
sympy

#sympy

Table of Contents

About 1

Chapter 1: Getting started with sympy 2

Remarks 2

Examples 2

Installing SymPy 2

Alternate installation (not conda) 2

'Hello World' 3

Integration and Differentiation 3

Chapter 2: Differential Calculus 5

Examples 5

Constrained Non-Linear Optimization 5

Chapter 3: Equations 7

Examples 7

Solve system of linear equations 7

Solve nonlinear set of equations numerically 7

Solve a single equation 7

Chapter 4: Solvers 9

Remarks 9

Examples 9

Solving a univariate inequality 9

Solving a linear Diophantine equation 9

Credits 10

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: sympy

It is an unofficial and free sympy ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official sympy.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/sympy
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with sympy

Remarks

This section provides an overview of what sympy is, and why a developer might want to use it.

It should also mention any large subjects within sympy, and link out to the related topics. Since the
Documentation for sympy is new, you may need to create initial versions of those related topics.

Examples

Installing SymPy

The easiest and recommended way to install SymPy is to install Anaconda.

If you already have Anaconda or Miniconda installed, you can install the latest version with conda:

conda install sympy

Another way of installing SymPy is using pip:

pip install sympy

Note that this might require root privileges, so one might acually need

sudo pip install sympy

Most linux distributions also offer SymPy in their package repositories. For Fedora one would
install SymPy with

sudo dnf install python-sympy
sudo dnf install python3-sympy

The first one installs the python 2 version of the package, the latter python 3.

On OpenSuse the respective commands are:

sudo zypper install python-sympy
sudo zypper install python3-sympy

The packages for OpenSuse 42.2 seem rather outdated, so one of the first methods should be
prefered.

Alternate installation (not conda)

https://riptutorial.com/ 2

http://docs.sympy.org/latest/install.html
https://www.continuum.io/downloads

Alternate ways to install SymPy from conda. conda is the recommended way, but these are some
alternate ways. Including: git, pip, etc.

'Hello World'

Sympy is a Python library for doing symbolic — rather than numeric — calculations.

For instance, consider the quadratic equation in x,

x**2 + HELLO * x + WORLD = 0

where HELLO and WORLD are constants. What's the solution of this equation?

In Python, using Sympy we can code,

from sympy import symbols, solve, latex

x, HELLO, WORLD = symbols('x, HELLO, WORLD')
print (latex (solve (x**2 + HELLO * x + WORLD, x)))

Since I made a call to Latex the solutions are almost ready for publication! Sympy provides the two
of them packed in a list. Here's one:

If you need to do more work on an expression then you would leave out the call to latex.

Integration and Differentiation

Sympy is made for symbolic math, so let's have a look at some basic integration and
differentiation.

from sympy import symbols, sqrt, exp, diff, integrate, pprint

x, y = symbols('x y', real=True)

pprint(diff(4*x**3+exp(3*x**2*y)+y**2,x))

pprint(diff(4*x**3+exp(3*x**2*y)+y**2,y))

pprint(integrate(exp(x*y**2)+sqrt(x)*y**2,x))

pprint(integrate(exp(x*y**2)+sqrt(x)*y**2,y))

First we import the necessary functions from sympy. Next we define our variables x and y. Note
that these are considered complex by default, so we tell sympy that we want a simple example by
making them real. Next we differentiate some expression with respect to x and then y. Finally we

https://riptutorial.com/ 3

http://i.stack.imgur.com/GTRAH.jpg

integrate some expression, again with respect to x and then y. The call of pprint ensures that our
functions get written in some nice human readable style.

Read Getting started with sympy online: https://riptutorial.com/sympy/topic/5450/getting-started-
with-sympy

https://riptutorial.com/ 4

https://riptutorial.com/sympy/topic/5450/getting-started-with-sympy
https://riptutorial.com/sympy/topic/5450/getting-started-with-sympy

Chapter 2: Differential Calculus

Examples

Constrained Non-Linear Optimization

Problem statement:

Find the minimum (over x, y) of the function f(x,y), subject to g(x,y)=0, where f(x,y) = 2 * x**2 +
3 * y**2 and g(x,y) = x**2 + y**2 - 4.

Solution: We will solve this problem by performing the following steps:

Specify the Lagrangian function for the problem1.
Determine the Karush-Kuhn-Tucker (KKT) conditions2.
Find the (x,y) tuples that satisfy the KKT conditions3.
Determine which of these (x,y) tuples correspond to the minimum of f(x,y)4.

First, define the optimization variables as well as objective and constraint functions:

import sympy as sp
x, y = sp.var('x,y',real=True);
f = 2 * x**2 + 3 * y**2
g = x**2 + y**2 - 4

Next, define the Lagrangian function which includes a Lagrange multiplier lam corresponding to the
constraint

lam = sp.symbols('lambda', real = True)
L = f - lam* g

Now, we can compute the set of equations corresponding to the KKT conditions.

gradL = [sp.diff(L,c) for c in [x,y]] # gradient of Lagrangian w.r.t. (x,y)
KKT_eqs = gradL + [g]
KKT_eqs

[-2*lambda*x + 4*x, -2*lambda*y + 6*y, x**2 + y**2 - 4]

The potential minimizers of f (given g=0) are obtained by solving the KKT_eqs equations overs x, y,
lam:

stationary_points = sp.solve(KKT_eqs, [x, y, lam], dict=True) # solve the KKT equations
stationary_points

[{x: -2, y: 0, lambda: 2},
 {x: 2, y: 0, lambda: 2},
 {x: 0, y: -2, lambda: 3},

https://riptutorial.com/ 5

 {x: 0, y: 2, lambda: 3}]

Finally, check the objective function for each of the above points to determine the minimum

[f.subs(p) for p in stat_points]

[8, 8, 12, 12]

It follows that the constrained minimum of f equals 8 and is achieved at (x,y)=(-2,0) and
(x,y)=(2,0).

Read Differential Calculus online: https://riptutorial.com/sympy/topic/6867/differential-calculus

https://riptutorial.com/ 6

https://riptutorial.com/sympy/topic/6867/differential-calculus

Chapter 3: Equations

Examples

Solve system of linear equations

import sympy as sy

x1, x2 = sy.symbols("x1 x2")

equations = [
 sy.Eq(2*x1 + 1*x2 , 10),
 sy.Eq(1*x1 - 2*x2 , 11)
]

print sy.solve(equations)
Result: {x1: 31/5, x2: -12/5}

Solve nonlinear set of equations numerically

import sympy as sy

x, y = sy.symbols("x y")

nsolve needs the (in this case: two) equations, the names of the variables
(x,y) we try to evaluate solutions for, and an initial guess (1,1) for the
solution
print sy.nsolve((x**3+sy.exp(y)-4,x+3*y),(x,y),(1,1))

The result shown will be the solution for x and y:

[1.50281519319939]
[-0.500938397733129]

Solve a single equation

import sympy as sy

Symbols have to be defined before one can use them
x = sy.S('x')

Definition of the equation to be solved
eq=sy.Eq(x**2 + 2, 6)

#Print the solution of the equation
print sy.solve(eq)

The result printed will be:

[-2, 2]

https://riptutorial.com/ 7

Read Equations online: https://riptutorial.com/sympy/topic/6833/equations

https://riptutorial.com/ 8

https://riptutorial.com/sympy/topic/6833/equations

Chapter 4: Solvers

Remarks

As of version 1.0 of Sympy perhaps the main thing to understand about using its solvers is that '
solveset will take over solve either internally or externally'. At this point solveset should already
be used for solving univariate equations and systems of linear equations.

Examples

Solving a univariate inequality

>>> from sympy.solvers.inequalities import solve_univariate_inequality
>>> from sympy import var
>>> x=var('x')
>>> solve_univariate_inequality(2*x**2-6>1,x,relational=False)
(-oo, -sqrt(14)/2) U (sqrt(14)/2, oo)

The relational=False parameter simply indicates how the results are to be rendered. The default (
relational=True) produces a result like this.

>>> solve_univariate_inequality(2*x**2-6>1,x)
Or(And(-oo < x, x < -sqrt(14)/2), And(sqrt(14)/2 < x, x < oo))

Solving a linear Diophantine equation

[![Sample equation][1]][1]

sympy provides its solution as a Python set of expressions in terms of parametric variables, as
shown here in the final line.

>>> from sympy.solvers.diophantine import diophantine
>>> from sympy import var
>>> x,y,z=var('x y z')
>>> diophantine(2*x+3*y-5*z-77)
{(t_0, -9*t_0 - 5*t_1 + 154, -5*t_0 - 3*t_1 + 77)}

Read Solvers online: https://riptutorial.com/sympy/topic/7199/solvers

https://riptutorial.com/ 9

https://riptutorial.com/sympy/topic/7199/solvers

Credits

S.
No

Chapters Contributors

1
Getting started with
sympy

asmeurer, Bill Bell, Community, Hannebambel

2 Differential Calculus Stelios

3 Equations tfv

4 Solvers Bill Bell

https://riptutorial.com/ 10

https://riptutorial.com/contributor/161801/asmeurer
https://riptutorial.com/contributor/131187/bill-bell
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/4355191/hannebambel
https://riptutorial.com/contributor/6212875/stelios
https://riptutorial.com/contributor/4352930/tfv
https://riptutorial.com/contributor/131187/bill-bell

	About
	Chapter 1: Getting started with sympy
	Remarks
	Examples
	Installing SymPy
	Alternate installation (not conda)
	'Hello World'
	Integration and Differentiation

	Chapter 2: Differential Calculus
	Examples
	Constrained Non-Linear Optimization

	Chapter 3: Equations
	Examples
	Solve system of linear equations
	Solve nonlinear set of equations numerically
	Solve a single equation

	Chapter 4: Solvers
	Remarks
	Examples
	Solving a univariate inequality
	Solving a linear Diophantine equation

	Credits

