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About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version 
from: tensorflow

It is an unofficial and free tensorflow ebook created for educational purposes. All the content is 
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at 
Stack Overflow. It is neither affiliated with Stack Overflow nor official tensorflow.

The content is released under Creative Commons BY-SA, and the list of contributors to each 
chapter are provided in the credits section at the end of this book. Images may be copyright of 
their respective owners unless otherwise specified. All trademarks and registered trademarks are 
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor 
accurate, please send your feedback and corrections to info@zzzprojects.com
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Chapter 1: Getting started with tensorflow

Remarks

This section provides an overview of what tensorflow is, and why a developer might want to use it.

It should also mention any large subjects within tensorflow, and link out to the related topics. Since 
the Documentation for tensorflow is new, you may need to create initial versions of those related 
topics.

Examples

Installation or Setup

As of Tensorflow version 1.0 installation has become much easier to perform. At minimum to 
install TensorFlow one needs pip installed on their machine with a python version of at least 2.7 or 
3.3+.

pip install --upgrade tensorflow      # for Python 2.7 
pip3 install --upgrade tensorflow     # for Python 3.n

For tensorflow on a GPU machine (as of 1.0 requires CUDA 8.0 and cudnn 5.1, AMD GPU not 
supported)

pip install --upgrade tensorflow-gpu  # for Python 2.7 and GPU 
pip3 install --upgrade tensorflow-gpu # for Python 3.n and GPU

To test if it worked open up the correct version of python 2 or 3 and run

import tensorflow

If that succeeded without error then you have tensorflow installed on your machine.

 

*Be aware this references the master branch one can change this on the link above to reference 
the current stable release.)

Basic Example

Tensorflow is more than just a deep learning framework. It is a general computation framework to 
perform general mathematical operations in a parallel and distributed manner. An example of such 
is described below.
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Linear Regression

A basic statistical example that is commonly utilized and is rather simple to compute is fitting a line 
to a dataset. The method to do so in tensorflow is described below in code and comments.

The main steps of the (TensorFlow) script are:

Declare placeholders (x_ph, y_ph) and variables (W, b)1. 
Define the initialization operator (init)2. 
Declare operations on the placeholders and variables (y_pred, loss, train_op)3. 
Create a session (sess)4. 
Run the initialization operator (sess.run(init))5. 
Run some graph operations (e.g. sess.run([train_op, loss], feed_dict={x_ph: x, y_ph: y}))6. 

The graph construction is done using the Python TensorFlow API (could also be done using the 
C++ TensorFlow API). Running the graph will call low-level C++ routines.

''' 
function: create a linear model which try to fit the line 
          y = x + 2 using SGD optimizer to minimize 
          root-mean-square(RMS) loss function 
 
''' 
import tensorflow as tf 
import numpy as np 
 
# number of epoch 
num_epoch = 100 
 
# training data x and label y 
x = np.array([0., 1., 2., 3.], dtype=np.float32) 
y = np.array([2., 3., 4., 5.], dtype=np.float32) 
 
# convert x and y to 4x1 matrix 
x = np.reshape(x, [4, 1]) 
y = np.reshape(y, [4, 1]) 
 
# test set(using a little trick) 
x_test = x + 0.5 
y_test = y + 0.5 
 
# This part of the script builds the TensorFlow graph using the Python API 
 
# First declare placeholders for input x and label y 
# Placeholders are TensorFlow variables requiring to be explicitly fed by some 
# input data 
x_ph = tf.placeholder(tf.float32, shape=[None, 1]) 
y_ph = tf.placeholder(tf.float32, shape=[None, 1]) 
 
# Variables (if not specified) will be learnt as the GradientDescentOptimizer 
# is run 
# Declare weight variable initialized using a truncated_normal law 
W = tf.Variable(tf.truncated_normal([1, 1], stddev=0.1)) 
# Declare bias variable initialized to a constant 0.1 
b = tf.Variable(tf.constant(0.1, shape=[1])) 
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# Initialize variables just declared 
init = tf.initialize_all_variables() 
 
# In this part of the script, we build operators storing operations 
# on the previous variables and placeholders. 
# model: y = w * x + b 
y_pred = x_ph * W + b 
 
# loss function 
loss = tf.mul(tf.reduce_mean(tf.square(tf.sub(y_pred, y_ph))), 1. / 2) 
# create training graph 
train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss) 
 
# This part of the script runs the TensorFlow graph (variables and operations 
# operators) just built. 
with tf.Session() as sess: 
    # initialize all the variables by running the initializer operator 
    sess.run(init) 
    for epoch in xrange(num_epoch): 
        # Run sequentially the train_op and loss operators with 
        # x_ph and y_ph placeholders fed by variables x and y 
        _, loss_val = sess.run([train_op, loss], feed_dict={x_ph: x, y_ph: y}) 
        print('epoch %d: loss is %.4f' % (epoch, loss_val)) 
 
    # see what model do in the test set 
    # by evaluating the y_pred operator using the x_test data 
    test_val = sess.run(y_pred, feed_dict={x_ph: x_test}) 
    print('ground truth y is: %s' % y_test.flatten()) 
    print('predict y is     : %s' % test_val.flatten())

Tensorflow Basics

Tensorflow works on principle of dataflow graphs. To perform some computation there are two 
steps:

Represent the computation as a graph.1. 
Execute the graph.2. 

Representation: Like any directed graph a Tensorflow graph consists of nodes and directional 
edges.

Node: A Node is also called an Op(stands for operation). An node can have multiple incoming 
edges but single outgoing edge.

Edge: Indicate incoming or outgoing data from a Node. In this case input(s) and output of some 
Node(Op).

Whenever we say data we mean an n-dimensional vector known as Tensor. A Tensor has three 
properties: Rank, Shape and Type

Rank means number of dimensions of the Tensor(a cube or box has rank 3).•
Shape means values of those dimensions(box can have shape 1x1x1 or 2x5x7).•
Type means datatype in each coordinate of Tensor.•
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Execution: Even though a graph is constructed it is still an abstract entity. No computation 
actually occurs until we run it. To run a graph, we need to allocate CPU resource to Ops inside the 
graph. This is done using Tensorflow Sessions. Steps are:

Create a new session.1. 
Run any Op inside the Graph. Usually we run the final Op where we expect the output of our 
computation.

2. 

An incoming edge on an Op is like a dependency for data on another Op. Thus when we run any 
Op, all incoming edges on it are traced and the ops on other side are also run.

Note: Special nodes called playing role of data source or sink are also possible. For example you 
can have an Op which gives a constant value thus no incoming edges(refer value 'matrix1' in the 
example below) and similarly Op with no outgoing edges where results are collected(refer value 
'product' in the example below).

Example:

import tensorflow as tf 
 
# Create a Constant op that produces a 1x2 matrix.  The op is 
# added as a node to the default graph. 
# 
# The value returned by the constructor represents the output 
# of the Constant op. 
matrix1 = tf.constant([[3., 3.]]) 
 
# Create another Constant that produces a 2x1 matrix. 
matrix2 = tf.constant([[2.],[2.]]) 
 
# Create a Matmul op that takes 'matrix1' and 'matrix2' as inputs. 
# The returned value, 'product', represents the result of the matrix 
# multiplication. 
product = tf.matmul(matrix1, matrix2) 
 
# Launch the default graph. 
sess = tf.Session() 
 
# To run the matmul op we call the session 'run()' method, passing 'product' 
# which represents the output of the matmul op.  This indicates to the call 
# that we want to get the output of the matmul op back. 
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# 
# All inputs needed by the op are run automatically by the session.  They 
# typically are run in parallel. 
# 
# The call 'run(product)' thus causes the execution of three ops in the 
# graph: the two constants and matmul. 
# 
# The output of the op is returned in 'result' as a numpy `ndarray` object. 
result = sess.run(product) 
print(result) 
# ==> [[ 12.]] 
 
# Close the Session when we're done. 
sess.close()

Counting to 10

In this example we use Tensorflow to count to 10. Yes this is total overkill, but it is a nice example 
to show an absolute minimal setup needed to use Tensorflow

import tensorflow as tf 
 
# create a variable, refer to it as 'state' and set it to 0 
state = tf.Variable(0) 
 
# set one to a constant set to 1 
one = tf.constant(1) 
 
# update phase adds state and one and then assigns to state 
addition = tf.add(state, one) 
update = tf.assign(state, addition ) 
 
# create a session 
with tf.Session() as sess: 
  # initialize session variables 
  sess.run( tf.global_variables_initializer() ) 
 
  print "The starting state is",sess.run(state) 
 
  print "Run the update 10 times..." 
  for count in range(10): 
    # execute the update 
    sess.run(update) 
 
  print "The end state is",sess.run(state)

The important thing to realize here is that state, one, addition, and update don't actually contain 
values. Instead they are references to Tensorflow objects. The final result is not state, but instead 
is retrieved by using a Tensorflow to evaluate it using sess.run(state)

This example is from https://github.com/panchishin/learn-to-tensorflow . There are several other 
examples there and a nice graduated learning plan to get acquainted with manipulating the 
Tensorflow graph in python.

Read Getting started with tensorflow online: https://riptutorial.com/tensorflow/topic/856/getting-
started-with-tensorflow
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Chapter 2: Creating a custom operation with 
tf.py_func (CPU only)

Parameters

Parameter Details

func
python function, which takes numpy arrays as its inputs and returns numpy 
arrays as its outputs

inp list of Tensors (inputs)

Tout list of tensorflow data types for the outputs of func

Examples

Basic example

The tf.py_func(func, inp, Tout) operator creates a TensorFlow operation that calls a Python 
function, func on a list of tensors inp.

See the documentation for tf.py_func(func, inp, Tout).

Warning: The tf.py_func() operation will only run on CPU. If you are using distributed 
TensorFlow, the tf.py_func() operation must be placed on a CPU device in the same process as 
the client.

def func(x): 
    return 2*x 
 
x = tf.constant(1.) 
res = tf.py_func(func, [x], [tf.float32]) 
# res is a list of length 1

Why to use tf.py_func

The tf.py_func() operator enables you to run arbitrary Python code in the middle of a TensorFlow 
graph. It is particularly convenient for wrapping custom NumPy operators for which no equivalent 
TensorFlow operator (yet) exists. Adding tf.py_func() is an alternative to using sess.run() calls 
inside the graph.

Another way of doing that is to cut the graph in two parts:

# Part 1 of the graph 
inputs = ...  # in the TF graph 
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# Get the numpy array and apply func 
val = sess.run(inputs)  # get the value of inputs 
output_val = func(val)  # numpy array 
 
# Part 2 of the graph 
output = tf.placeholder(tf.float32, shape=...) 
train_op = ... 
 
# We feed the output_val to the tensor output 
sess.run(train_op, feed_dict={output: output_val})

With tf.py_func this is much easier:

# Part 1 of the graph 
inputs = ... 
 
# call to tf.py_func 
output = tf.py_func(func, [inputs], [tf.float32])[0] 
 
# Part 2 of the graph 
train_op = ... 
 
# Only one call to sess.run, no need of a intermediate placeholder 
sess.run(train_op)

Read Creating a custom operation with tf.py_func (CPU only) online: 
https://riptutorial.com/tensorflow/topic/3856/creating-a-custom-operation-with-tf-py-func--cpu-only-
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Chapter 3: Creating RNN, LSTM and 
bidirectional RNN/LSTMs with TensorFlow

Examples

Creating a bidirectional LSTM

import tensorflow as tf 
 
dims, layers = 32, 2 
# Creating the forward and backwards cells 
lstm_fw_cell = tf.nn.rnn_cell.BasicLSTMCell(dims, forget_bias=1.0) 
lstm_bw_cell = tf.nn.rnn_cell.BasicLSTMCell(dims, forget_bias=1.0) 
# Pass lstm_fw_cell / lstm_bw_cell directly to tf.nn.bidrectional_rnn 
# if only a single layer is needed 
lstm_fw_multicell = tf.nn.rnn_cell.MultiRNNCell([lstm_fw_cell]*layers) 
lstm_bw_multicell = tf.nn.rnn_cell.MultiRNNCell([lstm_bw_cell]*layers) 
 
# tf.nn.bidirectional_rnn takes a list of tensors with shape 
# [batch_size x cell_fw.state_size], so separate the input into discrete 
# timesteps. 
_X = tf.unpack(state_below, axis=1) 
# state_fw and state_bw are the final states of the forwards/backwards LSTM, respectively 
outputs, state_fw, state_bw = tf.nn.bidirectional_rnn(lstm_fw_multicell, lstm_bw_multicell, 
_X, dtype='float32')

Parameters

state_below is a 3D tensor of with the following dimensions: [batch_size, maximum sequence 
index, dims]. This comes from a previous operation, such as looking up a word embedding.

•

dims is the number of hidden units.•
layers can be adjusted above 1 to create a stacked LSTM network.•

Notes

tf.unpack may not be able to determine the size of a given axis (use the nums argument if this 
is the case).

•

It may be helpful to add an additional weight + bias multiplication beneath the LSTM (e.g. 
tf.matmul(state_below, U) + b.

•

Read Creating RNN, LSTM and bidirectional RNN/LSTMs with TensorFlow online: 
https://riptutorial.com/tensorflow/topic/4827/creating-rnn--lstm-and-bidirectional-rnn-lstms-with-
tensorflow
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Chapter 4: How to debug a memory leak in 
TensorFlow

Examples

Use Graph.finalize() to catch nodes being added to the graph

The most common mode of using TensorFlow involves first building a dataflow graph of 
TensorFlow operators (like tf.constant() and tf.matmul(), then running steps by calling the 
tf.Session.run() method in a loop (e.g. a training loop).

A common source of memory leaks is where the training loop contains calls that add nodes to the 
graph, and these run in every iteration, causing the graph to grow. These may be obvious (e.g. a 
call to a TensorFlow operator like tf.square()), implicit (e.g. a call to a TensorFlow library function 
that creates operators like tf.train.Saver()), or subtle (e.g. a call to an overloaded operator on a 
tf.Tensor and a NumPy array, which implicitly calls tf.convert_to_tensor() and adds a new 
tf.constant() to the graph).

The tf.Graph.finalize() method can help to catch leaks like this: it marks a graph as read-only, 
and raises an exception if anything is added to the graph. For example:

loss = ... 
train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss) 
init = tf.initialize_all_variables() 
 
with tf.Session() as sess: 
    sess.run(init) 
    sess.graph.finalize()  # Graph is read-only after this statement. 
 
    for _ in range(1000000): 
        sess.run(train_op) 
        loss_sq = tf.square(loss)  # Exception will be thrown here. 
        sess.run(loss_sq)

In this case, the overloaded * operator attempts to add new nodes to the graph:

loss = ... 
# ... 
with tf.Session() as sess: 
    # ... 
    sess.graph.finalize()  # Graph is read-only after this statement. 
    # ... 
    dbl_loss = loss * 2.0  # Exception will be thrown here.

Use the tcmalloc allocator

To improve memory allocation performance, many TensorFlow users often use tcmalloc instead of 
the default malloc() implementation, as tcmalloc suffers less from fragmentation when allocating 

https://riptutorial.com/ 10

https://www.tensorflow.org/api_docs/python/tf/Session#run
https://www.tensorflow.org/api_docs/python/tf/Graph#finalize
http://goog-perftools.sourceforge.net/doc/tcmalloc.html


and deallocating large objects (such as many tensors). Some memory-intensive TensorFlow 
programs have been known to leak heap address space (while freeing all of the individual objects 
they use) with the default malloc(), but performed just fine after switching to tcmalloc. In addition, 
tcmalloc includes a heap profiler, which makes it possible to track down where any remaining 
leaks might have occurred.

The installation for tcmalloc will depend on your operating system, but the following works on 
Ubuntu 14.04 (trusty) (where script.py is the name of your TensorFlow Python program):

$ sudo apt-get install google-perftools4 
$ LD_PRELOAD=/usr/lib/libtcmalloc.so.4 python script.py ...

As noted above, simply switching to tcmalloc can fix a lot of apparent leaks. However, if the 
memory usage is still growing, you can use the heap profiler as follows:

$ LD_PRELOAD=/usr/lib/libtcmalloc.so.4 HEAPPROFILE=/tmp/profile python script.py ...

After you run the above command, the program will periodically write profiles to the filesystem. 
The sequence of profiles will be named:

/tmp/profile.0000.heap•
/tmp/profile.0001.heap•
/tmp/profile.0002.heap•
...•

You can read the profiles using the google-pprof tool, which (for example, on Ubuntu 14.04) can be 
installed as part of the google-perftools package. For example, to look at the third snapshot 
collected above:

$ google-pprof --gv `which python` /tmp/profile.0002.heap

Running the above command will pop up a GraphViz window, showing the profile information as a 
directed graph.

Read How to debug a memory leak in TensorFlow online: 
https://riptutorial.com/tensorflow/topic/3883/how-to-debug-a-memory-leak-in-tensorflow
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Chapter 5: How to use TensorFlow Graph 
Collections?

Remarks

When you have huge model, it is useful to form some groups of tensors in your computational 
graph, that are connected with each other. For example tf.GraphKeys class contains such standart 
collections as:

tf.GraphKeys.VARIABLES 
tf.GraphKeys.TRAINABLE_VARIABLES 
tf.GraphKeys.SUMMARIES

Examples

Create your own collection and use it to collect all your losses.

Here we will create collection for losses of Neural Network's computational graph.

First create a computational graph like so:

with tf.variable_scope("Layer"): 
    W = tf.get_variable("weights", [m, k], 
        initializer=tf.zeros_initializer([m, k], dtype=tf.float32)) 
    b1 = tf.get_variable("bias", [k], 
        initializer = tf.zeros_initializer([k], dtype=tf.float32)) 
    z = tf.sigmoid((tf.matmul(input, W) + b1)) 
 
    with tf.variable_scope("Softmax"): 
        U = tf.get_variable("weights", [k, r], 
            initializer=tf.zeros_initializer([k,r], dtype=tf.float32)) 
        b2 = tf.get_variable("bias", [r], 
            initializer=tf.zeros_initializer([r], dtype=tf.float32)) 
    out = tf.matmul(z, U) + b2 
cross_entropy = tf.reduce_mean( 
    tf.nn.sparse_softmax_cross_entropy_with_logits(out, labels))

To create a new collection, you can simply start calling tf.add_to_collection() - the first call will 
create the collection.

tf.add_to_collection("my_losses", 
    self.config.l2 * (tf.add_n([tf.reduce_sum(U ** 2), tf.reduce_sum(W ** 2)]))) 
tf.add_to_collection("my_losses", cross_entropy)

And finally you can get tensors from your collection:

loss = sum(tf.get_collection("my_losses"))
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Note that tf.get_collection() returns a copy of the collection or an empty list if the collection does 
not exist. Also, it does NOT create the collection if it does not exist. To do so, you could use 
tf.get_collection_ref() which returns a reference to the collection and actually creates an empty 
one if it does not exist yet.

Collect variables from nested scopes

Below is a single hidden layer Multilayer Perceptron (MLP) using nested scoping of variables.

def weight_variable(shape): 
    return tf.get_variable(name="weights", shape=shape, 
                           initializer=tf.zeros_initializer(dtype=tf.float32)) 
 
def bias_variable(shape): 
    return tf.get_variable(name="biases", shape=shape, 
                           initializer=tf.zeros_initializer(dtype=tf.float32)) 
 
def fc_layer(input, in_dim, out_dim, layer_name): 
    with tf.variable_scope(layer_name): 
        W = weight_variable([in_dim, out_dim]) 
        b = bias_variable([out_dim]) 
        linear = tf.matmul(input, W) + b 
        output = tf.sigmoid(linear) 
 
with tf.variable_scope("MLP"): 
    x = tf.placeholder(dtype=tf.float32, shape=[None, 1], name="x") 
    y = tf.placeholder(dtype=tf.float32, shape=[None, 1], name="y") 
    fc1 = fc_layer(x, 1, 8, "fc1") 
    fc2 = fc_layer(fc1, 8, 1, "fc2") 
 
mse_loss = tf.reduce_mean(tf.reduce_sum(tf.square(fc2 - y), axis=1))

The MLP uses the the top level scope name MLP and it has two layers with their respective scope 
names fc1 and fc2. Each layer also has its own weights and biases variables.

The variables can be collected like so:

trainable_var_key = tf.GraphKeys.TRAINABLE_VARIABLES 
all_vars = tf.get_collection(key=trainable_var_key, scope="MLP") 
fc1_vars = tf.get_collection(key=trainable_var_key, scope="MLP/fc1") 
fc2_vars = tf.get_collection(key=trainable_var_key, scope="MLP/fc2") 
fc1_weight_vars = tf.get_collection(key=trainable_var_key, scope="MLP/fc1/weights") 
fc1_bias_vars = tf.get_collection(key=trainable_var_key, scope="MLP/fc1/biases")

The values of the variables can be collected using the sess.run() command. For example if we 
would like to collect the values of the fc1_weight_vars after training, we could do the following:

sess = tf.Session() 
# add code to initialize variables 
# add code to train the network 
# add code to create test data x_test and y_test 
 
fc1_weight_vals = sess.run(fc1, feed_dict={x: x_test, y: y_test}) 
print(fc1_weight_vals)  # This should be an ndarray with ndim=2 and shape=[1, 8]
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Read How to use TensorFlow Graph Collections? online: 
https://riptutorial.com/tensorflow/topic/6902/how-to-use-tensorflow-graph-collections-
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Chapter 6: Math behind 2D convolution with 
advanced examples in TF

Introduction

2D convolution is computed in a similar way one would calculate 1D convolution: you slide your 
kernel over the input, calculate the element-wise multiplications and sum them up. But instead of 
your kernel/input being an array, here they are matrices.

Examples

No padding, strides=1

This is the most basic example, with the easiest calculations. Let's assume your input and kernel 

are: 

When you your kernel you will receive the following output: , which is calculated in the 
following way:

14 = 4 * 1 + 3 * 0 + 1 * 1 + 2 * 2 + 1 * 1 + 0 * 0 + 1 * 0 + 2 * 0 + 4 * 1•
6 = 3 * 1 + 1 * 0 + 0 * 1 + 1 * 2 + 0 * 1 + 1 * 0 + 2 * 0 + 4 * 0 + 1 * 1•
6 = 2 * 1 + 1 * 0 + 0 * 1 + 1 * 2 + 2 * 1 + 4 * 0 + 3 * 0 + 1 * 0 + 0 * 1•
12 = 1 * 1 + 0 * 0 + 1 * 1 + 2 * 2 + 4 * 1 + 1 * 0 + 1 * 0 + 0 * 0 + 2 * 1•

TF's conv2d function calculates convolutions in batches and uses a slightly different format. For an 
input it is [batch, in_height, in_width, in_channels] for the kernel it is [filter_height, 
filter_width, in_channels, out_channels]. So we need to provide the data in the correct format:

import tensorflow as tf 
k = tf.constant([ 
    [1, 0, 1], 
    [2, 1, 0], 
    [0, 0, 1] 
], dtype=tf.float32, name='k') 
i = tf.constant([ 
    [4, 3, 1, 0], 
    [2, 1, 0, 1], 
    [1, 2, 4, 1], 
    [3, 1, 0, 2] 
], dtype=tf.float32, name='i') 
kernel = tf.reshape(k, [3, 3, 1, 1], name='kernel') 
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image  = tf.reshape(i, [1, 4, 4, 1], name='image')

Afterwards the convolution is computed with:

res = tf.squeeze(tf.nn.conv2d(image, kernel, [1, 1, 1, 1], "VALID")) 
# VALID means no padding 
with tf.Session() as sess: 
   print sess.run(res)

And will be equivalent to the one we calculated by hand.

Some padding, strides=1

Padding is just a fancy name of telling: surround your input matrix with some constant. In most of 
the cases the constant is zero and this is why people call it zero padding. So if you want to use a 
padding of 1 in our original input (check the first example with padding=0, strides=1), the matrix will 
look like this:

To calculate the values of the convolution you do the same sliding. Notice that in our case many 
values in the middle do not need to be recalculated (they will be the same as in previous example. 
I also will not show all the calculations here, because the idea is straight-forward. The result is:

where

5 = 0 * 1 + 0 * 0 + 0 * 1 + 0 * 2 + 4 * 1 + 3 * 0 + 0 * 0 + 0 * 1 + 1 * 1•
...•
6 = 4 * 1 + 1 * 0 + 0 * 1 + 0 * 2 + 2 * 1 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 1•

TF does not support an arbitrary padding in conv2d function, so if you need some padding that is 
not supported, use tf.pad(). Luckily for our input the padding 'SAME' will be equal to padding = 1. 
So we need to change almost nothing in our previous example:

res = tf.squeeze(tf.nn.conv2d(image, kernel, [1, 1, 1, 1], "SAME")) 
# 'SAME' makes sure that our output has the same size as input and 
# uses appropriate padding. In our case it is 1. 
with tf.Session() as sess: 
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   print sess.run(res)

You can verify that the answer will be the same as calculated by hand.

Padding and strides (the most general case)

Now we will apply a strided convolution to our previously described padded example and calculate 
the convolution where p = 1, s = 2

Previously when we used strides = 1, our slided window moved by 1 position, with strides = s it 
moves by s positions (you need to calculate s^2 elements less. But in our case we can take a 
shortcut and do not perform any computations at all. Because we already computed the values for 
s = 1, in our case we can just grab each second element.

So if the solution is case of s = 1 was

in case of s = 2 it will be:

Check the positions of values 14, 2, 12, 6 in the previous matrix. The only change we need to 
perform in our code is to change the strides from 1 to 2 for width and height dimension (2-nd, 3-
rd).

res = tf.squeeze(tf.nn.conv2d(image, kernel, [1, 2, 2, 1], "SAME")) 
with tf.Session() as sess: 
   print sess.run(res)

By the way, there is nothing that stops us from using different strides for different dimensions.

Read Math behind 2D convolution with advanced examples in TF online: 
https://riptutorial.com/tensorflow/topic/10015/math-behind-2d-convolution-with-advanced-
examples-in-tf
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Chapter 7: Matrix and Vector Arithmetic

Examples

Elementwise Multiplication

To perform elementwise multiplication on tensors, you can use either of the following:

a*b•
tf.multiply(a, b)•

Here is a full example of elementwise multiplication using both methods.

import tensorflow as tf 
import numpy as np 
 
# Build a graph 
graph = tf.Graph() 
with graph.as_default(): 
    # A 2x3 matrix 
    a = tf.constant(np.array([[ 1, 2, 3], 
                              [10,20,30]]), 
                    dtype=tf.float32) 
    # Another 2x3 matrix 
    b = tf.constant(np.array([[2, 2, 2], 
                              [3, 3, 3]]), 
                    dtype=tf.float32) 
 
    # Elementwise multiplication 
    c =  a * b 
    d = tf.multiply(a, b) 
 
# Run a Session 
with tf.Session(graph=graph) as session: 
    (output_c, output_d) = session.run([c, d]) 
    print("output_c") 
    print(output_c) 
    print("\noutput_d") 
    print(output_d)

Prints out the following:

output_c 
[[  2.   4.   6.] 
 [ 30.  60.  90.]] 
 
output_d 
[[  2.   4.   6.] 
 [ 30.  60.  90.]]

Scalar Times a Tensor

In the following example a 2 by 3 tensor is multiplied by a scalar value (2).
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# Build a graph 
graph = tf.Graph() 
with graph.as_default(): 
    # A 2x3 matrix 
    a = tf.constant(np.array([[ 1, 2, 3], 
                              [10,20,30]]), 
                    dtype=tf.float32) 
 
    # Scalar times Matrix 
    c =  2 * a 
 
# Run a Session 
with tf.Session(graph=graph) as session: 
    output = session.run(c) 
    print(output)

This prints out

[[  2.   4.   6.] 
 [ 20.  40.  60.]]

Dot Product

The dot product between two tensors can be performed using:

tf.matmul(a, b)

A full example is given below:

# Build a graph 
graph = tf.Graph() 
with graph.as_default(): 
    # A 2x3 matrix 
    a = tf.constant(np.array([[1, 2, 3], 
                              [2, 4, 6]]), 
                            dtype=tf.float32) 
    # A 3x2 matrix 
    b = tf.constant(np.array([[1, 10], 
                              [2, 20], 
                              [3, 30]]), 
                    dtype=tf.float32) 
 
    # Perform dot product 
    c = tf.matmul(a, b) 
 
# Run a Session 
with tf.Session(graph=graph) as session: 
    output = session.run(c) 
    print(output)

prints out

[[  14.  140.] 
 [  28.  280.]]
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Read Matrix and Vector Arithmetic online: https://riptutorial.com/tensorflow/topic/2953/matrix-and-
vector-arithmetic
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Chapter 8: Measure the execution time of 
individual operations

Examples

Basic example with TensorFlow's Timeline object

The Timeline object allows you to get the execution time for each node in the graph:

you use a classic sess.run() but also specify the optional arguments options and run_metadata•
you then create a Timeline object with the run_metadata.step_stats data•

Here is an example program that measures the performance of a matrix multiplication:

import tensorflow as tf 
from tensorflow.python.client import timeline 
 
x = tf.random_normal([1000, 1000]) 
y = tf.random_normal([1000, 1000]) 
res = tf.matmul(x, y) 
 
# Run the graph with full trace option 
with tf.Session() as sess: 
    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) 
    run_metadata = tf.RunMetadata() 
    sess.run(res, options=run_options, run_metadata=run_metadata) 
 
    # Create the Timeline object, and write it to a json 
    tl = timeline.Timeline(run_metadata.step_stats) 
    ctf = tl.generate_chrome_trace_format() 
    with open('timeline.json', 'w') as f: 
        f.write(ctf)

You can then open Google Chrome, go to the page chrome://tracing and load the timeline.json 
file. You should see something like:
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Read Measure the execution time of individual operations online: 
https://riptutorial.com/tensorflow/topic/3850/measure-the-execution-time-of-individual-operations
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Chapter 9: Minimalist example code for 
distributed Tensorflow.

Introduction

This document shows how to create a cluster of TensorFlow servers, and how to distribute a 
computation graph across that cluster.

Examples

Distributed training example

import tensorflow as tf 
 
FLAGS = None 
 
def main(_): 
    ps_hosts = FLAGS.ps_hosts.split(",") 
    worker_hosts = FLAGS.worker_hosts.split(",") 
 
    # Create a cluster from the parameter server and worker hosts. 
    cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts}) 
 
    # Create and start a server for the local task. 
    server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index) 
 
    if FLAGS.job_name == "ps": 
        server.join() 
    elif FLAGS.job_name == "worker": 
 
        # Assigns ops to the local worker by default. 
        with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:%d" % 
FLAGS.task_index, cluster=cluster)): 
 
            # Build model... 
            loss = ... 
            global_step = tf.contrib.framework.get_or_create_global_step() 
 
            train_op = tf.train.AdagradOptimizer(0.01).minimize(loss, global_step=global_step) 
 
        # The StopAtStepHook handles stopping after running given steps. 
        hooks=[tf.train.StopAtStepHook(last_step=1000000)] 
 
        # The MonitoredTrainingSession takes care of session initialization, 
        # restoring from a checkpoint, saving to a checkpoint, and closing when done 
        # or an error occurs. 
        with tf.train.MonitoredTrainingSession(master=server.target, 
                                       is_chief=(FLAGS.task_index == 0), 
                                       checkpoint_dir="/tmp/train_logs", 
                                       hooks=hooks) as mon_sess: 
            while not mon_sess.should_stop(): 
                # Run a training step asynchronously. 
                # See `tf.train.SyncReplicasOptimizer` for additional details on how to 
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perform *synchronous* training. 
               # mon_sess.run handles AbortedError in case of preempted PS. 
               mon_sess.run(train_op)

Read Minimalist example code for distributed Tensorflow. online: 
https://riptutorial.com/tensorflow/topic/10950/minimalist-example-code-for-distributed-tensorflow-
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Chapter 10: Multidimensional softmax

Examples

Creating a Softmax Output Layer

When state_below is a 2D Tensor, U is a 2D weights matrix, b is a class_size-length vector:

logits = tf.matmul(state_below, U) + b 
return tf.nn.softmax(logits)

When state_below is a 3D tensor, U, b as before:

def softmax_fn(current_input): 
    logits = tf.matmul(current_input, U) + b 
    return tf.nn.softmax(logits) 
 
raw_preds = tf.map_fn(softmax_fn, state_below)

Computing Costs on a Softmax Output Layer

Use tf.nn.sparse_softmax_cross_entropy_with_logits, but beware that it can't accept the output of 
tf.nn.softmax. Instead, calculate the unscaled activations, and then the cost:

logits = tf.matmul(state_below, U) + b 
cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels)

In this case: state_below and U should be 2D matrices, b should be a vector of a size equal to the 
number of classes, and labels should be a 2D matrix of int32 or int64. This function also supports 
activation tensors with more than two dimensions.

Read Multidimensional softmax online: 
https://riptutorial.com/tensorflow/topic/4999/multidimensional-softmax
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Chapter 11: Placeholders

Parameters

Parameter Details

data type 
(dtype)

specifically one of the data types provided by the tensorflow package. E.g. 
tensorflow.float32

data shape 
(shape)

Dimensions of placeholder as list or tuple. None can be used for dimensions 
that are unknown. E.g. (None,30) would define a (? x 30) dimension 
placeholder

name (name) A name for the operation (optional).

Examples

Basics of Placeholders

Placeholders allow you to feed values into a tensorflow graph. Aditionally They allow you to 
specify constraints regarding the dimensions and data type of the values being fed in. As such 
they are useful when creating a neural network to feed new training examples.

The following example declares a placeholder for a 3 by 4 tensor with elements that are (or can be 
typecasted to) 32 bit floats.

a = tf.placeholder(tf.float32, shape=[3,4], name='a')

Placeholders will not contain any values on their own, so it is important to feed them with values 
when running a session otherwise you will get an error message. This can be done using the 
feed_dict argument when calling session.run(), eg:

# run the graph up to node b, feeding the placeholder `a` with values in my_array 
session.run(b, feed_dict={a: my_array})

Here is a simple example showing the entire process of declaring and feeding a placeholer.

import tensorflow as tf 
import numpy as np 
 
# Build a graph 
graph = tf.Graph() 
with graph.as_default(): 
    # declare a placeholder that is 3 by 4 of type float32 
    a = tf.placeholder(tf.float32, shape=(3, 4), name='a') 
 
    # Perform some operation on the placeholder 
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    b = a * 2 
 
# Create an array to be fed to `a` 
input_array = np.ones((3,4)) 
 
# Create a session, and run the graph 
with tf.Session(graph=graph) as session: 
    # run the session up to node b, feeding an array of values into a 
    output = session.run(b, feed_dict={a: input_array}) 
    print(output)

The placeholder takes a 3 by 4 array of ones, and that tensor is then multiplied by 2 at node b, 
wich then returns and prints out the following:

[[ 2.  2.  2.  2.] 
 [ 2.  2.  2.  2.] 
 [ 2.  2.  2.  2.]]

Placeholder with Default

Often one wants to intermittently run one or more validation batches during the course of training a 
deep network. Typically the training data are fed by a queue while the validation data might be 
passed through the feed_dict parameter in sess.run(). tf.placeholder_with_default() is designed 
to work well in this situation:

import numpy as np 
import tensorflow as tf 
 
IMG_SIZE = [3, 3] 
BATCH_SIZE_TRAIN = 2 
BATCH_SIZE_VAL = 1 
 
def get_training_batch(batch_size): 
    ''' training data pipeline ''' 
    image = tf.random_uniform(shape=IMG_SIZE) 
    label = tf.random_uniform(shape=[]) 
    min_after_dequeue = 100 
    capacity = min_after_dequeue + 3 * batch_size 
    images, labels = tf.train.shuffle_batch( 
        [image, label], batch_size=batch_size, capacity=capacity, 
        min_after_dequeue=min_after_dequeue) 
    return images, labels 
 
# define the graph 
images_train, labels_train = get_training_batch(BATCH_SIZE_TRAIN) 
image_batch = tf.placeholder_with_default(images_train, shape=None) 
label_batch = tf.placeholder_with_default(labels_train, shape=None) 
new_images = tf.mul(image_batch, -1) 
new_labels = tf.mul(label_batch, -1) 
 
# start a session 
with tf.Session() as sess: 
    sess.run(tf.initialize_all_variables()) 
    coord = tf.train.Coordinator() 
    threads = tf.train.start_queue_runners(sess=sess, coord=coord) 
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    # typical training step where batch data are drawn from the training queue 
    py_images, py_labels = sess.run([new_images, new_labels]) 
    print('Data from queue:') 
    print('Images: ', py_images)  # returned values in range [-1.0, 0.0] 
    print('\nLabels: ', py_labels) # returned values [-1, 0.0] 
 
    # typical validation step where batch data are supplied through feed_dict 
    images_val = np.random.randint(0, 100, size=np.hstack((BATCH_SIZE_VAL, IMG_SIZE))) 
    labels_val = np.ones(BATCH_SIZE_VAL) 
    py_images, py_labels = sess.run([new_images, new_labels], 
                      feed_dict={image_batch:images_val, label_batch:labels_val}) 
    print('\n\nData from feed_dict:') 
    print('Images: ', py_images) # returned values are integers in range [-100.0, 0.0] 
    print('\nLabels: ', py_labels) # returned values are -1.0 
 
    coord.request_stop() 
    coord.join(threads)

In this example image_batch and label_batch are generated by get_training_batch() unless the 
corresponding values are passed as the feed_dict parameter during a call to sess.run().

Read Placeholders online: https://riptutorial.com/tensorflow/topic/2952/placeholders
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Chapter 12: Q-learning

Examples

Minimal Example

Q-learning is a variant of model-free reinforcement learning. In Q-learning we want the agent to 
estimate how good a (state, action) pair is so that it can choose good actions in each state. This is 
done by approximating an action-value function (Q) that fits in equation below:

Where s and a are state and action at current time step. R is the immediate reward and  is 
discount factor. And, s' is the observed next state.

As the agent interacts with the environment, it sees a state that it is in, performs an action, gets 
the reward, and observes the new state that it has moved to. This cycle continues until the agent 
reaches a terminating state. Since Q-learning is an off-policy method, we can save each (state, 
action, reward, next_state) as an experience in a replay buffer. These experiences are sampled in 
each training iteration and used to improve our estimation of Q. Here is how:

From next_state calculate the Q value for next step by assuming that the agent greedily 
chooses an action in that state, hence the np.max(next_state_value) in the code below.

1. 

The Q value of next step is discounted and added to the immediate reward observed by the 
agent: (state, action, reward, state')

2. 

If a state-action result in termination of the episode, we use Q = reward instead of steps 1 and 
2 above (episodic learning). So we need to also add termination flag to each experience that 
is being added to the buffer: (state, action, reward, next_state, terminated)

3. 

At this point, we have a Q value calculated from reward and next_state and also we have 
another Q value that is the output of the q-network function approximator. By changing the 
parameters of q-network function approximator using gradient descend and minimizing the 
difference between these two action values, the Q function approximator converges toward 
the true action values.

4. 

Here is an implementation of deep Q network.

import tensorflow as tf 
import gym 
import numpy as np 
 
def fullyConnected(name, input_layer, output_dim, activation=None): 
    """ 
    Adds a fully connected layer after the `input_layer`. `output_dim` is 
    the size of next layer. `activation` is the optional activation 
    function for the next layer. 
    """ 
    initializer = tf.random_uniform_initializer(minval=-.003, maxval=.003) 
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    input_dims = input_layer.get_shape().as_list()[1:] 
    weight = tf.get_variable(name + "_w", shape=[*input_dims, output_dim], 
                             dtype=tf.float32, initializer=initializer) 
    bias = tf.get_variable(name + "_b", shape=output_dim, dtype=tf.float32, 
                           initializer=initializer) 
    next_layer = tf.matmul(input_layer, weight) + bias 
 
    if activation: 
        next_layer = activation(next_layer, name=name + "_activated") 
 
    return next_layer 
 
class Memory(object): 
    """ 
    Saves experiences as (state, action, reward, next_action, 
    termination). It only supports discrete action spaces. 
    """ 
 
    def __init__(self, size, state_dims): 
        self.length = size 
 
        self.states = np.empty([size, state_dims], dtype=float) 
        self.actions = np.empty(size, dtype=int) 
        self.rewards = np.empty((size, 1), dtype=float) 
        self.states_next = np.empty([size, state_dims], dtype=float) 
        self.terminations = np.zeros((size, 1), dtype=bool) 
 
        self.memory = [self.states, self.actions, 
                       self.rewards, self.states_next, self.terminations] 
 
        self.pointer = 0 
        self.count = 0 
 
    def add(self, state, action, reward, next_state, termination): 
        self.states[self.pointer] = state 
        self.actions[self.pointer] = action 
        self.rewards[self.pointer] = reward 
        self.states_next[self.pointer] = next_state 
        self.terminations[self.pointer] = termination 
        self.pointer = (self.pointer + 1) % self.length 
        self.count += 1 
 
    def sample(self, batch_size): 
        index = np.random.randint( 
            min(self.count, self.length), size=(batch_size)) 
        return (self.states[index], self.actions[index], 
            self.rewards[index], self.states_next[index], 
            self.terminations[index]) 
 
class DQN(object): 
    """ 
    Deep Q network agent. 
    """ 
 
    def __init__(self, state_dim, action_dim, memory_size, layer_dims, 
                 optimizer): 
 
        self.action_dim = action_dim 
        self.state = tf.placeholder( 
            tf.float32, [None, state_dim], "states") 
        self.action_ph = tf.placeholder(tf.int32, [None], "actions") 
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        self.action_value_ph = tf.placeholder( 
            tf.float32, [None], "action_values") 
        self.memory = Memory(memory_size, state_dim) 
 
        def _make(): 
            flow = self.state 
            for i, size in enumerate(layer_dims): 
                flow = fullyConnected( 
                    "layer%i" % i, flow, size, tf.nn.relu) 
 
            return fullyConnected( 
                "output_layer", flow, self.action_dim) 
 
        # generate the learner network 
        with tf.variable_scope('learner'): 
            self.action_value = _make() 
        # generate the target network 
        with tf.variable_scope('target'): 
            self.target_action_value = _make() 
 
        # get parameters for learner and target networks 
        from_list = tf.get_collection( 
            tf.GraphKeys.TRAINABLE_VARIABLES, scope='learner') 
        target_list = tf.get_collection( 
            tf.GraphKeys.TRAINABLE_VARIABLES, scope='target') 
 
        # create a copy operation from parameters of learner 
        # to parameters of target network 
        from_list = sorted(from_list, key=lambda v: v.name) 
        target_list = sorted(target_list, key=lambda v: v.name) 
        self.update_target_network = [] 
        for i in range(len(from_list)): 
            self.update_target_network.append(target_list[i].assign(from_list[i])) 
 
        # gather the action-values of the performed actions 
        row = tf.range(0, tf.shape(self.action_value)[0]) 
        indexes = tf.stack([row, self.action_ph], axis=1) 
        action_value = tf.gather_nd(self.action_value, indexes) 
 
        # calculate loss of Q network 
        self.single_loss = tf.square(action_value - self.action_value_ph) 
        self._loss = tf.reduce_mean(self.single_loss) 
 
        self.train_op = optimizer.minimize(self._loss) 
 
    def train(self, session, batch=None, discount=.97): 
        states, actions, rewards, next_states, terminals =\ 
            self.memory.sample(batch) 
        next_state_value = session.run( 
            self.target_action_value, {self.state: next_states}) 
        observed_value = rewards + discount * \ 
            np.max(next_state_value, 1, keepdims=True) 
        observed_value[terminals] = rewards[terminals] 
 
        _, batch_loss = session.run([self.train_op, self._loss], { 
            self.state: states, self.action_ph: actions, 
            self.action_value_ph: observed_value[:, 0]}) 
        return batch_loss 
 
    def policy(self, session, state): 
        return session.run(self.action_value, {self.state: [state]})[0] 
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    def memorize(self, state, action, reward, next_state, terminal): 
        self.memory.add(state, action, reward, next_state, terminal) 
 
    def update(self, session): 
        session.run(self.update_target_network)

In deep Q network few mechanisms are used to improve the convergence of the agent. One is 
emphasis on randomly sampling the experiences from replay buffer to prevent any temporal 
relation between sampled experiences. Another mechanism is using target network in evaluation 
of the Q-value for next_state. The target network is similar the the learner network but its 
parameters are modified much less frequently. Also, the target network is not updated by the 
gradient descent, instead every once in a while its parameters are copied from the learner 
network.

The code below, is an example of this agent learning to perform actions in a cartpole environment.

ENVIRONMENT = 'CartPole-v1'  # environment name from `OpenAI`. 
MEMORY_SIZE = 50000  # how many of recent time steps should be saved in agent's memory 
LEARNING_RATE = .01  # learning rate for Adam optimizer 
BATCH_SIZE = 8  # number of experiences to sample in each training step 
EPSILON = .1  # how often an action should be chosen randomly. This encourages exploration 
EPXILON_DECAY = .99  # the rate of decaying `EPSILON` 
NETWORK_ARCHITECTURE = [100] # shape of the q network. Each element is one layer 
TOTAL_EPISODES = 500  # number of total episodes 
MAX_STEPS = 200  # maximum number of steps in each episode 
REPORT_STEP = 10  # how many episodes to run before printing a summary 
 
env = gym.make(ENVIRONMENT)  # initialize environment 
state_dim = env.observation_space.shape[ 
    0]  # dimensions of observation space 
action_dim = env.action_space.n 
 
optimizer = tf.train.AdamOptimizer(LEARNING_RATE) 
agent = DQN(state_dim, action_dim, MEMORY_SIZE, 
            NETWORK_ARCHITECTURE, optimizer) 
 
eps = [EPSILON] 
 
def runEpisode(env, session): 
    state = env.reset() 
    total_l = 0. 
    total_reward = 0. 
    for i in range(MAX_STEPS): 
        if np.random.uniform() < eps[0]: 
            action = np.random.randint(action_dim) 
        else: 
            action_values = agent.policy(session, state) 
            action = np.argmax(action_values) 
 
        next_state, reward, terminated, _ = env.step(action) 
 
        if terminated: 
            reward = -1 
 
        total_reward += reward 
 
        agent.memorize(state, action, reward, next_state, terminated) 
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        state = next_state 
        total_l += agent.train(session, BATCH_SIZE) 
 
        if terminated: 
            break 
 
    eps[0] *= EPXILON_DECAY 
    i += 1 
 
    return i, total_reward / i, total_l / i 
 
session = tf.InteractiveSession() 
session.run(tf.global_variables_initializer()) 
 
for i in range(1, TOTAL_EPISODES + 1): 
    leng, reward, loss = runEpisode(env, session) 
    agent.update(session) 
    if i % REPORT_STEP == 0: 
        print(("Episode: %4i " + 
               "| Episod Length: %3i " + 
               "| Avg Reward: %+.3f " + 
               "| Avg Loss: %6.3f " + 
               "| Epsilon: %.3f") % 
              (i, leng, reward, loss, eps[0]))

Read Q-learning online: https://riptutorial.com/tensorflow/topic/9967/q-learning
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Chapter 13: Reading the data

Examples

Count examples in CSV file

import tensorflow as tf 
filename_queue = tf.train.string_input_producer(["file.csv"], num_epochs=1) 
reader = tf.TextLineReader() 
key, value = reader.read(filename_queue) 
col1, col2 = tf.decode_csv(value, record_defaults=[[0], [0]]) 
 
with tf.Session() as sess: 
  sess.run(tf.initialize_local_variables()) 
  tf.train.start_queue_runners() 
  num_examples = 0 
  try: 
    while True: 
      c1, c2 = sess.run([col1, col2]) 
      num_examples += 1 
  except tf.errors.OutOfRangeError: 
    print "There are", num_examples, "examples"

num_epochs=1 makes string_input_producer queue to close after processing each file on the list 
once. It leads to raising OutOfRangeError which is caught in try:. By default, string_input_producer 
produces the filenames infinitely.

tf.initialize_local_variables() is a tensorflow Op, which, when executed, initializes num_epoch 
local variable inside string_input_producer.

tf.train.start_queue_runners() start extra treads that handle adding data to the queues 
asynchronically.

Read & Parse TFRecord file

TFRecord files is the native tensorflow binary format for storing data (tensors). To read the file you 
can use a code similar to the CSV example:

import tensorflow as tf 
filename_queue = tf.train.string_input_producer(["file.tfrecord"], num_epochs=1) 
reader = tf.TFRecordReader() 
key, serialized_example = reader.read(filename_queue)

Then, you need to parse the examples from serialized_example Queue. You can do it either using 
tf.parse_example, which requires previous batching, but is faster or tf.parse_single_example:

batch = tf.train.batch([serialized_example], batch_size=100) 
parsed_batch = tf.parse_example(batch, features={ 
  "feature_name_1": tf.FixedLenFeature(shape=[1], tf.int64), 
  "feature_name_2": tf.FixedLenFeature(shape=[1], tf.float32) 
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})

tf.train.batch joins consecutive values of given tensors of shape [x, y, z] to tensors of shape 
[batch_size, x, y, z]. features dict maps names of the features to tensorflow's definitions of 
features. You use parse_single_example in a similar way:

parsed_example = tf.parse_single_example(serialized_example, { 
  "feature_name_1": tf.FixedLenFeature(shape=[1], tf.int64), 
  "feature_name_2": tf.FixedLenFeature(shape=[1], tf.float32) 
})

tf.parse_example and tf.parse_single_example return a dictionary mapping feature names to the 
tensor with the values.

To batch examples coming from parse_single_example you should extract the tensors from the dict 
and use tf.train.batch as before:

parsed_batch = dict(zip(parsed_example.keys(), 
    tf.train.batch(parsed_example.values(), batch_size=100)

You read the data as before, passing the list of all the tensors to evaluate to sess.run:

with tf.Session() as sess: 
  sess.run(tf.initialize_local_variables()) 
  tf.train.start_queue_runners() 
  try: 
    while True: 
      data_batch = sess.run(parsed_batch.values()) 
      # process data 
  except tf.errors.OutOfRangeError: 
    pass

Random shuffling the examples

To randomly shuffle the examples, you can use tf.train.shuffle_batch function instead of 
tf.train.batch, as follows:

parsed_batch = tf.train.shuffle_batch([serialized_example], 
    batch_size=100, capacity=1000, 
    min_after_dequeue=200)

tf.train.shuffle_batch (as well as tf.train.batch) creates a tf.Queue and keeps adding 
serialized_examples to it.

capacity measures how many elements can be stored in Queue in one time. Bigger capacity leads 
to bigger memory usage, but lower latency caused by threads waiting to fill it up.

min_after_dequeue is the minimum number of elements present in the queue after getting elements 
from it. The shuffle_batch queue is not shuffling elements perfectly uniformly - it is designed with 
huge data, not-fitting-memory one, in mind. Instead, it reads between min_after_dequeue and 
capacity
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elements, store them in memory and randomly chooses a batch of them. After that it enqueues 
some more elements, to keep its number between min_after_dequeue and capacity. Thus, the 
bigger value of min_after_dequeue, the more random elements are - the choice of batch_size 
elements is guaranteed to be taken from at least min_after_dequeue consecutive elements, but the 
bigger capacity has to be and the longer it takes to fill the queue initially.

Reading data for n epochs with batching

Assume your data examples are already read to a python's variable and you would like to read it n 
times, in batches of given size:

import numpy as np 
import tensorflow as tf 
data = np.array([1, 2, 3, 4, 5]) 
n = 4

To merge data in batches, possibly with random shuffling, you can use tf.train.batch or 
tf.train.batch_shuffle, but you need to pass to it the tensor that would produce whole data n 
times:

limited_tensor = tf.train.limit_epochs(data, n) 
batch = tf.train.shuffle_batch([limited_tensor], batch_size=3, enqueue_many=True, capacity=4)

The limit_epochs converts the numpy array to tensor under the hood and returns a tensor 
producing it n times and throwing an OutOfRangeError afterwards. The enqueue_many=True 
argument passed to shuffle_batch denotes that each tensor in the tensor list [limited_tensor] 
should be interpreted as containing a number of examples. Note that capacity of the batching 
queue can be smaller than the number of examples in the tensor.

One can process the data as usual:

with tf.Session() as sess: 
  sess.run(tf.initialize_local_variables()) 
  tf.train.start_queue_runners() 
  try: 
    while True: 
      data_batch = sess.run(batch) 
      # process data 
  except tf.errors.OutOfRangeError: 
    pass

How to load images and labels from a TXT file

It has not been explained in the Tensorflow documentation how to load images and labels directly 
from a TXT file. The code below illustrates how I achieved it. However, it does not mean that is the 
best way to do it and that this way will help in further steps.

For instance, I'm loading the labels in one single integer value {0,1} while the documentation uses 
a one-hot vector [0,1].

https://riptutorial.com/ 36



# Learning how to import images and labels from a TXT file 
# 
# TXT file format 
# 
# path/to/imagefile_1 label_1 
# path/to/imagefile_2 label_2 
# ...                 ... 
# 
# where label_X is either {0,1} 
 
#Importing Libraries 
import os 
import tensorflow as tf 
import matplotlib.pyplot as plt 
from tensorflow.python.framework import ops 
from tensorflow.python.framework import dtypes 
 
#File containing the path to images and the labels [path/to/images label] 
filename = '/path/to/List.txt' 
 
#Lists where to store the paths and labels 
filenames = [] 
labels = [] 
 
#Reading file and extracting paths and labels 
with open(filename, 'r') as File: 
    infoFile = File.readlines() #Reading all the lines from File 
    for line in infoFile: #Reading line-by-line 
        words = line.split() #Splitting lines in words using space character as separator 
        filenames.append(words[0]) 
        labels.append(int(words[1])) 
 
NumFiles = len(filenames) 
 
#Converting filenames and labels into tensors 
tfilenames = ops.convert_to_tensor(filenames, dtype=dtypes.string) 
tlabels = ops.convert_to_tensor(labels, dtype=dtypes.int32) 
 
#Creating a queue which contains the list of files to read and the value of the labels 
filename_queue = tf.train.slice_input_producer([tfilenames, tlabels], num_epochs=10, 
shuffle=True, capacity=NumFiles) 
 
#Reading the image files and decoding them 
rawIm= tf.read_file(filename_queue[0]) 
decodedIm = tf.image.decode_png(rawIm) # png or jpg decoder 
 
#Extracting the labels queue 
label_queue = filename_queue[1] 
 
#Initializing Global and Local Variables so we avoid warnings and errors 
init_op = tf.group(tf.local_variables_initializer() ,tf.global_variables_initializer()) 
 
#Creating an InteractiveSession so we can run in iPython 
sess = tf.InteractiveSession() 
 
with sess.as_default(): 
    sess.run(init_op) 
 
    # Start populating the filename queue. 
    coord = tf.train.Coordinator() 
    threads = tf.train.start_queue_runners(coord=coord) 
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    for i in range(NumFiles): #length of your filenames list 
        nm, image, lb = sess.run([filename_queue[0], decodedIm, label_queue]) 
 
        print image.shape 
        print nm 
        print lb 
 
        #Showing the current image 
        plt.imshow(image) 
        plt.show() 
 
    coord.request_stop() 
    coord.join(threads)

Read Reading the data online: https://riptutorial.com/tensorflow/topic/6684/reading-the-data
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Chapter 14: Save and Restore a Model in 
TensorFlow

Introduction

Tensorflow distinguishes between saving/restoring the current values of all the variables in a 
graph and saving/restoring the actual graph structure. To restore the graph, you are free to use 
either Tensorflow's functions or just call your piece of code again, that built the graph in the first 
place. When defining the graph, you should also think about which and how variables/ops should 
be retrievable once the graph has been saved and restored.

Remarks

In the restoring model section above if I understand correctly you build the model and then restore 
the variables. I believe rebuilding the model is not necessary so long as you add the relevant 
tensors/placeholders when saving using tf.add_to_collection(). For example:

tf.add_to_collection('cost_op', cost_op)

Then later you can restore the saved graph and get access to cost_op using

with tf.Session() as sess: 
    new_saver = tf.train.import_meta_graph('model.meta')` 
    new_saver.restore(sess, 'model') 
    cost_op = tf.get_collection('cost_op')[0]

Even if you don't run tf.add_to_collection(), you can retrieve your tensors, but the process is a bit 
more cumbersome, and you may have to do some digging to find the right names for things. For 
example:

in a script that builds a tensorflow graph, we define some set of tensors lab_squeeze:

... 
with tf.variable_scope("inputs"): 
    y=tf.convert_to_tensor([[0,1],[1,0]]) 
    split_labels=tf.split(1,0,x,name='lab_split') 
    split_labels=[tf.squeeze(i,name='lab_squeeze') for i in split_labels] 
... 
with tf.Session().as_default() as sess: 
    saver=tf.train.Saver(sess,split_labels) 
    saver.save("./checkpoint.chk") 
 

we can recall them later on as follows:

with tf.Session() as sess: 
    g=tf.get_default_graph() 
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    new_saver = tf.train.import_meta_graph('./checkpoint.chk.meta')` 
    new_saver.restore(sess, './checkpoint.chk') 
    split_labels=['inputs/lab_squeeze:0','inputs/lab_squeeze_1:0','inputs/lab_squeeze_2:0'] 
 
    split_label_0=g.get_tensor_by_name('inputs/lab_squeeze:0') 
    split_label_1=g.get_tensor_by_name("inputs/lab_squeeze_1:0") 
 

There are a number of ways to find the name of a tensor -- you can find it in your graph on tensor 
board, or you can search through for it with something like:

sess=tf.Session() 
g=tf.get_default_graph() 
... 
x=g.get_collection_keys() 
[i.name for j in x for i in g.get_collection(j)] # will list out most, if not all, tensors on 
the graph

Examples

Saving the model

Saving a model in tensorflow is pretty easy.

Let's say you have a linear model with input x and want to predict an output y. The loss here is the 
mean square error (MSE). The batch size is 16.

# Define the model 
x = tf.placeholder(tf.float32, [16, 10])  # input 
y = tf.placeholder(tf.float32, [16, 1])   # output 
 
w = tf.Variable(tf.zeros([10, 1]), dtype=tf.float32) 
 
res = tf.matmul(x, w) 
loss = tf.reduce_sum(tf.square(res - y)) 
 
train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss)

Here comes the Saver object, which can have multiple parameters (cf. doc).

# Define the tf.train.Saver object 
# (cf. params section for all the parameters) 
saver = tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=1)

Finally we train the model in a tf.Session(), for 1000 iterations. We only save the model every 100 
iterations here.

# Start a session 
max_steps = 1000 
with tf.Session() as sess: 
    # initialize the variables 
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    sess.run(tf.initialize_all_variables()) 
 
    for step in range(max_steps): 
        feed_dict = {x: np.random.randn(16, 10), y: np.random.randn(16, 1)}  # dummy input 
        _, loss_value = sess.run([train_op, loss], feed_dict=feed_dict) 
 
        # Save the model every 100 iterations 
        if step % 100 == 0: 
            saver.save(sess, "./model", global_step=step)

After running this code, you should see the last 5 checkpoints in your directory:

model-500 and model-500.meta•
model-600 and model-600.meta•
model-700 and model-700.meta•
model-800 and model-800.meta•
model-900 and model-900.meta•

Note that in this example, while the saver actually saves both the current values of the variables as 
a checkpoint and the structure of the graph (*.meta), no specific care was taken w.r.t how to 
retrieve e.g. the placeholders x and y once the model was restored. E.g. if the restoring is done 
anywhere else than this training script, it can be cumbersome to retrieve x and y from the restored 
graph (especially in more complicated models). To avoid that, always give names to your variables 
/ placeholders / ops or think about using tf.collections as shown in one of the remarks.

Restoring the model

Restoring is also quite nice and easy.

Here's a handy helper function:

def restore_vars(saver, sess, chkpt_dir): 
    """ Restore saved net, global score and step, and epsilons OR 
    create checkpoint directory for later storage. """ 
    sess.run(tf.initialize_all_variables()) 
 
    checkpoint_dir = chkpt_dir 
 
    if not os.path.exists(checkpoint_dir): 
        try: 
            print("making checkpoint_dir") 
            os.makedirs(checkpoint_dir) 
            return False 
        except OSError: 
            raise 
 
    path = tf.train.get_checkpoint_state(checkpoint_dir) 
    print("path = ",path) 
    if path is None: 
        return False 
    else: 
        saver.restore(sess, path.model_checkpoint_path) 
        return True
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Main code:

path_to_saved_model = './' 
max_steps = 1 
 
# Start a session 
with tf.Session() as sess: 
 
    ... define the model here ... 
 
    print("define the param saver") 
    saver = tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=1) 
 
    # restore session if there is a saved checkpoint 
    print("restoring model") 
    restored = restore_vars(saver, sess, path_to_saved_model) 
    print("model restored ",restored) 
 
    # Now continue training if you so choose 
 
    for step in range(max_steps): 
 
        # do an update on the model (not needed) 
        loss_value = sess.run([loss]) 
        # Now save the model 
        saver.save(sess, "./model", global_step=step)

Read Save and Restore a Model in TensorFlow online: 
https://riptutorial.com/tensorflow/topic/5000/save-and-restore-a-model-in-tensorflow
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Chapter 15: Save Tensorflow model in Python 
and load with Java

Introduction

Building and especially training a model may be easiest done in Python so how to you load and 
use the trained model in Java?

Remarks

The model can accept any number of inputs, so change the NUM_PREDICTIONS if you want to 
run more predictions than one. Realize that the Java is using JNI to call into the C++ tensorflow 
model, so you will see some info messages coming from the model when you run this.

Examples

Create and save a model with Python

import tensorflow as tf 
# good idea 
tf.reset_default_graph() 
 
# DO MODEL STUFF 
# Pretrained weighting of 2.0 
W = tf.get_variable('w', shape=[], initializer=tf.constant(2.0), dtype=tf.float32) 
# Model input x 
x = tf.placeholder(tf.float32, name='x') 
# Model output y = W*x 
y = tf.multiply(W, x, name='y') 
 
# DO SESSION STUFF 
sess = tf.Session() 
sess.run(tf.global_variables_initializer()) 
 
# SAVE THE MODEL 
builder = tf.saved_model.builder.SavedModelBuilder("/tmp/model" ) 
builder.add_meta_graph_and_variables( 
  sess, 
  [tf.saved_model.tag_constants.SERVING] 
) 
builder.save()

Load and use the model in Java.

public static void main( String[] args ) throws IOException 
{ 
    // good idea to print the version number, 1.2.0 as of this writing 
    System.out.println(TensorFlow.version()); 
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    final int NUM_PREDICTIONS = 1; 
 
    // load the model Bundle 
    try (SavedModelBundle b = SavedModelBundle.load("/tmp/model", "serve")) { 
 
        // create the session from the Bundle 
        Session sess = b.session(); 
        // create an input Tensor, value = 2.0f 
        Tensor x = Tensor.create( 
            new long[] {NUM_PREDICTIONS}, 
            FloatBuffer.wrap( new float[] {2.0f} ) 
        ); 
 
        // run the model and get the result, 4.0f. 
        float[] y = sess.runner() 
            .feed("x", x) 
            .fetch("y") 
            .run() 
            .get(0) 
            .copyTo(new float[NUM_PREDICTIONS]); 
 
        // print out the result. 
        System.out.println(y[0]); 
    } 
}

Read Save Tensorflow model in Python and load with Java online: 
https://riptutorial.com/tensorflow/topic/10718/save-tensorflow-model-in-python-and-load-with-java
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Chapter 16: Simple linear regression 
structure in TensorFlow with Python

Introduction

A model widely used in traditional statistics is the linear regression model. In this article, the 
objective is to follow the step-by-step implementation of this type of models. We are going to 
represent a simple linear regression structure.

For our study, we will analyze the age of the children on the x axis and the height of the children 
on the y axis. We will try to predict the height of the children, using their age, applying simple 
linear regression.[in TF finding the best W and b]

Parameters

Parameter Description

train_X np array with x dimension of information

train_Y np array with y dimension of information

Remarks

I used TensorBoard sintaxis to track the behavior of some parts of the model, cost, train and 
activation elements.

with tf.name_scope("") as scope:

Imports used:

import numpy as np 
import tensorflow as tf

Type of application and language used:

I have used a traditional console implementation app type, developed in Python, to 
represent the example.

Version of TensorFlow used:

1.0.1
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Conceptual academic example/reference extracted from here:

Examples

Simple regression function code structure

Function definition:

def run_training(train_X, train_Y):

Inputs variables:

X = tf.placeholder(tf.float32, [m, n]) 
Y = tf.placeholder(tf.float32, [m, 1])

Weight and bias representation

W = tf.Variable(tf.zeros([n, 1], dtype=np.float32), name="weight") 
b = tf.Variable(tf.zeros([1], dtype=np.float32), name="bias")

Lineal Model:

with tf.name_scope("linear_Wx_b") as scope: 
    activation = tf.add(tf.matmul(X, W), b)

Cost:

with tf.name_scope("cost") as scope: 
    cost = tf.reduce_sum(tf.square(activation - Y)) / (2 * m) 
    tf.summary.scalar("cost", cost)

Training:

with tf.name_scope("train") as scope: 
    optimizer = tf.train.GradientDescentOptimizer(0.07).minimize(cost)

TensorFlow session:

with tf.Session() as sess: 
    merged = tf.summary.merge_all() 
    writer = tf.summary.FileWriter(log_file, sess.graph)

Note: merged and writer are part of the TensorBoard strategy to track the model behavior.
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    init = tf.global_variables_initializer() 
    sess.run(init)

Repeating 1.5k times the training loop:

    for step in range(1500): 
       result, _ = sess.run([merged, optimizer], feed_dict={X: np.asarray(train_X), Y: 
np.asarray(train_Y)}) 
       writer.add_summary(result, step)

Print Training Cost:

    training_cost = sess.run(cost, feed_dict={X: np.asarray(train_X), Y: np.asarray(train_Y)}) 
    print "Training Cost: ", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n'

Concrete prediction based on the model trained:

    print "Prediction for 3.5 years" 
    predict_X = np.array([3.5], dtype=np.float32).reshape([1, 1]) 
 
    predict_X = (predict_X - mean) / std 
    predict_Y = tf.add(tf.matmul(predict_X, W), b) 
    print "Child height(Y) =", sess.run(predict_Y)

Main Routine

def main(): 
    train_X, train_Y = read_data() 
    train_X = feature_normalize(train_X) 
    run_training(train_X, train_Y)

Note: remember review functions dependencies. read_data, feature_normalize and 
run_training

Normalization Routine

def feature_normalize(train_X): 
    global mean, std 
    mean = np.mean(train_X, axis=0) 
    std = np.std(train_X, axis=0) 
 
    return np.nan_to_num((train_X - mean) / std)

Read Data routine

def read_data(): 
    global m, n 
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    m = 50 
    n = 1 
 
    train_X = np.array(

Internal data for the array

    ).astype('float32') 
 
    train_Y = np.array(

Internal data for the array

    ).astype('float32') 
 
    return train_X, train_Y

Read Simple linear regression structure in TensorFlow with Python online: 
https://riptutorial.com/tensorflow/topic/9954/simple-linear-regression-structure-in-tensorflow-with-
python
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Chapter 17: Tensor indexing

Introduction

Various examples showing how Tensorflow supports indexing into tensors, highlighting differences 
and similarities to numpy-like indexing where possible.

Examples

Extract a slice from a tensor

Refer to the tf.slice(input, begin, size) documentation for detailed information.

Arguments:

input: Tensor•
begin: starting location for each dimension of input•
size: number of elements for each dimension of input, using -1 includes all remaining 
elements

•

Numpy-like slicing:

# x has shape [2, 3, 2] 
x = tf.constant([[[1., 2.], [3., 4. ], [5. , 6. ]], 
                 [[7., 8.], [9., 10.], [11., 12.]]]) 
 
# Extracts x[0, 1:2, :] == [[[ 3.,  4.]]] 
res = tf.slice(x, [0, 1, 0], [1, 1, -1])

Using negative indexing, to retrieve the last element in the third dimension:

# Extracts x[0, :, -1:] == [[[2.], [4.], [6.]]] 
last_indice = x.get_shape().as_list()[2] - 1 
res = tf.slice(x, [0, 1, last_indice], [1, -1, -1])

Extract non-contiguous slices from the first dimension of a tensor

Generally tf.gather gives you access to elements in the first dimension of a tensor (e.g. rows 1, 3 
and 7 in a 2-dimensional Tensor). If you need access to any other dimension than the first one, or 
if you don't need the whole slice, but e.g. only the 5th entry in the 1st, 3rd and 7th row, you are 
better off using tf.gather_nd (see upcoming example for this).

tf.gather arguments:

params: A tensor you want to extract values from.•
indices•
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: A tensor specifying the indices pointing into params

Refer to the tf.gather(params, indices) documentation for detailed information.

We want to extract the 1st and 4th row in a 2-dimensional tensor.

# data is [[0, 1, 2, 3, 4, 5], 
#          [6, 7, 8, 9, 10, 11], 
#          ... 
#          [24, 25, 26, 27, 28, 29]] 
data = np.reshape(np.arange(30), [5, 6]) 
params = tf.constant(data) 
indices = tf.constant([0, 3]) 
selected = tf.gather(params, indices)

selected has shape [2, 6] and printing its value gives

[[ 0  1  2  3  4  5] 
 [18 19 20 21 22 23]]

indices can also just be a scalar (but cannot contain negative indices). E.g. in the above example:

tf.gather(params, tf.constant(3))

would print

[18 19 20 21 22 23]

Note that indices can have any shape, but the elements stored in indices always only refer to the 
first dimension of params. E.g. if you want to retrieve both the 1st and 3rd row and the 2nd and 4th 
row at the same time, you can do this:

indices = tf.constant([[0, 2], [1, 3]]) 
selected = tf.gather(params, indices)

Now selected will have shape [2, 2, 6] and its content reads:

[[[ 0  1  2  3  4  5] 
  [12 13 14 15 16 17]] 
 
 [[ 6  7  8  9 10 11] 
  [18 19 20 21 22 23]]]

You can use tf.gather to compute a permutation. E.g. the following reverses all rows of params:

indices = tf.constant(list(range(4, -1, -1))) 
selected = tf.gather(params, indices)
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selected is now

[[24 25 26 27 28 29] 
 [18 19 20 21 22 23] 
 [12 13 14 15 16 17] 
 [ 6  7  8  9 10 11] 
 [ 0  1  2  3  4  5]]

If you need access to any other than the first dimension, you could work around that using 
tf.transpose: E.g. to gather columns instead of rows in our example, you could do this:

indices = tf.constant([0, 2]) 
selected = tf.gather(tf.transpose(params, [1, 0]), indices) 
selected_t = tf.transpose(selected, [1, 0]) 

selected_t is of shape [5, 2] and reads:

[[ 0  2] 
 [ 6  8] 
 [12 14] 
 [18 20] 
 [24 26]]

However, tf.transpose is rather expensive, so it might be better to use tf.gather_nd for this use 
case.

Numpy-like indexing using tensors

This example is based on this post: TensorFlow - numpy-like tensor indexing.

In Numpy you can use arrays to index into an array. E.g. in order to select the elements at (1, 2) 
and (3, 2) in a 2-dimensional array, you can do this:

# data is [[0, 1, 2, 3, 4, 5], 
#          [6, 7, 8, 9, 10, 11], 
#          [12 13 14 15 16 17], 
#          [18 19 20 21 22 23], 
#          [24, 25, 26, 27, 28, 29]] 
data = np.reshape(np.arange(30), [5, 6]) 
a = [1, 3] 
b = [2, 2] 
selected = data[a, b] 
print(selected)

This will print:

[ 8 20]

To get the same behaviour in Tensorflow, you can use tf.gather_nd, which is an extension of 
tf.gather. The above example can be written like this:
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x = tf.constant(data) 
idx1 = tf.constant(a) 
idx2 = tf.constant(b) 
result = tf.gather_nd(x, tf.stack((idx1, idx2), -1)) 
 
with tf.Session() as sess: 
    print(sess.run(result))

This will print:

[ 8 20]

tf.stack is the equivalent of np.asarray and in this case stacks the two index vectors along the last 
dimension (which in this case is the 1st) to produce:

[[1 2] 
 [3 2]]

How to use tf.gather_nd

tf.gather_nd is an extension of tf.gather in the sense that it allows you to not only access the 1st 
dimension of a tensor, but potentially all of them.

Arguments:

params: a Tensor of rank P representing the tensor we want to index into•
indices: a Tensor of rank Q representing the indices into params we want to access•

The output of the function depends on the shape of indices. If the innermost dimension of indices 
has length P, we are collecting single elements from params. If it is less than P, we are collecting 
slices, just like with tf.gather but without the restriction that we can only access the 1st dimension.

Collecting elements from a tensor of rank 2

To access the element at (1, 2) in a matrix, we can use:

# data is [[0, 1, 2, 3, 4, 5], 
#          [6, 7, 8, 9, 10, 11], 
#          [12 13 14 15 16 17], 
#          [18 19 20 21 22 23], 
#          [24, 25, 26, 27, 28, 29]] 
data = np.reshape(np.arange(30), [5, 6]) 
x = tf.constant(data) 
result = tf.gather_nd(x, [1, 2])

where result will just be 8 as expected. Note how this is different from tf.gather: the same indices 
passed to tf.gather(x, [1, 2]) would have given as the 2nd and 3rd row from data.

If you want to retrieve more than one element at the same time, just pass a list of index pairs:
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result = tf.gather_nd(x, [[1, 2], [4, 3], [2, 5]])

which will return [ 8 27 17]

Collecting rows from a tensor of rank 2

If in the above example you want to collect rows (i.e. slices) instead of elements, adjust the indices 
parameter as follows:

data = np.reshape(np.arange(30), [5, 6]) 
x = tf.constant(data) 
result = tf.gather_nd(x, [[1], [3]])

This will give you the 2nd and 4th row of data, i.e.

[[ 6  7  8  9 10 11] 
 [18 19 20 21 22 23]]

Collecting elements from a tensor of rank 3

The concept of how to access rank-2 tensors directly translates to higher dimensional tensors. So, 
to access elements in a rank-3 tensor, the innermost dimension of indices must have length 3.

# data is [[[ 0  1] 
#          [ 2  3] 
#          [ 4  5]] 
# 
#         [[ 6  7] 
#          [ 8  9] 
#          [10 11]]] 
data = np.reshape(np.arange(12), [2, 3, 2]) 
x = tf.constant(data) 
result = tf.gather_nd(x, [[0, 0, 0], [1, 2, 1]])

result will now look like this: [ 0 11]

Collecting batched rows from a tensor of rank 3

Let's think of a rank-3 tensor as a batch of matrices shaped (batch_size, m, n). If you want to 
collect the first and second row for every element in the batch, you could use this:

# data is [[[ 0  1] 
#          [ 2  3] 
#          [ 4  5]] 
# 
#         [[ 6  7] 
#          [ 8  9] 
#          [10 11]]] 
data = np.reshape(np.arange(12), [2, 3, 2]) 
x = tf.constant(data) 
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result = tf.gather_nd(x, [[[0, 0], [0, 1]], [[1, 0], [1, 1]]])

which will result in this:

[[[0 1] 
  [2 3]] 
 
 [[6 7] 
  [8 9]]]

Note how the shape of indices influences the shape of the output tensor. If we would have used a 
rank-2 tensor for the indices argument:

result = tf.gather_nd(x, [[0, 0], [0, 1], [1, 0], [1, 1]])

the output would have been

[[0 1] 
 [2 3] 
 [6 7] 
 [8 9]]

Read Tensor indexing online: https://riptutorial.com/tensorflow/topic/2511/tensor-indexing

https://riptutorial.com/ 54

https://riptutorial.com/tensorflow/topic/2511/tensor-indexing


Chapter 18: TensorFlow GPU setup

Introduction

This topic is about setting up and managing GPUs in TensorFlow.

It assumes that the GPU version of TensorFlow has been installed (see 
https://www.tensorflow.org/install/ for more information on the GPU installation).

You also might want to have a look to the official documentation: 
https://www.tensorflow.org/tutorials/using_gpu

Remarks

Main sources:

https://www.tensorflow.org•
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/protobuf/config.proto•
https://stackoverflow.com/a/37901914•
https://github.com/tensorflow/tensorflow/issues/152•
https://github.com/tensorflow/tensorflow/issue/9201•

Examples

Run TensorFlow on CPU only - using the `CUDA_VISIBLE_DEVICES` 
environment variable.

To ensure that a GPU version TensorFlow process only runs on CPU:

import os 
os.environ["CUDA_VISIBLE_DEVICES"]="-1" 
import tensorflow as tf

For more information on the CUDA_VISIBLE_DEVICES, have a look to this answer or to the CUDA 
documentation.

Run TensorFlow Graph on CPU only - using `tf.config`

import tensorflow as tf 
sess = tf.Session(config=tf.ConfigProto(device_count={'GPU': 0}))

Bear in mind that this method prevents the TensorFlow Graph from using the GPU but TensorFlow 
still lock the GPU device as described in this an issue opened on this method. Using the 
CUDA_VISIBLE_DEVICES seems to be the best way to ensure that TensorFlow is kept away from the 
GPU card (see this answer).
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Use a particular set of GPU devices

To use a particular set of GPU devices, the CUDA_VISIBLE_DEVICES environment variable can be 
used:

import os 
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152 
os.environ["CUDA_VISIBLE_DEVICES"]="0" # Will use only the first GPU device 
 
 
os.environ["CUDA_VISIBLE_DEVICES"]="0,3" # Will use only the first and the fourth GPU devices

(Quoted from this answer; more information on the CUDA environment variables here.)

List the available devices available by TensorFlow in the local process.

from tensorflow.python.client import device_lib 
print(device_lib.list_local_devices())

Control the GPU memory allocation

By default, TensorFlow pre-allocate the whole memory of the GPU card (which can causes 
CUDA_OUT_OF_MEMORY warning).

To change this, it is possible to

change the percentage of memory pre-allocated, using per_process_gpu_memory_fraction 
config option,

A value between 0 and 1 that indicates what fraction of the 
available GPU memory to pre-allocate for each process. 1 means 
to pre-allocate all of the GPU memory, 0.5 means the process 
allocates ~50% of the available GPU memory.

•

disable the pre-allocation, using allow_growth config option. Memory allocation will grow as 
usage grows.

If true, the allocator does not pre-allocate the entire specified 
GPU memory region, instead starting small and growing as needed.

•

For example:

config = tf.ConfigProto() 
config.gpu_options.per_process_gpu_memory_fraction = 0.4 
sess = tf.Session(config=config) as sess:

or

config = tf.ConfigProto() 
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config.gpu_options.allow_growth = True 
sess= tf.Session(config=config):

More information on the config options here.

Read TensorFlow GPU setup online: https://riptutorial.com/tensorflow/topic/10621/tensorflow-gpu-
setup
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Chapter 19: Using 1D convolution

Examples

Basic example

Update: TensorFlow now supports 1D convolution since version r0.11, using tf.nn.conv1d.

Consider a basic example with an input of length 10, and dimension 16. The batch size is 32. We 
therefore have a placeholder with input shape [batch_size, 10, 16].

batch_size = 32 
x = tf.placeholder(tf.float32, [batch_size, 10, 16])

We then create a filter with width 3, and we take 16 channels as input, and output also 16 
channels.

filter = tf.zeros([3, 16, 16])  # these should be real values, not 0

Finally we apply tf.nn.conv1d with a stride and a padding:

stride: integer s•
padding: this works like in 2D, you can choose between SAME and VALID. SAME will output the 
same input length, while VALID will not add zero padding.

•

For our example we take a stride of 2, and a valid padding.

output = tf.nn.conv1d(x, filter, stride=2, padding="VALID")

The output shape should be [batch_size, 4, 16]. 
With padding="SAME", we would have had an output shape of [batch_size, 5, 16].

For previous versions of TensorFlow, you can just use 2D convolutions while setting the height of 
the inputs and the filters to 1.

Math behind 1D convolution with advanced examples in TF

`To calculate 1D convolution by hand, you slide your kernel over the input, calculate the element-
wise multiplications and sum them up.

The easiest way is for padding=0, stride=1
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So if your input = [1, 0, 2, 3, 0, 1, 1] and kernel = [2, 1, 3] the result of the convolution is [8, 
11, 7, 9, 4], which is calculated in the following way:

8 = 1 * 2 + 0 * 1 + 2 * 3•
11 = 0 * 2 + 2 * 1 + 3 * 3•
7 = 2 * 2 + 3 * 1 + 0 * 3•
9 = 3 * 2 + 0 * 1 + 1 * 3•
4 = 0 * 2 + 1 * 1 + 1 * 3•

TF's conv1d function calculates convolutions in batches, so in order to do this in TF, we need to 
provide the data in the correct format (doc explains that input should be in [batch, in_width, 
in_channels], it also explains how kernel should look like). So

import tensorflow as tf 
i = tf.constant([1, 0, 2, 3, 0, 1, 1], dtype=tf.float32, name='i') 
k = tf.constant([2, 1, 3], dtype=tf.float32, name='k') 
 
print i, '\n', k, '\n' 
 
data   = tf.reshape(i, [1, int(i.shape[0]), 1], name='data') 
kernel = tf.reshape(k, [int(k.shape[0]), 1, 1], name='kernel') 
 
print data, '\n', kernel, '\n' 
 
res = tf.squeeze(tf.nn.conv1d(data, kernel, 1, 'VALID')) 
with tf.Session() as sess: 
    print sess.run(res)

which will give you the same answer we calculated previously: [ 8. 11. 7. 9. 4.]

Convolution with padding

Padding is just a fancy way to tell append and prepend your input with some value. In most of the 
cases this value is 0, and this is why most of the time people name it zero-padding. TF support 
'VALID' and 'SAME' zero-padding, for an arbitrary padding you need to use tf.pad(). 'VALID' 
padding means no padding at all, where the same means that the output will have the same size 
of the input. Let's calculate the convolution with padding=1 on the same example (notice that for our 
kernel this is 'SAME' padding). To do this we just append our array with 1 zero at the 
beginning/end: input = [0, 1, 0, 2, 3, 0, 1, 1, 0].

Here you can notice that you do not need to recalculate everything: all the elements stay the same 
except of the first/last one which are:

1 = 0 * 2 + 1 * 1 + 0 * 3•
3 = 1 * 2 + 1 * 1 + 0 * 3•

So the result is [1, 8, 11, 7, 9, 4, 3] which is the same as calculated with TF:

res = tf.squeeze(tf.nn.conv1d(data, kernel, 1, 'SAME')) 
with tf.Session() as sess: 
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    print sess.run(res)

Convolution with strides

Strides allow you to skip elements while sliding. In all our previous examples we slided 1 element, 
now you can slide s elements at a time. Because we will use a previous example, there is a trick: 
sliding by n elements is equivalent to sliding by 1 element and selecting every n-th element.

So if we use our previous example with padding=1 and change stride to 2, you just take the 
previous result [1, 8, 11, 7, 9, 4, 3] and leave each 2-nd element, which will result in [1, 11, 9, 
3]. You can do this in TF in the following way:

res = tf.squeeze(tf.nn.conv1d(data, kernel, 2, 'SAME')) 
with tf.Session() as sess: 
    print sess.run(res)

Read Using 1D convolution online: https://riptutorial.com/tensorflow/topic/5447/using-1d-
convolution
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Chapter 20: Using Batch Normalization

Parameters

contrib.layers.batch_norm 
params

Remarks

beta python bool type. Whether or not to center the moving_mean and 
moving_variance

------ ------

gamma python bool type. Whether or not to scale the moving_mean and 
moving_variance

------ ------

is_training Accepts python bool or TensorFlow tf.palceholder(tf.bool)

------ ------

decay
The default setting is decay=0.999. A smaller value (i.e. 
decay=0.9) is better for smaller dataset and/or less training 
steps.

Remarks

Here is a screen shot of the result of the working example above.
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The code and a jupyter notebook version of this working example can be found at the author's 
repository

Examples

A Full Working Example of 2-layer Neural Network with Batch Normalization 
(MNIST Dataset)

Import libraries (language dependency: 
python 2.7)

import tensorflow as tf 
import numpy as np 
from sklearn.datasets import fetch_mldata 
from sklearn.model_selection import train_test_split

load data, prepare data

mnist = fetch_mldata('MNIST original', data_home='./') 
print "MNIST data, X shape\t", mnist.data.shape 
print "MNIST data, y shape\t", mnist.target.shape 
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print mnist.data.dtype 
print mnist.target.dtype 
 
mnist_X = mnist.data.astype(np.float32) 
mnist_y = mnist.target.astype(np.float32) 
print mnist_X.dtype 
print mnist_y.dtype

One-Hot-Encode y

num_classes = 10 
mnist_y = np.arange(num_classes)==mnist_y[:, None] 
mnist_y = mnist_y.astype(np.float32) 
print mnist_y.shape

Split training, validation, testing data

train_X, valid_X, train_y, valid_y = train_test_split(mnist_X, mnist_y, 
test_size=10000,\ 
                                                  random_state=102,  stratify=mnist.target) 
train_X, test_X,  train_y, test_y  = train_test_split(train_X, train_y,     test_size=10000,\ 
                                                 random_state=325, stratify=train_y) 
print 'Dataset\t\tFeatureShape\tLabelShape' 
print 'Training set:\t', train_X.shape,'\t', train_y.shape 
print 'Validation set:\t', valid_X.shape,'\t', valid_y.shape 
print 'Testing set:\t', test_X.shape, '\t', test_y.shape

Build a simple 2 layer neural network graph

num_features = train_X.shape[1] 
batch_size = 64 
hidden_layer_size = 1024

An initialization function

def initialize(scope, shape, wt_initializer, center=True, scale=True): 
    with tf.variable_scope(scope, reuse=None) as sp: 
        wt = tf.get_variable("weights", shape, initializer=wt_initializer) 
        bi = tf.get_variable("biases", shape[-1], initializer=tf.constant_initializer(1.)) 
        if center: 
            beta = tf.get_variable("beta", shape[-1], 
initializer=tf.constant_initializer(0.0)) 
        if scale: 
            gamma = tf.get_variable("gamma", shape[-1], 
initializer=tf.constant_initializer(1.0)) 
        moving_avg = tf.get_variable("moving_mean", shape[-1], 
initializer=tf.constant_initializer(0.0), \ 

https://riptutorial.com/ 63



                                 trainable=False) 
        moving_var = tf.get_variable("moving_variance", shape[-1], 
initializer=tf.constant_initializer(1.0), \ 
                                 trainable=False) 
    sp.reuse_variables()

Build Graph

init_lr = 0.001 
graph = tf.Graph() 
with graph.as_default(): 
    # prepare input tensor 
    tf_train_X = tf.placeholder(tf.float32, shape=[batch_size, num_features]) 
    tf_train_y = tf.placeholder(tf.float32, shape=[batch_size, num_classes]) 
    tf_valid_X, tf_valid_y = tf.constant(valid_X), tf.constant(valid_y) 
    tf_test_X,  tf_test_y  = tf.constant(test_X),  tf.constant(test_y) 
 
    # setup layers 
    layers = [{'scope':'hidden_layer', 'shape':[num_features, hidden_layer_size], 
           'initializer':tf.truncated_normal_initializer(stddev=0.01)}, 
          {'scope':'output_layer', 'shape':[hidden_layer_size, num_classes], 
           'initializer':tf.truncated_normal_initializer(stddev=0.01)}] 
    # initialize layers 
    for layer in layers: 
        initialize(layer['scope'], layer['shape'], layer['initializer']) 
 
    # build model - for each layer: -> X -> X*wt+bi -> batch_norm -> activation -> dropout (if 
not output layer) -> 
    layer_scopes = [layer['scope'] for layer in layers] 
    def model(X, layer_scopes, is_training, keep_prob, decay=0.9): 
        output_X = X 
        for scope in layer_scopes: 
            # X*wt+bi 
            with tf.variable_scope(scope, reuse=True): 
                wt = tf.get_variable("weights") 
                bi = tf.get_variable("biases") 
            output_X = tf.matmul(output_X, wt) + bi 
            # Insert Batch Normalization 
            # set `updates_collections=None` to force updates in place however it comes with 
speed penalty 
            output_X = tf.contrib.layers.batch_norm(output_X, decay=decay, 
is_training=is_training, 
                                              updates_collections=ops.GraphKeys.UPDATE_OPS, 
scope=scope, reuse=True) 
            # ReLu activation 
            output_X = tf.nn.relu(output_X) 
            # Dropout for all non-output layers 
            if scope!=layer_scopes[-1]: 
                output_X = tf.nn.dropout(output_X, keep_prob) 
        return output_X 
 
    # setup keep_prob 
    keep_prob = tf.placeholder(tf.float32) 
 
    # compute loss, make predictions 
    train_logits = model(tf_train_X, layer_scopes, True, keep_prob) 
    train_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(train_logits, 
tf_train_y)) 
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    train_pred = tf.nn.softmax(train_logits) 
    valid_logits = model(tf_valid_X, layer_scopes, False, keep_prob) 
    valid_pred = tf.nn.softmax(valid_logits) 
    test_logits = model(tf_test_X, layer_scopes, False, keep_prob) 
    test_pred = tf.nn.softmax(test_logits) 
 
    # compute accuracy 
    def compute_accuracy(predictions, labels): 
        correct_predictions = tf.equal(tf.argmax(predictions, 1), tf.argmax(labels, 1)) 
        accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32)) 
        return accuracy 
 
    train_accuracy = compute_accuracy(train_pred, tf_train_y) 
    valid_accuracy = compute_accuracy(valid_pred, tf_valid_y) 
    test_accuracy  = compute_accuracy(test_pred , tf_test_y) 
 
    # setup learning rate, optimizer 
    global_step = tf.Variable(0) 
    learning_rate = tf.train.exponential_decay(init_lr,global_step, decay_steps=500, 
decay_rate=0.95, staircase=True) 
    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(train_loss, 
global_step=global_step)

Start a session

num_steps = 1000 
with tf.Session(graph=graph) as sess: 
    tf.initialize_all_variables().run() 
    print('Initialized') 
    for step in range(num_steps): 
        offset = (step * batch_size) % (train_y.shape[0] - batch_size) 
        batch_X = train_X[offset:(offset+batch_size), :] 
        batch_y = train_y[offset:(offset+batch_size), :] 
        feed_dict = {tf_train_X : batch_X, tf_train_y : batch_y, keep_prob : 0.6} 
        _, tloss, tacc = sess.run([optimizer, train_loss, train_accuracy], 
feed_dict=feed_dict) 
        if step%50==0: 
            # only evaluate validation accuracy every 50 steps to speed up training 
            vacc = sess.run(valid_accuracy, feed_dict={keep_prob : 1.0}) 
            print('Epoch: %d:\tLoss: %f\t\tTrain Acc: %.2f%%\tValid Acc: %2.f%%\tLearning 
rate: %.6f' \ 
                %(step, tloss, (tacc*100), (vacc*100), learning_rate.eval())) 
    print("Finished training") 
    tacc = sess.run([test_accuracy], feed_dict={keep_prob : 1.0}) 
    print("Test accuracy: %4f%%" %(tacc*100))

Read Using Batch Normalization online: https://riptutorial.com/tensorflow/topic/7909/using-batch-
normalization
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Chapter 21: Using if condition inside the 
TensorFlow graph with tf.cond

Parameters

Parameter Details

pred a TensorFlow tensor of type bool

fn1 a callable function, with no argument

fn2 a callable function, with no argument

name (optional) name for the operation

Remarks

pred cannot be just True or False, it needs to be a Tensor•
The function fn1 and fn2 should return the same number of outputs, with the same types.•

Examples

Basic example

x = tf.constant(1.) 
bool = tf.constant(True) 
 
res = tf.cond(bool, lambda: tf.add(x, 1.), lambda: tf.add(x, 10.)) 
# sess.run(res) will give you 2.

When f1 and f2 return multiple tensors

The two functions fn1 and fn2 can return multiple tensors, but they have to return the exact same 
number and types of outputs.

x = tf.constant(1.) 
bool = tf.constant(True) 
 
def fn1(): 
    return tf.add(x, 1.), x 
 
def fn2(): 
    return tf.add(x, 10.), x 
 
res1, res2 = tf.cond(bool, fn1, fn2) 
# tf.cond returns a list of two tensors 
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# sess.run([res1, res2]) will return [2., 1.]

define and use functions f1 and f2 with parameters

You can pass parameters to the functions in tf.cond() using lambda and the code is as bellow.

x = tf.placeholder(tf.float32) 
y = tf.placeholder(tf.float32) 
z = tf.placeholder(tf.float32) 
 
def fn1(a, b): 
  return tf.mul(a, b) 
 
def fn2(a, b): 
  return tf.add(a, b) 
 
pred = tf.placeholder(tf.bool) 
result = tf.cond(pred, lambda: fn1(x, y), lambda: fn2(y, z))

Then you can call it as bellowing:

with tf.Session() as sess: 
  print sess.run(result, feed_dict={x: 1, y: 2, z: 3, pred: True}) 
  # The result is 2.0 
  print sess.run(result, feed_dict={x: 1, y: 2, z: 3, pred: False}) 
  # The result is 5.0

Read Using if condition inside the TensorFlow graph with tf.cond online: 
https://riptutorial.com/tensorflow/topic/2628/using-if-condition-inside-the-tensorflow-graph-with-tf-
cond
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Chapter 22: Using transposed convolution 
layers

Examples

Using tf.nn.conv2d_transpose for arbitary batch sizes and with automatic 
output shape calculation.

Example of how to calculate the output shape and overcome the difficulties of using 
tf.nn.conv2d_transpose with unknown batch size (when input.get_shape() is (?, H, W, C) or (?, C, 
H, W)).

def upconvolution (input, output_channel_size, filter_size_h, filter_size_w, 
                   stride_h, stride_w, init_w, init_b, layer_name, 
                   dtype=tf.float32, data_format="NHWC", padding='VALID'): 
    with tf.variable_scope(layer_name): 
      #calculation of the output_shape: 
      if data_format == "NHWC": 
        input_channel_size = input.get_shape().as_list()[3] 
        input_size_h = input.get_shape().as_list()[1] 
        input_size_w = input.get_shape().as_list()[2] 
        stride_shape = [1, stride_h, stride_w, 1] 
        if padding == 'VALID': 
          output_size_h = (input_size_h - 1)*stride_h + filter_size_h 
          output_size_w = (input_size_w - 1)*stride_w + filter_size_w 
        elif padding == 'SAME': 
          output_size_h = (input_size_h - 1)*stride_h + 1 
          output_size_w = (input_size_w - 1)*stride_w + 1 
        else: 
          raise ValueError("unknown padding") 
        output_shape = tf.stack([tf.shape(input)[0], 
                                output_size_h, output_size_w, 
                                output_channel_size]) 
      elif data_format == "NCHW": 
        input_channel_size = input.get_shape().as_list()[1] 
        input_size_h = input.get_shape().as_list()[2] 
        input_size_w = input.get_shape().as_list()[3] 
        stride_shape = [1, 1, stride_h, stride_w] 
        if padding == 'VALID': 
          output_size_h = (input_size_h - 1)*stride_h + filter_size_h 
          output_size_w = (input_size_w - 1)*stride_w + filter_size_w 
        elif padding == 'SAME': 
          output_size_h = (input_size_h - 1)*stride_h + 1 
          output_size_w = (input_size_w - 1)*stride_w + 1 
        else: 
          raise ValueError("unknown padding") 
        output_shape = tf.stack([tf.shape(input)[0], 
                                output_channel_size, 
                                output_size_h, output_size_w]) 
      else: 
        raise ValueError("unknown data_format") 
 
      #creating weights: 
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      shape = [filter_size_h, filter_size_w, 
               output_channel_size, input_channel_size] 
      W_upconv = tf.get_variable("w", shape=shape, dtype=dtype, 
                                 initializer=init_w) 
 
      shape=[output_channel_size] 
      b_upconv = tf.get_variable("b", shape=shape, dtype=dtype, 
                                 initializer=init_b) 
 
      upconv = tf.nn.conv2d_transpose(input, W_upconv, output_shape, stride_shape, 
                                      padding=padding, 
                                      data_format=data_format) 
      output = tf.nn.bias_add(upconv, b_upconv, data_format=data_format) 
 
      #Now output.get_shape() is equal (?,?,?,?) which can become a problem in the 
      #next layers. This can be repaired by reshaping the tensor to its shape: 
      output = tf.reshape(output, output_shape) 
      #now the shape is back to (?, H, W, C) or (?, C, H, W) 
 
      return output

Read Using transposed convolution layers online: 
https://riptutorial.com/tensorflow/topic/9640/using-transposed-convolution-layers
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Chapter 23: Variables

Examples

Declaring and Initializing Variable Tensors

Variable tensors are used when the values require updating within a session. It is the type of 
tensor that would be used for the weights matrix when creating neural networks, since these 
values will be updated as the model is being trained.

Declaring a variable tensor can be done using the tf.Variable() or tf.get_variable()function. It is 
recommended to use tf.get_variable, as it offers more flexibility eg:

# Declare a 2 by 3 tensor populated by ones 
a = tf.Variable(tf.ones([2,3], dtype=tf.float32)) 
a = tf.get_variable('a', shape=[2, 3], initializer=tf.constant_initializer(1))

Something to note is that declaring a variable tensor does not automatically initialize the values. 
The values need to be intialized explicitly when starting a session using one of the following:

tf.global_variables_initializer().run()•
session.run(tf.global_variables_initializer())•

The following example shows the full process of declaring and initializing a variable tensor.

# Build a graph 
graph = tf.Graph() 
with graph.as_default(): 
    a = tf.get_variable('a', shape=[2,3], initializer=tf.constant_initializer(1), 
dtype=tf.float32))     # Create a variable tensor 
 
# Create a session, and run the graph 
with tf.Session(graph=graph) as session: 
    tf.global_variables_initializer().run()  # Initialize values of all variable tensors 
    output_a = session.run(a)            # Return the value of the variable tensor 
    print(output_a)                      # Print this value

Which prints out the following:

[[ 1.  1.  1.] 
 [ 1.  1.  1.]]

Fetch the value of a TensorFlow variable or a Tensor

Sometimes we need to fetch and print the value of a TensorFlow variable to guarantee our 
program is correct.

For example, if we have the following program:
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import tensorflow as tf 
import numpy as np 
a = tf.Variable(tf.random_normal([2,3])) # declare a tensorflow variable 
b = tf.random_normal([2,2]) #declare a tensorflow tensor 
init = tf.initialize_all_variables()

if we want to get the value of a or b, the following procedures can be used:

with tf.Session() as sess: 
    sess.run(init) 
    a_value = sess.run(a) 
    b_value = sess.run(b) 
    print a_value 
    print b_value

or

with tf.Session() as sess: 
    sess.run(init) 
    a_value = a.eval() 
    b_value = b.eval() 
    print a_value 
    print b_value

Read Variables online: https://riptutorial.com/tensorflow/topic/2954/variables
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Chapter 24: Visualizing the output of a 
convolutional layer

Introduction

There are many ways of visualizing the convolutional layers, but they share same components: 
fetching the values of a part of the convolutional neural networks, and visualizing those values. 
Note those visualizations should not and can not display on the TensorBoard.

Examples

A basic example of 2 steps

The example assumes you have successfully run and fully understand the tutorial of MNIST(Deep 
MNIST for expert).

%matplotlib inline 
import matplotlib.pyplot as plt 
 
# con_val is a 4-d array, the first indicates the index of image, the last indicates the index 
of kernel 
def display(con_val, kernel): 
    plt.axis('off') 
    plt.imshow(np.sum(con_val[:, :, :, kernel], axis=0), cmap=plt.get_cmap('gray')) 
    plt.show()

The above function visualizes an array (con_val) containing the values of a convolutional layer 
given the kernel. The function sums up the values of all examples and plot them in gray-scale.

The following codes fetch values from the first convolutional layer and call the above function to 
display.

labels = np.nonzero(mnist.test.labels)[1] # convert "one-hot vectors" to digits (0-9) 
 
for i in range(2): # display only 0 and 1 
    con_val = h_pool1.eval(feed_dict={x:mnist.test.images[labels == i, :]}) #fetch 
    display(con_val, 3)

The codes only plot the visualizations corresponding to labels of 0 and 1. You will be able to see 
the results as these.
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Read Visualizing the output of a convolutional layer online: 
https://riptutorial.com/tensorflow/topic/9346/visualizing-the-output-of-a-convolutional-layer
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