
tcl

#tcl

Table of Contents

About 1

Chapter 1: Getting started with tcl 2

Remarks 2

Versions 2

Examples 6

Installation 6

The Hello, world program in Tcl (and Tk) 6

Features of Tcl 7

Installing packages through teacup 7

Chapter 2: Control Structures 9

Syntax 9

Remarks 9

Examples 9

Adding a new control structure to Tcl 9

if / while / for 9

List iteration: foreach 10

Chapter 3: Dictionaries 12

Remarks 12

Examples 12

List-appending to a nested dictionary 12

Basic use of a dictionary 13

The dict get command can raise an error 13

Iterating over a dictionary 14

Chapter 4: Expressions 15

Remarks 15

Examples 15

The problems with unbraced expressions 15

Multiplying a variable by 17 17

Calling a Tcl command from an expression 17

Invalid bareword error 17

Chapter 5: Pathnames and filenames 19

Syntax 19

Examples 19

Working with pathnames and filenames 19

Chapter 6: Procedure arguments 20

Remarks 20

Examples 20

A procedure that does not accept arguments 20

A procedure that accepts two arguments 20

A procedure that accepts a variable number of arguments 20

A procedure that accepts any number of arguments 21

A procedure that accepts a name/reference to a variable 21

The {*} syntax 22

Chapter 7: Regular Expressions 23

Syntax 23

Remarks 23

Examples 23

Matching 23

Mixing Greedy and Non-Greedy Quantifiers 25

Substitution 25

Differences Between Tcl's RE engine and other RE engines. 26

Matching a literal string with a regular expression 26

Chapter 8: Tcl Language Constructs 27

Syntax 27

Examples 27

Placing Comments 27

Braces in comments 27

Quoting 28

Chapter 9: Variables 30

Syntax 30

Remarks 30

Examples 30

Assigning values to variables 30

Scoping 30

Printing the value of a variable 32

Invoking set with one argument 32

Deleting variable/s 32

Namespace variables 33

Credits 34

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: tcl

It is an unofficial and free tcl ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official tcl.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/tcl
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with tcl

Remarks

Tcl is a cross platform language with full unicode support.

Flexibility: redefine or enhance existing commands or write new commands.

Event driven programming: Event driven I/O and variable tracing.

Library Interface: It is very easy to integrate existing C libraries into Tcl and provide a Tcl interface
to the C library. These interface "stubs" are not tied to any particular version of Tcl and will
continue to work even after upgrading Tcl.

Tcl Interface: Tcl provides a complete API so you use the Tcl interpreter from within your
C/Python/Ruby/Java/R program.

Versions

Version Notes
Release
Date

8.6.6 Current Patch Release.
2016-07-
27

8.6.5
2016-02-
29

8.6.4
2015-03-
12

8.6.3
2014-11-
12

8.6.2
2014-08-
27

8.6.1
2013-09-
20

8.6.0
Current recommended version series for new code. Introduced
object system and non-recursive execution engine.

2013-09-
20

8.5.19 Current LTS release
2016-02-
12

2015-03-8.5.18

https://riptutorial.com/ 2

https://www.tcl.tk/software/tcltk/8.6.html
https://www.tcl.tk/software/tcltk/8.6.html

Version Notes
Release
Date

06

8.5.17
2014-10-
25

8.5.16
2014-08-
25

8.5.15
2013-09-
18

8.5.14
2013-04-
03

8.5.13
2012-11-
12

8.5.12
2012-07-
27

8.5.11
2011-11-
04

8.5.10
2011-06-
24

8.5.9
2010-09-
08

8.5.8
2009-11-
16

8.5.7
2009-04-
15

8.5.6
2008-12-
23

8.5.5
2008-10-
15

8.5.4
2008-08-
15

8.5.3
2008-06-
30

https://riptutorial.com/ 3

Version Notes
Release
Date

8.5.2
2008-03-
28

8.5.1
2008-02-
05

8.5.0
Current oldest supported version. Introduced expansion syntax,
dictionaries and ensemble commands.

2007-12-
20

8.4.20 Final 8.4 series release. There will be no further releases of 8.4.
2013-06-
01

8.4.19
2008-04-
18

8.4.18
2008-02-
08

8.4.17
2008-01-
04

8.4.16
2007-09-
21

8.4.15
2007-05-
25

8.4.14
2006-10-
19

8.4.13
2006-04-
19

8.4.12
2005-12-
03

8.4.11
2005-06-
28

8.4.10
2005-06-
04

8.4.9
2004-12-
07

8.4.8
2004-11-
22

https://riptutorial.com/ 4

https://www.tcl.tk/software/tcltk/8.5.html
https://www.tcl.tk/software/tcltk/8.5.html

Version Notes
Release
Date

8.4.7
2004-07-
25

8.4.6
2004-03-
01

8.4.5
2003-11-
24

8.4.4
2003-07-
22

8.4.3
2003-05-
19

8.4.2
2003-03-
03

8.4.1
2002-10-
22

8.4.0
First release by Tcl Core Team. Many performance enhancements.
Improved 64-bit support.

2002-09-
18

8.3.5
2002-10-
18

8.3.4
2001-10-
19

8.3.3
2001-04-
06

8.3.2
2000-08-
09

8.3.1
2000-04-
26

8.3.0 Performance improvements.
2000-02-
10

8.2 Stabilisation release
1999-08-
18

8.1 Introduced Unicode support.
1999-04-
30

https://riptutorial.com/ 5

https://www.tcl.tk/software/tcltk/8.4.html
https://www.tcl.tk/software/tcltk/8.4.html

Version Notes
Release
Date

8.0 Introduced bytecode compilation engine
1997-08-
16

Examples

Installation

Installing Tcl 8.6.4 on Windows :

The easiest way to get Tcl on a windows machine is to install the ActiveTcl distribution from
ActiveState.

1.

Navigate to www.activestate.com and follow the links to download the Free Community
Edition of ActiveTcl for Windows (choose 32/64 bit version appropriately).

2.

Run the installer which will result in a fresh install of ActiveTcl usually in the C:\Tcl directory.3.

Open a command prompt to test the install, type in "tclsh" which should open an interactive
tcl console. Enter "info patchlevel" to check the version of tcl that was installed and it should
display an output of the form "8.6.x" depending on the edition of ActiveTcl that has been
downloaded.

4.

You may also want to add "C:\Tcl\bin" or its equivalent to your environment PATH variable.•

C:\>tclsh
% info patchlevel
8.6.4

The Hello, world program in Tcl (and Tk)

The following code can be entered in a Tcl shell (tclsh), or into a script file and run through a Tcl
shell:

puts "Hello, world!"

It gives the string argument Hello, world! to the command puts. The puts command writes its
argument to standard out (your terminal in interactive mode) and adds a newline afterwards.

In a Tk-enabled shell, this variation can be used:

pack [button .b -text "Hello, world!" -command exit]

It creates a graphic button with the text Hello, world! and adds it to the application window. When
pressed, the application exits.

https://riptutorial.com/ 6

http://www.activestate.com

A Tk-enabled shell is started as: wish Or using tclsh along with the following statement:

package require Tk

Features of Tcl

Cross Platform Portability
Runs on Windows, Mac OS X, Linux, and virtually every variant of unix.○

•

Event driven programming
Trigger events based on variable read / write / unset.○

Trigger events when a command is entered or left.○

Trigger events when a I/O channel (file or network) becomes readable / writable.○

Create your own events.○

Trigger a command based on a timer.○

•

Object Oriented Programming
Mixins.○

Superclasses and subclasses.○

•

Simple Grammar•
Full unicode support

It just works. No special commands are needed to handle unicode strings.○

Convert to and from different encoding systems with ease.○

•

Flexible
Create new control structures and commands.○

Access variables in the calling procedure's context.○

Execute code in the calling procedure's context.○

•

Powerful introspection capabilities.
Many Tcl debuggers have been written in Tcl.○

•

Library interface
Integrate existing C libraries and provide a Tcl interface to the library.○

Library "stubs" are not tied to any particular version of Tcl and will still work after a Tcl
upgrade.

○

•

Complete API
Embed a Tcl interpreter into your favorite language.○

Python, Ruby, R, Java and others include a Tcl API.○

•

Embedded bigint library.
No special actions are needed to handle very large numerics.○

•

Safe interpreters
Create sandboxes in which user code can be run.○

Enable and disable specific commands for the interpreter.○

•

Regular Expressions
A powerful and fast regular expression engine written by Henry Spencer (creator of
regex).

○

•

Installing packages through teacup

Now days many languages are supporting archive server to install their packages into your local

https://riptutorial.com/ 7

https://en.wikipedia.org/wiki/Henry_Spencer

machine. TCL also having same archive server we called it as Teacup

teacup version
teacup search <packageName>

Example

teacup install Expect

Read Getting started with tcl online: https://riptutorial.com/tcl/topic/3029/getting-started-with-tcl

https://riptutorial.com/ 8

http://wiki.tcl.tk/17305
https://riptutorial.com/tcl/topic/3029/getting-started-with-tcl

Chapter 2: Control Structures

Syntax

if expr1 ?then? body1 elseif expr2 ?then? body2 ... ?else? ?bodyN?•
for start test next body•
while test body•
foreach varlist1 list1 ?varlist2 list2 ...? body•

Remarks

Documentation: break, for, foreach, if, switch, uplevel, while

Examples

Adding a new control structure to Tcl

In Tcl, a control structure is basically just another command. This is one possible implementation
of a do ... while / do ... until control structure.

proc do {body keyword expression} {
 uplevel 1 $body
 switch $keyword {
 while {uplevel 1 [list while $expression $body]}
 until {uplevel 1 [list while !($expression) $body]}
 default {
 return -code error "unknown keyword \"$keyword\": must be until or while"
 }
 }
}

Common for both kinds of do-loops is that the script named body will always be executed at least
once, so we do that right away. The invocation uplevel 1 $body means "execute script at the
caller's stack level". This way, all variables used by the script will be visible, and any results
produced will stay at the caller's level. The script then selects, based on the keyword parameter,
whether to iterate while a condition is true or until it is false, which is the same as iterating while
the logical negation of the condition is true. If an unexpected keyword is given, an error message
is produced.

if / while / for

if expr1 ?then? body1 elseif expr2 ?then? body2 ... ?else? ?bodyN?

exprN is an expression that evaluates to a boolean value. bodyN is a list of commands.

set i 5

https://riptutorial.com/ 9

http://www.tcl.tk/man/tcl/TclCmd/break.htm
http://www.tcl.tk/man/tcl/TclCmd/for.htm
http://www.tcl.tk/man/tcl/TclCmd/foreach.htm
http://www.tcl.tk/man/tcl/TclCmd/if.htm
http://www.tcl.tk/man/tcl/TclCmd/switch.htm
http://www.tcl.tk/man/tcl/TclCmd/uplevel.htm
http://www.tcl.tk/man/tcl/TclCmd/while.htm

if {$i < 10} {
 puts {hello world}
} elseif {$i < 70} {
 puts {enjoy world}
} else {
 puts {goodbye world}
}

for start test next body

start, next and body are lists of commands. test is an expression that evaluates to a boolean
values.

The break command will break out of the loop. The continue command will skip to the next
iteration of the loop.

The common usage is:

for {set i 0} {$i < 5} {incr i} {
 puts "$i: hello world"
}

Since start and next are lists of commands, any command may be present.

for {set i 0; set j 5} {$i < 5} {incr i; incr j -1} {
 puts "i:$i j:$j"
}

while test body

The test is any expression that evaluates to a boolean value. While test is true, body is executed.

set x 0
while {$x < 5} {
 puts "hello world"
 incr x
}

The break command will break out of the loop. The continue command will skip to the next
iteration of the loop.

set lineCount 0
while {[gets stdin line] >= 0} {
 puts "[incr lineCount]: $line"
 if { $line eq "exit" } {
 break
 }
}

List iteration: foreach

foreach varlist1 list1 ?varlist2 list2 ...? body

https://riptutorial.com/ 10

foreach is a powerful control structure that allows looping over a list or multiple lists.

set alpha [list a b c d e f]
foreach {key} $alpha {
 puts "key: $key"
}

Multiple variable names may be specified.

set alphaindexes [list a 1 b 2 c 3 d 4 e 5 f 6]
foreach {key num} $alphaindexes {
 puts "key:$key num:$num"
}

Multiple lists can be iterated over at the same time.

set alpha [list a b c d e f]
set indexes [list 1 2 3 4 5 6]
foreach {key} $alpha {idx} $indexes {
 puts "key: $key idx:$idx"
}

Read Control Structures online: https://riptutorial.com/tcl/topic/4723/control-structures

https://riptutorial.com/ 11

https://riptutorial.com/tcl/topic/4723/control-structures

Chapter 3: Dictionaries

Remarks

Dictionaries in Tcl are values that hold a mapping from arbitrary values to other arbitrary values.
They were introduced in Tcl 8.5, though there are limited versions for (the now unsupported) Tcl
8.4. Dictionaries are syntactically the same as lists with even numbers of elements; the first pair of
elements is the first key and value of the dictionary, the second pair is the second tuple.

Thus:

fox "quick brown" dogs "lazy"

is a valid dictionary. The same key can be multiple times, but it is exactly as if the latter's value
was in the earlier's value; these are the same dictionary:

abcd {1 2 3} defg {2 3 4} abcd {3 4 5}

abcd {3 4 5} defg {2 3 4}

Whitespace is unimportant, just as with lists.

An important concept with dictionaries is iteration order; dictionaries try to use the key insertion
order as their iteration order, though when you update the value for a key that already exists, you
overwrite that key's value. New keys go on the end.

References: dict

Examples

List-appending to a nested dictionary

If we have this dictionary:

set alpha {alice {items {}} bob {items {}} claudia {items {}} derek {items {}}}

And want to add "fork" and "peanut" to Alice's items, this code won't work:

dict lappend alpha alice items fork peanut
dict get $alpha alice
=> items {} items fork peanut

Because it would be impossible for the command to know where the key tokens end and the
values to be list-appended start, the command is limited to one key token.

https://riptutorial.com/ 12

http://tcl.tk/man/tcl/TclCmd/dict.htm

The correct way to append to the inner dictionary is this:

dict with alpha alice {
 lappend items fork peanut
}
dict get $alpha alice
=> items {fork peanut}

This works because the dict with command lets us traverse nested dictionaries, as many levels
as the number of key tokens we provide. It then creates variables with the same names as the
keys on that level (only one here: items). The variables are initialized to the value of the
corresponding item in the dictionary. If we change the value, that changed value is used to update
the value of the dictionary item when the script ends.

(Note that the variables continue to exist when the command has ended.)

Basic use of a dictionary

Creating a dictionary:

set mydict [dict create a 1 b 2 c 3 d 4]
dict get $mydict b ; # returns 2
set key c
set myval [dict get $mydict $key]
puts $myval
remove a value
dict unset mydict b
set a new value
dict set mydict e 5

Dictionary keys can be nested.

dict set mycars mustang color green
dict set mycars mustang horsepower 500
dict set mycars prius-c color orange
dict set mycars prius-c horsepower 99
set car [dict get $mycars mustang]
$car is: color green horsepower 500
dict for {car cardetails} $mycars {
 puts $car
 dict for {key value} $cardetails {
 puts " $key: $value"
 }
}

The dict get command can raise an error

set alpha {a 1 b 2 c 3}
dict get $alpha b
=> 2
dict get $alpha d
(ERROR) key "d" not known in dictionary

https://riptutorial.com/ 13

If dict get is used to retrieve the value of a missing key, an error is raised. To prevent the error,
use dict exists:

if {[dict exists $alpha $key]} {
 set result [dict get $alpha $key]
} else {
 # code to deal with missing key
}

How to deal with a missing key of course depends on the situation: one simple way is to set the
result to a default "empty" value.

If the code never attempts to retrieve other keys that are in the dictionary, dict get will of course
not fail. But for arbitrary keys, dict get is an operation that needs to be guarded. Preferably by
testing with dict exists, though exception catching will work too.

Iterating over a dictionary

You can iterate over the contents of a dictionary with dict for, which is similar to foreach:

set theDict {abcd {ab cd} bcde {ef gh} cdef {ij kl}}
dict for {theKey theValue} $theDict {
 puts "$theKey -> $theValue"
}

This produces this output:

abcd -> ab cd
bcde -> ef gh
cdef -> ij kl

You'd get the same output by using dict keys to list the keys and iterating over that:

foreach theKey [dict keys $theDict] {
 set theValue [dict get $theDict $theKey]
 puts "$theKey -> $theValue"
}

But dict for is more efficient.

Read Dictionaries online: https://riptutorial.com/tcl/topic/4065/dictionaries

https://riptutorial.com/ 14

https://riptutorial.com/tcl/topic/4065/dictionaries

Chapter 4: Expressions

Remarks

Another benefit from using braced expression strings is that the byte compiler usually can
generate more efficient code (5 - 10x faster) from them.

Examples

The problems with unbraced expressions

It is a good practice to provide expression string arguments as braced strings. The heading
"Double Substitution" outlines important reasons behind the same.

The expr command evaluates an operator-based expression string to calculate a value. This string
is constructed from the arguments in the invocation.

expr 1 + 2 ; # three arguments
expr "1 + 2" ; # one argument
expr {1 + 2} ; # one argument

These three invocations are equivalent and the expression string is the same.

The commands if, for, and while use the same evaluator code for their condition arguments:

if {$x > 0} ...
for ... {$x > 0}
while {$x > 0} ...

The main difference is that the condition expression string must always be a single argument.

As with every argument in a command invocation in Tcl, the contents may or may not be subjected
to substitution, depending on how they are quoted / escaped:

set a 1
set b 2
expr $a + $b ; # expression string is {1 + 2}
expr "$a + $b" ; # expression string is {1 + 2}
expr \$a + \$b ; # expression string is {$a + $b}
expr {$a + $b} ; # expression string is {$a + $b}

There is a difference in the third and fourth cases as the backslashes / braces prevent substitution.
The result is still the same, since the evaluator inside expr can itself perform Tcl variable
substitution and transform the string to {1 + 2}.

set a 1
set b "+ 2"

https://riptutorial.com/ 15

expr $a $b ; # expression string is {1 + 2}
expr "$a $b" ; # expression string is {1 + 2}
expr {$a $b} ; # expression string is {$a $b}: FAIL!

Here we get into trouble with the braced argument: when the evaluator in expr performs
substitutions, the expression string has already been parsed into operators and operands, so what
the evaluator sees is a string consisting of two operands with no operator between them. (The
error message is "missing operator at _@_ in expression "$a _@_$b"".)

In this case, variable substitution before expr was called prevented an error. Bracing the argument
prevented variable substitution until expression evaluation, which caused an error.

Situations like this can occur, most typically when an expression to evaluate is passed in as a
variable or parameter. In those cases there is no other choice than to leave the argument
unbraced to allow the argument evaluator to "unpack" the expression string for delivery to expr.

In most other cases, though, bracing the expression does no harm and indeed can avert a lot of
problems. Some examples of this:

Double substitution

set a {[exec make computer go boom]}
expr $a ; # expression string is {[exec make computer go boom]}
expr {$a} ; # expression string is {$a}

The unbraced form will perform the command substitution, which is a command that destroys the
computer somehow (or encrypts or formats the hard disk, or what have you). The braced form will
perform a variable substitution and then try (and fail) to make something of the string "[exec make
computer go boom]". Disaster averted.

Endless loops

set i 10
while "$i > 0" {puts [incr i -1]}

This problem affects both for and while. While it seems that this loop would count down to 0 and
exit, the condition argument to while is actually always 10>0 because that was what the argument
was evaluated to be when the while command was activated. When the argument is braced, it is
passed to the while command as $i>0, and the variable will be substituted once for every iteration.
Use this instead:

while {$i > 0} {puts [incr i -1]}

Total evaluation

set a 1
if "$a == 0 && [incr a]" {puts abc}

What is the value of a after running this code? Since the && operator only evaluates the right

https://riptutorial.com/ 16

operand if the left operand is true, the value should still be 1. But actually, it's 2. This is because
the argument evaluator has already performed all variable and command substitutions by the time
the expression string is evaluated. Use this instead:

if {$a == 0 && [incr a]} {puts abc}

Several operators (the logical connectives || and &&, and the conditional operator ?:) are defined
to not evaluate all their operands, but they can only work as designed if the expression string is
braced.

Multiplying a variable by 17

set myVariable [expr { $myVariable * 17 }]

This shows how you can use a simple expression to update a variable. The expr command does
not update the variable for you; you need to take its result and write it to the variable with set.

Note that newlines are not important in the little language understood by expr, and adding them
can make longer expressions much easier to read.

set myVariable [expr {
 $myVariable * 17
}]

This does exactly the same thing though.

Calling a Tcl command from an expression

Sometimes you need to call a Tcl command from your expression. For example, supposing you
need the length of a string in it. To do that, you just use a [...] sequence in the expression:

set halfTheStringLength [expr { [string length $theString] / 2 }]

You can call any Tcl command this way, but if you find yourself calling expr itself, stop! and think
whether you really need that extra call. You can usually do just fine by putting the inner expression
in parentheses.

Invalid bareword error

In Tcl itself, a string consisting of a single word does not need to be quoted. In the language of
expression strings that expr evaluates, all operands must have an identifiable type.

Numeric operands are written without any decoration:

expr {455682 / 1.96e4}

So are boolean constants:

https://riptutorial.com/ 17

expr {true && !false}

Tcl variable substitution syntax is recognized: the operand will be set to the variable's value:

expr {2 * $alpha}

The same goes for command substitution:

expr {[llength $alpha] > 0}

Operands can also be mathematical function calls, with a comma-separated list of operands within
parentheses:

expr {sin($alpha)}

An operand can be a double-quoted or braced string. A double-quoted string will be subject to
substitution just like in a command line.

expr {"abc" < {def}}

If an operand isn't one of the above, it is illegal. Since there is no hint that shows what kind of a
word it is, expr signals a bareword error.

Read Expressions online: https://riptutorial.com/tcl/topic/3052/expressions

https://riptutorial.com/ 18

https://riptutorial.com/tcl/topic/3052/expressions

Chapter 5: Pathnames and filenames

Syntax

file dirname filepath•
file tail filepath•
file rootname filepath•
file extension filepath•
file join path1 path2 ...•
file normalize path•
file nativename path•

Examples

Working with pathnames and filenames

% set mypath /home/tcluser/sources/tcl/myproject/test.tcl
/home/tcluser/sources/tcl/myproject/test.tcl
% set dir [file dirname $mypath]
/home/tcluser/sources/tcl/myproject
% set filename [file tail $mypath]
test.tcl
% set basefilename [file rootname $filename]
test
% set extension [file extension $filename]
.tcl
% set newpath [file join $dir otherproject]
/home/tcluser/sources/tcl/myproject/../../otherproject
% set newpath [file normalize $newpath]
/home/tcluser/source/otherproject
% set pathdisp [file nativename $newpath] ; # not on windows...
/home/tcluser/source/otherproject
% set pathdisp [file nativename C:$newpath] ; # on windows...
C:\home\tcluser\source\otherproject
% set normpath [file normalize $pathdisp]
C:/home/tcluser/source/otherproject

Documentation: file

Read Pathnames and filenames online: https://riptutorial.com/tcl/topic/5566/pathnames-and-
filenames

https://riptutorial.com/ 19

http://tcl.tk/man/tcl/TclCmd/file.htm
https://riptutorial.com/tcl/topic/5566/pathnames-and-filenames
https://riptutorial.com/tcl/topic/5566/pathnames-and-filenames

Chapter 6: Procedure arguments

Remarks

References: proc
Argument Expansion (section 5)

Examples

A procedure that does not accept arguments

proc myproc {} {
 puts "hi"
}
myproc
=> hi

An empty argument list (the second argument after the procedure name, "myproc") means that the
procedure will not accept arguments.

A procedure that accepts two arguments

proc myproc {alpha beta} {
 ...
 set foo $alpha
 set beta $bar ;# note: possibly useless invocation
}

myproc 12 34 ;# alpha will be 12, beta will be 34

If the argument list consists of words, those will be the names of local variables in the procedure,
and their initial values will be equal to the argument values on the command line. The arguments
are passed by value and whatever happens to the variable values inside the procedure will not
influence the state of data outside the procedure.

A procedure that accepts a variable number of arguments

Definition
proc myproc {alpha {beta {}} {gamma green}} {
 puts [list $alpha $beta $gamma]
}

Use
myproc A
=> A {} green
myproc A B
=> A B green
myproc A B C

https://riptutorial.com/ 20

http://tcl.tk/man/tcl/TclCmd/proc.htm
http://tcl.tk/man/tcl8.6/TclCmd/Tcl.htm

=> A B C

This procedure accepts one, two, or three arguments: those parameters whose names are the first
item in a two-item list are optional. The parameter variables (alpha, beta, gamma) get as many
argument values as are available, assigned from left to right. Parameter variables that don't get
any argument values instead get their values from the second item in the list they were a part of.

Note that optional arguments must come at the end of the argument list. If argumentN-1 is optional,
argumentN must be optional too. If in a case, where user have argumentN but not argumentN-1,
default value of argumentN-1 needs to be explicitly mentioned before argumentN, while calling the
procedure.

myproc A B C D
(ERROR) wrong # args: should be "myproc alpha ?beta? ?gamma?"

The procedure does not accept more than three arguments: note that a helpful error message
describing the argument syntax is automatically created.

A procedure that accepts any number of arguments

proc myproc args { ... }
proc myproc {args} { ... } ;# equivalent

If the special parameter name args is the last item in the argument list, it receives a list of all
arguments at that point in the command line. If there are none, the list is empty.

There can be arguments, including optional ones, before args:

proc myproc {alpha {beta {}} args} { ... }

This procedure will accept one or more arguments. The first two, if present, will be consumed by
alpha and beta: the list of the rest of the arguments will be assigned to args.

A procedure that accepts a name/reference to a variable

proc myproc {varName alpha beta} {
 upvar 1 $varName var
 set var [expr {$var * $alpha + $beta}]
}
set foo 1
myproc foo 10 5
puts $foo
=> 15

In this particular case, the procedure is given the name of a variable in the current scope. Inside a
Tcl procedure, such variables aren't automatically visible, but the upvar command can create an
alias for a variable from another stack level: 1 means the caller's stack level, #0 means the global
level, etc. In this case, the stack level 1 and the name foo (from the parameter variable varName)
lets upvar find that variable and create an alias called var. Every read or write operation on var also

https://riptutorial.com/ 21

happens to foo in the caller's stack level.

The {*} syntax

Sometimes what you have is a list, but the command you want to pass the items in the list to
demands to get each item as a separate argument. For instance: the winfo children command
returns a list of windows, but the destroy command will only take a sequence of window name
arguments.

set alpha [winfo children .]
=> .a .b .c
destroy $alpha
(no response, no windows are destroyed)

The solution is to use the {*} syntax:

destroy {*}[winfo children .]

or

destroy {*}$alpha

What the {*} syntax does is to take the following value (no whitespace in between!) and splice the
items in that value into the command line as if they were individual arguments.

If the following value is an empty list, nothing is spliced in:

puts [list a b {*}{} c d]
=> a b c d

If there are one or more items, they are inserted:

puts [list a b {*}{1 2 3} c d]
=> a b 1 2 3 c d

Read Procedure arguments online: https://riptutorial.com/tcl/topic/3365/procedure-arguments

https://riptutorial.com/ 22

https://riptutorial.com/tcl/topic/3365/procedure-arguments

Chapter 7: Regular Expressions

Syntax

regexp ?switches? exp string ?matchVar? ?subMatchVar subMatchVar ...?•
regsub ?switches? exp string subSpec ?varName?•

Remarks

This topic is not intended to discuss regular expressions themselves. There are many resources
on the internet explaining regular expressions and tools to help build regular expressions.

This topic will try to cover the common switches and methods of using regular expressions in Tcl
and some of the differences between Tcl and other regular expression engines.

Regular expressions are generally slow. The first question you should ask is "Do I really need a
regular expression?". Only match what you want. If you don't need the other data, don't match it.

For the purposes of these regular expression examples, the -expanded switch will be used in
order to be able to comment and explain the regular expression.

Examples

Matching

The regexp command is used to match a regular expression against a string.

This is a very simplistic e-mail matcher.
e-mail addresses are extremely complicated to match properly.
there is no guarantee that this regex will properly match e-mail addresses.
set mydata "send mail to john.doe.the.23rd@no.such.domain.com please"
regexp -expanded {
 \y # word boundary
 [^@\s]+ # characters that are not an @ or a space character
 @ # a single @ sign
 [\w.-]+ # normal characters and dots and dash
 \. # a dot character
 \w+ # normal characters.
 \y # word boundary
 } $mydata emailaddr
puts $emailaddr
john.doe.the.23rd@no.such.domain.com

The regexp command will return a 1 (true) value if a match was made or 0 (false) if not.

set mydata "hello wrld, this is Tcl"
faster would be to use: [string match *world* $mydata]
if { [regexp {world} $mydata] } {
 puts "spelling correct"

https://riptutorial.com/ 23

} else {
 puts "typographical error"
}

To match all expressions in some data, use the -all switch and the -inline switch to return the data.
Note that the default is to treat newlines like any other data.

simplistic english ordinal word matcher.
set mydata {
 This is the first line.
 This is the second line.
 This is the third line.
 This is the fourth line.
 }
set mymatches [regexp -all -inline -expanded {
 \y # word boundary
 \w+ # standard characters
 (?:st|nd|rd|th) # ending in st, nd, rd or th
 # The ?: operator is used here as we don't
 # want to return the match specified inside
 # the grouping () operator.
 \y # word boundary
 } $mydata]
puts $mymatches
first second third fourth
if the ?: operator was not used, the data returned would be:
first st second nd third rd fourth th

Newline handling

find real numbers at the end of a line (fake data).
set mydata {
 White 0.87 percent saturation.
 Specular reflection: 0.995
 Blue 0.56 percent saturation.
 Specular reflection: 0.421
 }
the -line switch will enable newline matching.
without -line, the $ would match the end of the data.
set mymatches [regexp -line -all -inline -expanded {
 \y # word boundary
 \d\.\d+ # a real number
 $ # at the end of a line.
 } $mydata]
puts $mymatches
0.995 0.421

Unicode requires no special handling.

% set mydata {123ÂÃÄÈ456}
123ÂÃÄÈ456
% regexp {[[:alpha:]]+} $mydata match
1
% puts $match
ÂÃÄÈ
% regexp {\w+} $mydata match
1

https://riptutorial.com/ 24

% puts $match
123ÂÃÄÈ456

Documentation: regexp re_syntax

Mixing Greedy and Non-Greedy Quantifiers

If you have a greedy match as the first quantifier, the whole RE will be greedy,

If you have non-greedy match as the first quantifier, the whole RE will be non-greedy.

set mydata {
 Device widget1: port: 156 alias: input2
 Device widget2: alias: input1
 Device widget3: port: 238 alias: processor2
 Device widget4: alias: output2
 }
regexp {Device\s(\w+):\s(.*?)alias} $mydata alldata devname devdata
puts "$devname $devdata"
widget1 port: 156 alias: input2
regexp {Device\s(.*?):\s(.*?)alias} $mydata alldata devname devdata
puts "$devname $devdata"
widget1 port: 156

In the first case, the first \w+ is greedy, so all quantifiers are marked as greedy and the .*?
matches more than is expected.

In the second case, the first .*? is non-greedy and all quantifiers are marked as non-greedy.

Other regular expression engines may not have an issue with greedy/non-greedy quantifiers, but
they are much slower.

Henry Spencer wrote: ... The trouble is that it is very, very hard to write a generalization of those
statements which covers mixed-greediness regular expressions -- a proper, implementation-
independent definition of what mixed-greediness regular expressions should match -- and makes
them do "what people expect". I've tried. I'm still trying. No luck so far. ...

Substitution

The regsub command is used for regular expression matching and substitution.

set mydata {The yellow dog has the blues.}
create a new string; only the first match is replaced.
set newdata [regsub {(yellow|blue)} $mydata green]
puts $newdata
The green dog has the blues.
replace the data in the same string; all matches are replaced
regsub -all {(yellow|blue)} $mydata red mydata
puts $mydata
The red dog has the reds.
another way to create a new string
regsub {(yellow|blue)} $mydata red mynewdata
puts $mynewdata

https://riptutorial.com/ 25

http://tcl.tk/man/tcl/TclCmd/regexp.htm
http://tcl.tk/man/tcl/TclCmd/re_syntax.htm
https://groups.google.com/d/msg/comp.lang.tcl/FddeFPbTFw8/UA3RwHwxk8QJ

The red dog has the blues.

Using back-references to reference matched data.

set mydata {The yellow dog has the blues.}
regsub {(yellow)} $mydata {"\1"} mydata
puts $mydata
The "yellow" dog has the blues.

Documentation: regsub re_syntax

Differences Between Tcl's RE engine and other RE engines.

\m : Beginning of a word.•
\M : End of a word.•
\y : Word boundary.•
\Y : a point that is not a word boundary.•
\Z : matches end of data.•

Documentation: re_syntax

Matching a literal string with a regular expression

Sometimes you need to match a literal (sub-)string with a regular expression despite that substring
containing RE metacharacters. While yes, it's possible to write code to insert appropriate
backslashes to make that work (using string map) it is easiest to just prefix the pattern with ***=,
which makes the RE engine treat the rest of the string as just literal characters, disabling all further
metacharacters.

set sampleText "This is some text with \[brackets\] in it."
set searchFor {[brackets]}

if {[regexp ***=$searchFor $sampleText]} {
 # This message will be printed
 puts "Found it!"
}

Note that this also means you can't use any of the anchors.

Read Regular Expressions online: https://riptutorial.com/tcl/topic/5205/regular-expressions

https://riptutorial.com/ 26

http://tcl.tk/man/tcl/TclCmd/regsub.htm
http://tcl.tk/man/tcl/TclCmd/re_syntax.htm
http://tcl.tk/man/tcl/TclCmd/re_syntax.htm
https://riptutorial.com/tcl/topic/5205/regular-expressions

Chapter 8: Tcl Language Constructs

Syntax

This is a valid comment•
This is a valid { comment }•

Examples

Placing Comments

Comments in Tcl are best thought of as another command.
A comment consists of a # followed by any number of characters up to the next newline. A
comment can appear wherever a command can be placed.

this is a valid comment
proc hello { } {
 # the next comment needs the ; before it to indicate a new command is
 # being started.
 puts "hello world" ; # this is valid
 puts "dlrow olleh" # this is not a valid comment

 # the comment below appears in the middle of a string.
 # is is not valid.
 set hw {
 hello ; # this is not a valid comment
 world
 }

 gets stdin inputfromuser
 switch inputfromuser {
 # this is not a valid comment.
 # switch expects a word to be here.
 go {
 # this is valid. The switch on 'go' contains a list of commands
 hello
 }
 stop {
 exit
 }
 }
}

Braces in comments

Due to the way the Tcl language parser works, braces in the code must be properly matched. This
includes the braces in comments.

proc hw {} {
 # this { code will fail
 puts {hello world}

https://riptutorial.com/ 27

}

A missing close-brace: possible unbalanced brace in comment error will be thrown.

proc hw {} {
 # this { comment } has matching braces.
 puts {hello world}
}

This will work as the braces are paired up properly.

Quoting

In the Tcl language in many cases, no special quoting is needed.

These are valid strings:

abc123
4.56e10
my^variable-for.my%use

The Tcl language splits words on whitespace, so any literals or strings with whitespace should be
quoted. There are two ways to quote strings. With braces and with quotation marks.

{hello world}
"hello world"

When quoting with braces, no substitutions are performed. Embedded braces may be escaped
with a backslash, but note that the backslash is part of the string.

% puts {\{ \}}
\{ \}
% puts [string length {\{ \}}]
5
% puts {hello [world]}
hello [world]
% set alpha abc123
abc123
% puts {$alpha}
$alpha

When quoting with double quotes, command, backslash and variable substitutions are processed.

% puts "hello [world]"
invalid command name "world"
% proc world {} { return my-world }
% puts "hello [world]"
hello my-world
% puts "hello\tworld"
hello world
% set alpha abc123
abc123

https://riptutorial.com/ 28

% puts "$alpha"
abc123
% puts "\{ \}"
{ }

Read Tcl Language Constructs online: https://riptutorial.com/tcl/topic/4470/tcl-language-constructs

https://riptutorial.com/ 29

https://riptutorial.com/tcl/topic/4470/tcl-language-constructs

Chapter 9: Variables

Syntax

set varName ?value?•
unset ?-nocomplain? ?--? ?varName varName varName?•
puts $varName•
puts [set varName]•
variable varName•
global varName ?varName varName?•

Remarks

Parameters enclosed within ?...? such as ?varName? represent optional arguments to a Tcl
command.

•

Documentation: global, upvar•

Examples

Assigning values to variables

The command set is used to assign values in Tcl. When it is called with two arguments in the
following manner,

% set tempVar "This is a string."
This is a string.

it places the second argument ("This is a string.") in the memory space referenced by the first
argument (tempVar). set always returns the contents of the variable named in the first argument.
In the above example, set would return "This is a string." without the quotes.

If value is specified, then the contents of the variable varName are set equal to value.•
If varName consists only of alphanumeric characters, and no parentheses, it is a scalar
variable.

•

If varName has the form varName(index), it is a member of an associative array.•

Note that the name of the variable is not restricted to the Latin alphabet, it may consist of any
combination of unicode characters (e.g. Armenian):

% set տուն house
house
% puts ${տուն}
house

Scoping

https://riptutorial.com/ 30

http://www.tcl.tk/man/tcl/TclCmd/global.htm
http://www.tcl.tk/man/tcl/TclCmd/upvar.htm

set alpha 1

proc myproc {} {
 puts $alpha
}

myproc

This code doesn't work because the two alphas are in different scopes.

The command set alpha 1 creates a variable in the global scope (which makes it a global
variable).

The command puts $alpha is executed in a scope that is created when the command myproc
executes.

The two scopes are distinct. This means that when puts $alpha tries to look up the name alpha, it
doesn't find any such variable.

We can fix that, however:

proc myproc {} {
 global alpha beta
 puts $alpha
}

In this case two global variables, alpha and beta, are linked to alias variables (with the same name)
in the procedure's scope. Reading from the alias variables retrieves the value in the global
variables, and writing to them changes the values in the globals.

More generally, the upvar command creates aliases to variables from any of the previous scopes.
It can be used with the global scope (#0):

proc myproc {} {
 upvar #0 alpha alpha beta b
 puts $alpha
}

The aliases can be given the same name as the variable that is linked to(alpha) or another name (
beta / b).

If we call myproc from the global scope, this variant also works:

proc myproc {} {
 upvar 1 alpha alpha beta b
 puts $alpha
}

The scope number 1 means "the previous scope" or "the caller's scope".

Unless you really know what you're doing, #0, 0, and 1 are the only scopes that make sense to use
with upvar. (upvar 0 creates a local alias for a local variable, not strictly a scoping operation.)

https://riptutorial.com/ 31

Some other languages define scope by curly braces, and let code running in each scope see all
names in surrounding scopes. In Tcl one single scope is created when a procedure is called, and
only its own names are visible. If a procedure calls another procedure, its scope is stacked on top
of the previous scope, and so on. This means that in contrast with C-style languages that only
have global scope and local scope (with subscopes), each scope acts as an enclosing (though not
immediately visible) scope to any scope it has opened. When a procedure returns, its scope is
destroyed.

Documentation: global, upvar

Printing the value of a variable

In order to print the value of a variable such as,

set tempVar "This is a string."

The argument in the puts statement is preceded by a $ sign, which tells Tcl to use the value of the
variable.

% set tempVar "This is a string."
This is a string.
% puts $tempVar
This is a string.

Invoking set with one argument

set can also be invoked with just one argument. When called with just one argument, it returns the
contents of that argument.

% set x 235
235
% set x
235

Deleting variable/s

The unset command is used to remove one or more variables.

unset ?-nocomplain? ?--? ?name name name name?

Each name is a variable name specified in any of the ways acceptable to the set command.•
If a name refers to an element of an array then that element is removed without affecting the
remainder of the array.

•

If a name consists of an array name with no index in parentheses, then the entire array is
deleted.

•

If -nocomplain is given as the first argument, then all possible errors are suppressed from
the command's output.

•

The option -- indicates the end of the options, and should be used if you wish to remove a •

https://riptutorial.com/ 32

http://www.tcl.tk/man/tcl/TclCmd/global.htm
http://www.tcl.tk/man/tcl/TclCmd/upvar.htm

variable with the same name as any of the options.

% set x 235
235
% set x
235
% unset x
% set x
can't read "x": no such variable

Namespace variables

The variable command ensures that a given namespace variable is created. Until a value is
assigned to it, the variable's value is undefined:

namespace eval mynamespace {
 variable alpha
 set alpha 0
}

The variable can be accessed from outside the namespace (from anywhere, in fact) by attaching
the name of the namespace to it:

set ::mynamespace::alpha

Access can be simplified within a procedure by using the variable command again:

proc ::mynamespace::myproc {} {
 variable alpha
 set alpha
}

This creates a local alias for the namespace variable.

For a procedure defined in another namespace, the variable name must contain the namespace in
the invocation of variable:

proc myproc {} {
 variable ::mynamespace::alpha
 set alpha
}

Read Variables online: https://riptutorial.com/tcl/topic/3740/variables

https://riptutorial.com/ 33

https://riptutorial.com/tcl/topic/3740/variables

Credits

S.
No

Chapters Contributors

1
Getting started with
tcl

Brad Lanam, Community, Donal Fellows, klas2iop,
Mallikarjunarao Kosuri, Peter Lewerin, stark, vasili111

2 Control Structures
Brad Lanam, Codename_DJ, Donal Fellows, Peter Lewerin,
stark

3 Dictionaries Brad Lanam, Donal Fellows, Peter Lewerin

4 Expressions Donal Fellows, nurdglaw, Peter Lewerin, stark

5
Pathnames and
filenames

Brad Lanam

6
Procedure
arguments

Brad Lanam, Codename_DJ, Donal Fellows, klas2iop, Peter
Lewerin

7 Regular Expressions Brad Lanam, Donal Fellows

8
Tcl Language
Constructs

Brad Lanam, stark

9 Variables klas2iop, Peter Lewerin, stark

https://riptutorial.com/ 34

https://riptutorial.com/contributor/1930666/brad-lanam
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/301832/donal-fellows
https://riptutorial.com/contributor/2372730/klas2iop
https://riptutorial.com/contributor/358458/mallikarjunarao-kosuri
https://riptutorial.com/contributor/488796/peter-lewerin
https://riptutorial.com/contributor/1507325/stark
https://riptutorial.com/contributor/1601703/vasili111
https://riptutorial.com/contributor/1930666/brad-lanam
https://riptutorial.com/contributor/2425261/codename-dj
https://riptutorial.com/contributor/301832/donal-fellows
https://riptutorial.com/contributor/488796/peter-lewerin
https://riptutorial.com/contributor/1507325/stark
https://riptutorial.com/contributor/1930666/brad-lanam
https://riptutorial.com/contributor/301832/donal-fellows
https://riptutorial.com/contributor/488796/peter-lewerin
https://riptutorial.com/contributor/301832/donal-fellows
https://riptutorial.com/contributor/2303274/nurdglaw
https://riptutorial.com/contributor/488796/peter-lewerin
https://riptutorial.com/contributor/1507325/stark
https://riptutorial.com/contributor/1930666/brad-lanam
https://riptutorial.com/contributor/1930666/brad-lanam
https://riptutorial.com/contributor/2425261/codename-dj
https://riptutorial.com/contributor/301832/donal-fellows
https://riptutorial.com/contributor/2372730/klas2iop
https://riptutorial.com/contributor/488796/peter-lewerin
https://riptutorial.com/contributor/488796/peter-lewerin
https://riptutorial.com/contributor/1930666/brad-lanam
https://riptutorial.com/contributor/301832/donal-fellows
https://riptutorial.com/contributor/1930666/brad-lanam
https://riptutorial.com/contributor/1507325/stark
https://riptutorial.com/contributor/2372730/klas2iop
https://riptutorial.com/contributor/488796/peter-lewerin
https://riptutorial.com/contributor/1507325/stark

	About
	Chapter 1: Getting started with tcl
	Remarks
	Versions
	Examples
	Installation
	The Hello, world program in Tcl (and Tk)
	Features of Tcl
	Installing packages through teacup

	Chapter 2: Control Structures
	Syntax
	Remarks
	Examples
	Adding a new control structure to Tcl
	if / while / for
	List iteration: foreach

	Chapter 3: Dictionaries
	Remarks
	Examples
	List-appending to a nested dictionary
	Basic use of a dictionary
	The dict get command can raise an error
	Iterating over a dictionary

	Chapter 4: Expressions
	Remarks
	Examples
	The problems with unbraced expressions
	Multiplying a variable by 17
	Calling a Tcl command from an expression
	Invalid bareword error

	Chapter 5: Pathnames and filenames
	Syntax
	Examples
	Working with pathnames and filenames

	Chapter 6: Procedure arguments
	Remarks
	Examples
	A procedure that does not accept arguments
	A procedure that accepts two arguments
	A procedure that accepts a variable number of arguments
	A procedure that accepts any number of arguments
	A procedure that accepts a name/reference to a variable
	The {*} syntax

	Chapter 7: Regular Expressions
	Syntax
	Remarks
	Examples
	Matching
	Mixing Greedy and Non-Greedy Quantifiers
	Substitution
	Differences Between Tcl's RE engine and other RE engines.
	Matching a literal string with a regular expression

	Chapter 8: Tcl Language Constructs
	Syntax
	Examples
	Placing Comments
	Braces in comments
	Quoting

	Chapter 9: Variables
	Syntax
	Remarks
	Examples
	Assigning values to variables
	Scoping
	Printing the value of a variable
	Invoking set with one argument
	Deleting variable/s
	Namespace variables

	Credits

