
symfony

#symfony

Table of Contents

About 1

Chapter 1: Getting started with symfony 2

Remarks 2

Open-Source 2

Official documentation 2

Versions 2

Symfony 3 2

Symfony 2 2

Examples 3

Creating a new Symfony project using the Symfony Installer 3

Downloading and installing the Symfony Installer on Linux / MacOS 3

Creating a new project with the latest Symfony version 3

Creating a new project using a specific Symfony version 4

Creating a new Symfony project using Composer 4

Installing a specific Symfony version 4

Running the Symfony application using PHP's built-in web server 5

Chapter 2: Controllers 6

Introduction 6

Syntax 6

Remarks 6

Examples 6

A simple controller class 6

Rendering a Twig template 7

Returning a 404 (Not Found) page 7

Using data from the Request object 8

Chapter 3: Routing 9

Introduction 9

Parameters 9

Examples 9

Simple routes 9

Routes with placeholders 10

Default values for placeholders 10

Chapter 4: Service Container 12

Introduction 12

Examples 12

Retrieve a service from the container 12

Chapter 5: The Request 13

Introduction 13

Syntax 13

Examples 13

Getting a query string parameter 13

Creating a Request object from global variables 14

Accessing a POST variable 14

Accessing the contents of a cookie 14

Credits 15

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: symfony

It is an unofficial and free symfony ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official symfony.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/symfony
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with symfony

Remarks

Symfony is a set of reusable PHP components, which can be used seperately or as part of the
Symfony Framework.

As most frameworks, Symfony solves recurring technical problems for you (such as
authentication, routing, etc.) so you can focus your time on the actual business problems you're
trying to solve.

In contrary to other frameworks, however, the Symfony components are decoupled from each
other, allowing you to select the ones you need. Instead of having to adapt your application to your
framework, you can adapt the framework to your needs.

This is what makes Symfony very popular and allows other projects and frameworks (including
Laravel, Drupal, Magento and Composer) to utilize the components without having to use the full
framework.

Open-Source

Symfony is an open-source project. See how you can contribute.

Official documentation

The official Symfony documentation can be found on the Symfony website.

Versions

Symfony 3

Version End of Life Release Date

3.3 07/2018 2017-05-29

3.2 01/2018 2016-11-30

3.1 07/2017 2016-05-30

3.0 01/2017 2015-11-30

Symfony 2

https://riptutorial.com/ 2

https://symfony.com/
https://symfony.com/doc/current/contributing/index.html
https://symfony.com/doc/current/index.html

Version End of Life Release Date

2.8 11/2019 2015-11-30

2.7 05/2019 2015-05-30

2.6 01/2016 2014-11-28

2.5 07/2015 2014-05-31

2.4 01/2015 2013-12-03

2.3 05/2017 2013-06-03

2.2 05/2014 2013-03-01

2.1 11/2013 2012-09-06

2.0 09/2013 2011-07-28

Examples

Creating a new Symfony project using the Symfony Installer

The Symfony Installer is a command line tool that helps you to create new Symfony applications. It
requires PHP 5.4 or higher.

Downloading and installing the Symfony Installer on Linux /
MacOS

Open a terminal and execute the following commands:

sudo mkdir -p /usr/local/bin
sudo curl -LsS https://symfony.com/installer -o /usr/local/bin/symfony
sudo chmod a+x /usr/local/bin/symfony

This creates a global symfony executable that can be called from anywhere. You have to do this
only once: now you can create as many Symfony projects with it as you want.

Creating a new project with the latest Symfony version

Once the installer is installed, you can use it to create a new Symfony project. Run the following
command:

symfony new my_project_name

This command will create a new directory (called my_project_name) containing the most recent

https://riptutorial.com/ 3

https://symfony.com/doc/current/setup.html#creating-symfony-applications

version of the Symfony Standard Edition. It will also install all of its dependencies (including the
actual Symfony components) using Composer.

Creating a new project using a specific Symfony version

If you want to select a specific Symfony version instead of the latest one, you can use the optional
second argument of the new command.

To select a minor version:

symfony new my_project_name 3.2

To select a patch version:

symfony new my_project_name 3.2.9

To select a beta version or release candidate:

symfony new my_project 2.7.0-BETA1
symfony new my_project 2.7.0-RC1

To select the most recent Long Term Support (LTS) version:

symfony new my_project_name lts

Creating a new Symfony project using Composer

If for some reason using the Symfony Installer is not an option, you can also create a new project
using Composer. First of all, make sure you have installed Composer.

Next, you can use the create-project command to create a new project:

composer create-project symfony/framework-standard-edition my_project_name

Similar to the Symfony Installer, this will install the latest version of the Symfony Standard Edition
in a directory called my_project_name and will then install its dependencies (including the Symfony
components).

Installing a specific Symfony version

As with the Symfony Installer, you can select a specific version of Symfony by supplying an
optional third argument:

composer create-project symfony/framework-standard-edition my_project_name "2.8.*"

Note however that not all version aliases (such as lts for example) are available here.

https://riptutorial.com/ 4

https://github.com/symfony/symfony-standard
http://www.riptutorial.com/symfony/example/29265/creating-a-new-symfony-project-using-the-symfony-installer
http://www.riptutorial.com/composer-php/topic/3267/getting-started-with-composer-php
https://github.com/symfony/symfony-standard

Running the Symfony application using PHP's built-in web server

After creating a new Symfony application, you can use the server:run command to start a simple
PHP web server, so you can access your new application from your web browser:

cd my_project_name/
php bin/console server:run

You can now visit http://localhost:8000/ to see the Symfony welcome page.

Important: while using the built-in web server is great for development, you should not use it in
production. Use a full-featured web server such as Apache or Nginx instead.

Read Getting started with symfony online: https://riptutorial.com/symfony/topic/9448/getting-
started-with-symfony

https://riptutorial.com/ 5

http://www.riptutorial.com/symfony/example/29265/creating-a-new-symfony-project-using-the-symfony-installer
http://localhost:8000/
https://riptutorial.com/symfony/topic/9448/getting-started-with-symfony
https://riptutorial.com/symfony/topic/9448/getting-started-with-symfony

Chapter 2: Controllers

Introduction

A controller in Symfony is a PHP callable (a function, a method on an object, or a closure) that
receives an HTTP request and returns an HTTP response. An HTTP response can contain
anything: an HTML page, a JSON string, a file download, etc.

In order to tell Symfony which controller should handle a certain request, you need to configure a
route.

Syntax

$this->generateUrl('route_name', ['placeholder' => 'value']); // generates a URL for the route
route_name with a placeholder

•

$this->render('template.html.twig'); // renders a Twig template and returns a Response object•
$this->render('template.html.twig', ['parameter' => $value]); // renders a Twig template with a
parameter

•

throw $this->createNotFoundException('Message'); // throws a NotFoundHttpException
which will cause Symfony to return a 404 response

•

Remarks

Controllers should be small and focus on handling HTTP requests: the actual business logic of
your application should be delegated to different parts of your application, for instance your
domain model.

Examples

A simple controller class

// src/AppBundle/Controller/HelloWorldController.php
namespace AppBundle\Controller;

use Symfony\Component\HttpFoundation\Response;

class HelloWorldController
{
 public function helloWorldAction()
 {
 return new Response(
 '<html><body>Hello World!</body></html>'
);
 }
}

https://riptutorial.com/ 6

http://www.riptutorial.com/symfony/topic/10084/routing
http://www.riptutorial.com/symfony/topic/10084/routing

Rendering a Twig template

Most of the time, you will want to render HTML responses from a template instead of hard-coding
the HTML in your controller. Also, your templates will not be static but will contain placeholders for
application data. By default Symfony comes with Twig, a powerful templating language.

In order to use Twig in your controller, extend Symfony's base Controller class:

// src/AppBundle/Controller/HelloWorldController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Response;

class HelloWorldController extends Controller
{
 public function helloWorldAction()
 {
 $text = 'Hello World!';

 return $this->render('hello-world.html.twig', ['text' => $text]);
 }
}

Create the Twig template (located in app/Resources/views/hello-world.html.twig):

<html><body>{{ text }}</body></html>

Twig will automatically replace the {{ text }} placeholder with the value of the text parameter,
passed by the controller. This will render the following HTML output:

<html><body>Hello World!</body></html>

Returning a 404 (Not Found) page

Sometimes you want to return a 404 (Not Found) response, because the requested resource does
not exist. Symfony allows you to do so by throwing a NotFoundHttpException.

The Symfony base Controller exposes a createNotFoundException method which creates the
exception for you:

public function indexAction()
{
 // retrieve the object from database
 $product = ...;

 if (!$product) {
 throw $this->createNotFoundException('The product does not exist');
 }

 // continue with the normal flow if no exception is thrown
 return $this->render(...);
}

https://riptutorial.com/ 7

http://api.symfony.com/3.2/Symfony/Component/HttpKernel/Exception/NotFoundHttpException.html

Using data from the Request object

If you need to access the Request object (for instance to read the query parameters, to read an
HTTP header or to process an uploaded file), you can receive the request as a method argument
by adding a type-hinted argument:

use Symfony\Component\HttpFoundation\Request;

public function indexAction(Request $request)
{
 $queryParam = $request->query->get('param');

 // ...
}

Symfony will recognize the type hint and add the request argument to the controller call.

Read Controllers online: https://riptutorial.com/symfony/topic/10085/controllers

https://riptutorial.com/ 8

https://riptutorial.com/symfony/topic/10085/controllers

Chapter 3: Routing

Introduction

Routing is the process of mapping a URL to a controller. Symfony has a powerfull Routing
component which allows you to define routes.

The Routing component supports a number of configuration formats: annotations, YAML, XML and
raw PHP.

Parameters

Parameter Details

name The name of the route. Example: book_show

path The path (may contain wildcards). Example: /book/{isbn}

defaults Default values of parameters

Examples

Simple routes

Using YAML:

app/config/routing.yml
blog_list:
 path: /blog
 defaults: { _controller: AppBundle:Blog:list }

Using Annotations:

// src/AppBundle/Controller/BlogController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

class BlogController extends Controller
{
 /**
 * @Route("/blog", name="blog_list")
 */
 public function listAction()
 {
 // ...
 }

https://riptutorial.com/ 9

http://www.riptutorial.com/symfony/topic/10085/controllers

}

A request for the /blog URL will be handled by the listAction() method of the BlogController
inside AppBundle.

Routes with placeholders

Using YAML:

app/config/routing.yml
blog_show:
 path: /blog/{slug}
 defaults: { _controller: AppBundle:Blog:show }

Using Annotations:

// src/AppBundle/Controller/BlogController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

class BlogController extends Controller
{
 /**
 * @Route("/blog/{slug}", name="blog_show")
 */
 public function showAction($slug)
 {
 // ...
 }
}

Any request with a URL matching /blog/* will be handled by the showAction() method of the
BlogController within AppBundle. The controller action will receive the value of the placeholder as a
method argument.

For example, a request for /blog/my-post will trigger a call to showAction() with an argument $slug
containing the value my-post. Using that argument, the controller action can change the response
depending on the value of the placeholder, for instance by retrieving the blog post with the slug my-
post from the database.

Default values for placeholders

If you want to have a placeholder that may be omitted, you can give it a default value:

Using YAML:

app/config/routing.yml
blog_list:
 path: /blog/{page}
 defaults: { _controller: AppBundle:Blog:list, page: 1 }

https://riptutorial.com/ 10

 requirements:
 page: '\d+'

Using Annotations:

// src/AppBundle/Controller/BlogController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

class BlogController extends Controller
{
 /**
 * @Route("/blog/{page}", name="blog_list", requirements={"page": "\d+"})
 */
 public function listAction($page = 1)
 {
 // ...
 }
}

In this example, both the /blog and /blog/1 URLs will match the blog_list route and will be
handled by the listAction() method. In the case of /blog, listAction() will still receive the $page
argument, with the default value 1.

Read Routing online: https://riptutorial.com/symfony/topic/10084/routing

https://riptutorial.com/ 11

https://riptutorial.com/symfony/topic/10084/routing

Chapter 4: Service Container

Introduction

A Symfony application is typically composed of a lot of objects that perform different tasks, such
as repositories, controllers, mailers, etc. In Symfony, these objects are called services, and are
defined in app/config/services.yml or in one of the installed bundles.

The Service Container knows how to instantiate these services, and keeps a reference of them
so they don't have to be instantiated twice. If a service has dependencies it will instantiate those
too.

Examples

Retrieve a service from the container

$logger = $container->get('logger');

This will fetch the service with the service ID "logger" from the container, an object that
implements Psr\Log\LoggerInterface.

Read Service Container online: https://riptutorial.com/symfony/topic/10183/service-container

https://riptutorial.com/ 12

https://riptutorial.com/symfony/topic/10183/service-container

Chapter 5: The Request

Introduction

Symfony's Request class is an object-oriented representation of the HTTP request. It contains
information such as the URL, query string, uploaded files, cookies and other headers coming from
the browser.

Syntax

$request->getPathInfo(); // returns the path (local part of the URL) that is being requested
(but without the query string). I.e. when visiting https://example.com/foo/bar?key=value, this
will contain /foo/bar

•

$request->query->get('id'); // returns a query string parameter ($_GET)•
$request->query->get('id', 1); // returns a query string parameter with a default value•
$request->request->get('name'); // returns a request body variable ($_POST)•
$request->files->get('attachment'); // returns an instance of UploadedFile identified by
"attachment"

•

$request->cookies->get('PHPSESSID'); // returns the value of a cookie ($_COOKIE)•
$request->headers->get('content_type'); // returns an HTTP request header•
$request->getMethod(); // returns the HTTP request method (GET, POST, PUT, DELETE,
etc.)

•

$request->getLanguages(); // returns an array of languages the client accepts•

Examples

Getting a query string parameter

Lets say we want to build a paginated list of products, where the number of the page is passed as
a query string parameter. For instance, to fetch the 3rd page, you'd go to:

http://example.com/products?page=3

The raw HTTP request would look something like this:

GET /products?page=3 HTTP/1.1
Host: example.com
Accept: text/html
User-Agent: Mozilla/5.0 (Macintosh)

In order to get the page number from the request object, you can access the query property:

$page = $request->query->get('page'); // 3

https://riptutorial.com/ 13

https://example.com/foo/bar?key=value

In the case of a page parameter, you will probably want to pass a default value in case the query
string parameter is not set:

$page = $request->query->get('page', 1);

This means that when someone visits http://example.com/products (note the absence of the query
string), the $page variable will contain the default value 1.

Creating a Request object from global variables

PHP exposes a number of so-called global variables which contain information about the HTTP
request, such as $_POST, $_GET, $_FILES, $_SESSION, etc. The Request class contains a static
createFromGlobals() method in order to instantiate a request object based on these variables:

use Symfony\Component\HttpFoundation\Request;

$request = Request::createFromGlobals();

When using the Symfony framework, you should not instantiate the request object yourself.
Instead, you should use the object that is instantiated when the framework is bootstrapped in
app.php / app_dev.php. For instance by type hinting the request object in your controller.

Accessing a POST variable

To get the contents of a form that is submitted with method="post", use the post property:

$name = $request->request->get('name');

Accessing the contents of a cookie

$id = $request->cookies->get('PHPSESSID');

This will return the value of the 'PHPSESSID' cookie sent by the browser.

Read The Request online: https://riptutorial.com/symfony/topic/10097/the-request

https://riptutorial.com/ 14

http://example.com/products
https://secure.php.net/manual/en/reserved.variables.post.php
https://secure.php.net/manual/en/reserved.variables.get.php
https://secure.php.net/manual/en/reserved.variables.files.php
https://secure.php.net/manual/en/reserved.variables.session.php
http://www.riptutorial.com/symfony/example/30949/using-data-from-the-request-object
https://riptutorial.com/symfony/topic/10097/the-request

Credits

S.
No

Chapters Contributors

1
Getting started with
symfony

Braiam, Code Lღver, Community, Nic Wortel, Paul Crovella

2 Controllers Nic Wortel

3 Routing Nic Wortel

4 Service Container Nic Wortel

5 The Request Nic Wortel

https://riptutorial.com/ 15

https://riptutorial.com/contributor/792066/braiam
https://riptutorial.com/contributor/1035257/code-l-ver
https://riptutorial.com/contributor/1035257/code-l-ver
https://riptutorial.com/contributor/1035257/code-l-ver
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1001110/nic-wortel
https://riptutorial.com/contributor/3942918/paul-crovella
https://riptutorial.com/contributor/1001110/nic-wortel
https://riptutorial.com/contributor/1001110/nic-wortel
https://riptutorial.com/contributor/1001110/nic-wortel
https://riptutorial.com/contributor/1001110/nic-wortel

	About
	Chapter 1: Getting started with symfony
	Remarks
	Open-Source
	Official documentation
	Versions
	Symfony 3
	Symfony 2
	Examples
	Creating a new Symfony project using the Symfony Installer

	Downloading and installing the Symfony Installer on Linux / MacOS
	Creating a new project with the latest Symfony version
	Creating a new project using a specific Symfony version
	Creating a new Symfony project using Composer

	Installing a specific Symfony version
	Running the Symfony application using PHP's built-in web server

	Chapter 2: Controllers
	Introduction
	Syntax
	Remarks
	Examples
	A simple controller class
	Rendering a Twig template
	Returning a 404 (Not Found) page
	Using data from the Request object

	Chapter 3: Routing
	Introduction
	Parameters
	Examples
	Simple routes
	Routes with placeholders
	Default values for placeholders

	Chapter 4: Service Container
	Introduction
	Examples
	Retrieve a service from the container

	Chapter 5: The Request
	Introduction
	Syntax
	Examples
	Getting a query string parameter
	Creating a Request object from global variables
	Accessing a POST variable
	Accessing the contents of a cookie

	Credits

