
swig

#swig

Table of Contents

About 1

Chapter 1: Getting started with swig 2

Remarks 2

RTFM 2

Examples 2

Installation or Setup 2

Hello World 3

Chapter 2: Introduction to Typemaps 4

Introduction 4

Syntax 4

Parameters 4

Examples 5

Basic typemap - Python 5

Credits 6

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: swig

It is an unofficial and free swig ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official swig.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/swig
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with swig

Remarks

SWIG (Simplified Wrapper and Interface Generator) is a tool for wrapping C and C++ code in a
variety of target languages, allowing C/C++ APIs to be used in other languages.

SWIG parses header files and generates code in a manner dependent on the target language.
The code generation can be controlled by the developer in the SWIG interface file as well as
through command line options.

In the interface file, the developer tells SWIG what to wrap and how. SWIG has its own
preprocessor system and many special directives to control how data, classes and functions are
wrapped in the target language. Some of these directives are general and others are specific to
the target language.

Central to how SWIG functions is the typemap. Typemaps are rules that specify how types are
marshaled between the C code and the target language. Typemaps can be applied globally to
everything in the interface file or locally on a case by case basis. They can also be customized if
necessary.

Once SWIG is run on the interface file, it produces a C or C++ file which is the wrapper. This file
should be compiled and linked with the C/C++ program or static library the wrapper is meant to
interface with to produce a shared library. That library in turn is used by the target language.

RTFM

It cannot be emphasized enough that SWIG already comes with an excellent documentation
manual. This is very detailed on the one hand, covers installation, and features many concrete
examples in the form of code snippets, including a complete "hello world" SWIG example.

But most importantly, it also explains 1.7 How to avoid reading the manual:

If you hate reading manuals, glance at the "Introduction" which contains a few simple
examples. These examples contain about 95% of everything you need to know to use
SWIG. After that, simply use the language-specific chapters as a reference. The SWIG
distribution also comes with a large directory of examples that illustrate different topics.

Examples

Installation or Setup

Detailed instructions on getting swig set up or installed.

https://riptutorial.com/ 2

http://www.swig.org/Doc3.0/
http://www.swig.org/Doc3.0/
http://www.swig.org/Doc3.0/Preface.html#Preface_installation
http://www.swig.org/Doc3.0/Introduction.html#Introduction_nn4
http://www.swig.org/Doc3.0/Preface.html#Preface_nn8
http://www.swig.org/Doc3.0/Introduction.html#Introduction

Hello World

A minimal example of using SWIG.

HelloWorld.i, the SWIG interface file

%module helloworld //the name of the module SWIG will create
%{ //code inside %{...%} gets inserted into the wrapper file
#include "myheader.h" //helloworld_wrap.cxx includes this header
%}

%include "myheader.h" //include the header for SWIG to parse

Then, in the command line

swig -c++ -java HelloWorld.i

which means we are wrapping C++ (as opposed to C) with Java as the target language as
specified by HelloWorld.i. This will produce a C++ file, helloworld_wrap.cxx, which has the
wrapper code. This file should be compiled and linked against whatever code the wrapper is
supposed to interface with (e.g., a static library) to produce a shared library. With some languages,
as with Java in our example, additional code will be generated - in our case, there will be at least
one Java class file.

Read Getting started with swig online: https://riptutorial.com/swig/topic/7608/getting-started-with-
swig

https://riptutorial.com/ 3

https://riptutorial.com/swig/topic/7608/getting-started-with-swig
https://riptutorial.com/swig/topic/7608/getting-started-with-swig

Chapter 2: Introduction to Typemaps

Introduction

Typemaps are the very heart of what SWIG does. When you want to pass data between
languages the behaviours for doing so depend upon the type that SWIG sees. The power of
typemaps is that the chunks of code are applied many times.

SWIG itself includes many useful typemaps in the core library it is supplied with, e.g. for primitive
types, C++ standard library containers, boost etc. so often you won't even need to write any
typemaps to expose your code, however that list is by no means complete.

Syntax

%typemap(NAME) TYPENAME %{ CODE %}•
%typemap(NAME,OPTION=VALUE) TYPENAME %{ CODE %}•
%typemap(NAME) TYPENAME VARIABLENAME %{ CODE %}•
%typemap(NAME) TYPENAME (LOCALVARTYPE LOCALVARNAME) %{ CODE %}•

Parameters

Parameter Details

NAME

The name of the typemap defines its role in generating a module. in
and out are common and used for input (to C++ or C function calls
from Python/Java etc.) and output (i.e. return values from C or C++ to
Pyton/Java)

TYPENAME
Each typemap gets applied to one or more matching types. These
need to be listed here. Type qualifiers (e.g. const) matters.

CODE

Every typemap needs to convert between the C or C++ type and the
corresponding type in the wrapped language. You will need to write
code to do that in your custom typemaps, typically making use of
special variables that get substituted in. E.g. $input inside an in
typemap represents the value from Python/Java, $result in an out
typemap is the thing being returned to Python/Java. $1 in both in/out
typemaps represents the C or C++ variable of the type used to match
the typemap. So for in typemaps you would assign to $1 and for out
you would read from it. (See multi-argument typemaps for more
details on why it is a number)

Typemaps are matched from most specific to least specific in general.
You can define a typemap that will only match function arguments
with specific names by using this optional form. (See typemap

VARIABLENAME

https://riptutorial.com/ 4

Parameter Details

matching for more details)

(LOCALVARTYPE
LOCALVARNAME)

Sometimes, particuarly for in typemaps it's useful to be able to
declare extra local variables to hold objects around a call. This
optional syntax allows us do do that. By using this syntax instead of
writing it in CODE the scope is altered, but more importantly the variable
can be automatically renamed by SWIG to avoid clashes if a function
has two arguments using the same typemap.

OPTION=VALUE

The behaviour of some typemaps can be influenced by setting extra
options using this syntax. For example a in typemap can be made to
take no input from the target language by setting numinputs=0, in which
case the typemap is expected to fill the input implicitly. (A common
case for this might be to set something to NULL, or fill it from a global
value)

Examples

Basic typemap - Python

Given the following custom Boolean type we want to wrap:

typedef char MYBOOL;
#define TRUE 1
#define FALSE 0

A simple approach might be to write the following typemaps in our SWIG interface:

%typemap(in) MYBOOL %{
 // $input is what we got passed from Python for this function argument
 $1 = PyObject_IsTrue($input);
 // $1 is what will be used for the C or C++ call and we are responsible for setting it
%}

%typemap(out) MYBOOL %{
 // $1 is what we got from our C or C++ call
 $result = PyBool_FromLong($1);
 // $result is what gets given back to Python and we are responsible for setting it
%}

With these typemaps, SWIG will insert our code into the generated wrapper every time it sees a
MYBOOL passed into or out of a function call.

Read Introduction to Typemaps online: https://riptutorial.com/swig/topic/9289/introduction-to-
typemaps

https://riptutorial.com/ 5

https://riptutorial.com/swig/topic/9289/introduction-to-typemaps
https://riptutorial.com/swig/topic/9289/introduction-to-typemaps

Credits

S.
No

Chapters Contributors

1
Getting started with
swig

BenK, Community, m7thon

2
Introduction to
Typemaps

Flexo

https://riptutorial.com/ 6

https://riptutorial.com/contributor/3043521/benk
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5162389/m7thon
https://riptutorial.com/contributor/168175/flexo

	About
	Chapter 1: Getting started with swig
	Remarks

	RTFM
	Examples
	Installation or Setup
	Hello World

	Chapter 2: Introduction to Typemaps
	Introduction
	Syntax
	Parameters
	Examples
	Basic typemap - Python

	Credits

