVzf.png
http://exampl.com/api)

The text box where "api key" is written in above image, you can provide specific header or key
value if your project demands it like authentication based on user id,etc. For that you will also need
to make changes in index.html under the tag starting with <input placeholder="api_key"

Another additional benefit of Swagger-UI is, it provides a button "Try it out!". This button lets you
enable to see what could be the response of this webservice. For this case, if we click on that
button, it will give following response on the screen :

https://riptutorial.com/ 13

http://i.stack.imgur.com/qyi4X.png

So this is the sample demo for Swagger UI. There are many options you can still discover while
writing REST controller which will help you at documentation level by using more Annotations and
their attributes.

Read swagger-ui online: https://riptutorial.com/swagger/topic/6686/swagger-ui

https://riptutorial.com/ 14

http://i.stack.imgur.com/PCWRA.png
https://riptutorial.com/swagger/topic/6686/swagger-ui

Credits

S.
No

Chapters Contributors

1
Getting started with
swagger

Community, Daniel Käfer, gonephishing

2 springfox mika

3 swagger-ui Suyash

https://riptutorial.com/ 15

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/2804992/gonephishing
https://riptutorial.com/contributor/4482535/mika
https://riptutorial.com/contributor/3226981/suyash

	About
	Chapter 1: Getting started with swagger
	Remarks
	Examples
	Introduction - Installation - Setup (Developing in Node.js)

	Chapter 2: springfox
	Examples
	Override default response messages

	Turn of default response messages
	Set your own default response messages
	Setup springfox using swagger-ui in spring-boot

	#1 Getting springfox with Maven
	#2 Configure your application to use swagger
	#3 Document your API

	Chapter 3: swagger-ui
	Remarks
	Examples
	swagger-ui with jersey REST WS

	Credits

