
tensorflow

#tensorflow

Table of Contents

About 1

Chapter 1: Getting started with tensorflow 2

Remarks 2

Examples 2

Installation or Setup 2

Basic Example 2

Linear Regression 2

Tensorflow Basics 4

Counting to 10 6

Chapter 2: Creating a custom operation with tf.py_func (CPU only) 7

Parameters 7

Examples 7

Basic example 7

Why to use tf.py_func 7

Chapter 3: Creating RNN, LSTM and bidirectional RNN/LSTMs with TensorFlow 9

Examples 9

Creating a bidirectional LSTM 9

Chapter 4: How to debug a memory leak in TensorFlow 10

Examples 10

Use Graph.finalize() to catch nodes being added to the graph 10

Use the tcmalloc allocator 10

Chapter 5: How to use TensorFlow Graph Collections? 12

Remarks 12

Examples 12

Create your own collection and use it to collect all your losses. 12

Collect variables from nested scopes 13

Chapter 6: Math behind 2D convolution with advanced examples in TF 15

Introduction 15

Examples 15

No padding, strides=1 15

Some padding, strides=1 16

Padding and strides (the most general case) 17

Chapter 7: Matrix and Vector Arithmetic 18

Examples 18

Elementwise Multiplication 18

Scalar Times a Tensor 18

Dot Product 19

Chapter 8: Measure the execution time of individual operations 21

Examples 21

Basic example with TensorFlow's Timeline object 21

Chapter 9: Minimalist example code for distributed Tensorflow. 23

Introduction 23

Examples 23

Distributed training example 23

Chapter 10: Multidimensional softmax 25

Examples 25

Creating a Softmax Output Layer 25

Computing Costs on a Softmax Output Layer 25

Chapter 11: Placeholders 26

Parameters 26

Examples 26

Basics of Placeholders 26

Placeholder with Default 27

Chapter 12: Q-learning 29

Examples 29

Minimal Example 29

Chapter 13: Reading the data 34

Examples 34

Count examples in CSV file 34

Read & Parse TFRecord file 34

Random shuffling the examples 35

Reading data for n epochs with batching 36

How to load images and labels from a TXT file 36

Chapter 14: Save and Restore a Model in TensorFlow 39

Introduction 39

Remarks 39

Examples 40

Saving the model 40

Restoring the model 41

Chapter 15: Save Tensorflow model in Python and load with Java 43

Introduction 43

Remarks 43

Examples 43

Create and save a model with Python 43

Load and use the model in Java. 43

Chapter 16: Simple linear regression structure in TensorFlow with Python 45

Introduction 45

Parameters 45

Remarks 45

Examples 46

Simple regression function code structure 46

Main Routine 47

Normalization Routine 47

Read Data routine 47

Chapter 17: Tensor indexing 49

Introduction 49

Examples 49

Extract a slice from a tensor 49

Extract non-contiguous slices from the first dimension of a tensor 49

Numpy-like indexing using tensors 51

How to use tf.gather_nd 52

Chapter 18: TensorFlow GPU setup 55

Introduction 55

Remarks 55

Examples 55

Run TensorFlow on CPU only - using the `CUDA_VISIBLE_DEVICES` environment variable. 55

Run TensorFlow Graph on CPU only - using `tf.config` 55

Use a particular set of GPU devices 56

List the available devices available by TensorFlow in the local process. 56

Control the GPU memory allocation 56

Chapter 19: Using 1D convolution 58

Examples 58

Basic example 58

Math behind 1D convolution with advanced examples in TF 58

The easiest way is for padding=0, stride=1 58

Convolution with padding 59

Convolution with strides 60

Chapter 20: Using Batch Normalization 61

Parameters 61

Remarks 61

Examples 62

A Full Working Example of 2-layer Neural Network with Batch Normalization (MNIST Dataset) 62

Import libraries (language dependency: python 2.7) 62

load data, prepare data 62

One-Hot-Encode y 63

Split training, validation, testing data 63

Build a simple 2 layer neural network graph 63

An initialization function 63

Build Graph 64

Start a session 65

Chapter 21: Using if condition inside the TensorFlow graph with tf.cond 66

Parameters 66

Remarks 66

Examples 66

Basic example 66

When f1 and f2 return multiple tensors 66

define and use functions f1 and f2 with parameters 67

Chapter 22: Using transposed convolution layers 68

Examples 68

Using tf.nn.conv2d_transpose for arbitary batch sizes and with automatic output shape calc 68

Chapter 23: Variables 70

Examples 70

Declaring and Initializing Variable Tensors 70

Fetch the value of a TensorFlow variable or a Tensor 70

Chapter 24: Visualizing the output of a convolutional layer 72

Introduction 72

Examples 72

A basic example of 2 steps 72

Credits 74

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: tensorflow

It is an unofficial and free tensorflow ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official tensorflow.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/tensorflow
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with tensorflow

Remarks

This section provides an overview of what tensorflow is, and why a developer might want to use it.

It should also mention any large subjects within tensorflow, and link out to the related topics. Since
the Documentation for tensorflow is new, you may need to create initial versions of those related
topics.

Examples

Installation or Setup

As of Tensorflow version 1.0 installation has become much easier to perform. At minimum to
install TensorFlow one needs pip installed on their machine with a python version of at least 2.7 or
3.3+.

pip install --upgrade tensorflow # for Python 2.7
pip3 install --upgrade tensorflow # for Python 3.n

For tensorflow on a GPU machine (as of 1.0 requires CUDA 8.0 and cudnn 5.1, AMD GPU not
supported)

pip install --upgrade tensorflow-gpu # for Python 2.7 and GPU
pip3 install --upgrade tensorflow-gpu # for Python 3.n and GPU

To test if it worked open up the correct version of python 2 or 3 and run

import tensorflow

If that succeeded without error then you have tensorflow installed on your machine.

*Be aware this references the master branch one can change this on the link above to reference
the current stable release.)

Basic Example

Tensorflow is more than just a deep learning framework. It is a general computation framework to
perform general mathematical operations in a parallel and distributed manner. An example of such
is described below.

https://riptutorial.com/ 2

Linear Regression

A basic statistical example that is commonly utilized and is rather simple to compute is fitting a line
to a dataset. The method to do so in tensorflow is described below in code and comments.

The main steps of the (TensorFlow) script are:

Declare placeholders (x_ph, y_ph) and variables (W, b)1.
Define the initialization operator (init)2.
Declare operations on the placeholders and variables (y_pred, loss, train_op)3.
Create a session (sess)4.
Run the initialization operator (sess.run(init))5.
Run some graph operations (e.g. sess.run([train_op, loss], feed_dict={x_ph: x, y_ph: y}))6.

The graph construction is done using the Python TensorFlow API (could also be done using the
C++ TensorFlow API). Running the graph will call low-level C++ routines.

'''
function: create a linear model which try to fit the line
 y = x + 2 using SGD optimizer to minimize
 root-mean-square(RMS) loss function

'''
import tensorflow as tf
import numpy as np

number of epoch
num_epoch = 100

training data x and label y
x = np.array([0., 1., 2., 3.], dtype=np.float32)
y = np.array([2., 3., 4., 5.], dtype=np.float32)

convert x and y to 4x1 matrix
x = np.reshape(x, [4, 1])
y = np.reshape(y, [4, 1])

test set(using a little trick)
x_test = x + 0.5
y_test = y + 0.5

This part of the script builds the TensorFlow graph using the Python API

First declare placeholders for input x and label y
Placeholders are TensorFlow variables requiring to be explicitly fed by some
input data
x_ph = tf.placeholder(tf.float32, shape=[None, 1])
y_ph = tf.placeholder(tf.float32, shape=[None, 1])

Variables (if not specified) will be learnt as the GradientDescentOptimizer
is run
Declare weight variable initialized using a truncated_normal law
W = tf.Variable(tf.truncated_normal([1, 1], stddev=0.1))
Declare bias variable initialized to a constant 0.1
b = tf.Variable(tf.constant(0.1, shape=[1]))

https://riptutorial.com/ 3

http://www.riptutorial.com/tensorflow/example/10032/basics-of-placeholders
http://www.riptutorial.com/tensorflow/example/10036/declaring-and-initializing-variable-tensors

Initialize variables just declared
init = tf.initialize_all_variables()

In this part of the script, we build operators storing operations
on the previous variables and placeholders.
model: y = w * x + b
y_pred = x_ph * W + b

loss function
loss = tf.mul(tf.reduce_mean(tf.square(tf.sub(y_pred, y_ph))), 1. / 2)
create training graph
train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

This part of the script runs the TensorFlow graph (variables and operations
operators) just built.
with tf.Session() as sess:
 # initialize all the variables by running the initializer operator
 sess.run(init)
 for epoch in xrange(num_epoch):
 # Run sequentially the train_op and loss operators with
 # x_ph and y_ph placeholders fed by variables x and y
 _, loss_val = sess.run([train_op, loss], feed_dict={x_ph: x, y_ph: y})
 print('epoch %d: loss is %.4f' % (epoch, loss_val))

 # see what model do in the test set
 # by evaluating the y_pred operator using the x_test data
 test_val = sess.run(y_pred, feed_dict={x_ph: x_test})
 print('ground truth y is: %s' % y_test.flatten())
 print('predict y is : %s' % test_val.flatten())

Tensorflow Basics

Tensorflow works on principle of dataflow graphs. To perform some computation there are two
steps:

Represent the computation as a graph.1.
Execute the graph.2.

Representation: Like any directed graph a Tensorflow graph consists of nodes and directional
edges.

Node: A Node is also called an Op(stands for operation). An node can have multiple incoming
edges but single outgoing edge.

Edge: Indicate incoming or outgoing data from a Node. In this case input(s) and output of some
Node(Op).

Whenever we say data we mean an n-dimensional vector known as Tensor. A Tensor has three
properties: Rank, Shape and Type

Rank means number of dimensions of the Tensor(a cube or box has rank 3).•
Shape means values of those dimensions(box can have shape 1x1x1 or 2x5x7).•
Type means datatype in each coordinate of Tensor.•

https://riptutorial.com/ 4

Execution: Even though a graph is constructed it is still an abstract entity. No computation
actually occurs until we run it. To run a graph, we need to allocate CPU resource to Ops inside the
graph. This is done using Tensorflow Sessions. Steps are:

Create a new session.1.
Run any Op inside the Graph. Usually we run the final Op where we expect the output of our
computation.

2.

An incoming edge on an Op is like a dependency for data on another Op. Thus when we run any
Op, all incoming edges on it are traced and the ops on other side are also run.

Note: Special nodes called playing role of data source or sink are also possible. For example you
can have an Op which gives a constant value thus no incoming edges(refer value 'matrix1' in the
example below) and similarly Op with no outgoing edges where results are collected(refer value
'product' in the example below).

Example:

import tensorflow as tf

Create a Constant op that produces a 1x2 matrix. The op is
added as a node to the default graph.

The value returned by the constructor represents the output
of the Constant op.
matrix1 = tf.constant([[3., 3.]])

Create another Constant that produces a 2x1 matrix.
matrix2 = tf.constant([[2.],[2.]])

Create a Matmul op that takes 'matrix1' and 'matrix2' as inputs.
The returned value, 'product', represents the result of the matrix
multiplication.
product = tf.matmul(matrix1, matrix2)

Launch the default graph.
sess = tf.Session()

To run the matmul op we call the session 'run()' method, passing 'product'
which represents the output of the matmul op. This indicates to the call
that we want to get the output of the matmul op back.

https://riptutorial.com/ 5

https://i.stack.imgur.com/2rIm0.jpg

All inputs needed by the op are run automatically by the session. They
typically are run in parallel.

The call 'run(product)' thus causes the execution of three ops in the
graph: the two constants and matmul.

The output of the op is returned in 'result' as a numpy `ndarray` object.
result = sess.run(product)
print(result)
==> [[12.]]

Close the Session when we're done.
sess.close()

Counting to 10

In this example we use Tensorflow to count to 10. Yes this is total overkill, but it is a nice example
to show an absolute minimal setup needed to use Tensorflow

import tensorflow as tf

create a variable, refer to it as 'state' and set it to 0
state = tf.Variable(0)

set one to a constant set to 1
one = tf.constant(1)

update phase adds state and one and then assigns to state
addition = tf.add(state, one)
update = tf.assign(state, addition)

create a session
with tf.Session() as sess:
 # initialize session variables
 sess.run(tf.global_variables_initializer())

 print "The starting state is",sess.run(state)

 print "Run the update 10 times..."
 for count in range(10):
 # execute the update
 sess.run(update)

 print "The end state is",sess.run(state)

The important thing to realize here is that state, one, addition, and update don't actually contain
values. Instead they are references to Tensorflow objects. The final result is not state, but instead
is retrieved by using a Tensorflow to evaluate it using sess.run(state)

This example is from https://github.com/panchishin/learn-to-tensorflow . There are several other
examples there and a nice graduated learning plan to get acquainted with manipulating the
Tensorflow graph in python.

Read Getting started with tensorflow online: https://riptutorial.com/tensorflow/topic/856/getting-
started-with-tensorflow

https://riptutorial.com/ 6

https://github.com/panchishin/learn-to-tensorflow
https://riptutorial.com/tensorflow/topic/856/getting-started-with-tensorflow
https://riptutorial.com/tensorflow/topic/856/getting-started-with-tensorflow

Chapter 2: Creating a custom operation with
tf.py_func (CPU only)

Parameters

Parameter Details

func
python function, which takes numpy arrays as its inputs and returns numpy
arrays as its outputs

inp list of Tensors (inputs)

Tout list of tensorflow data types for the outputs of func

Examples

Basic example

The tf.py_func(func, inp, Tout) operator creates a TensorFlow operation that calls a Python
function, func on a list of tensors inp.

See the documentation for tf.py_func(func, inp, Tout).

Warning: The tf.py_func() operation will only run on CPU. If you are using distributed
TensorFlow, the tf.py_func() operation must be placed on a CPU device in the same process as
the client.

def func(x):
 return 2*x

x = tf.constant(1.)
res = tf.py_func(func, [x], [tf.float32])
res is a list of length 1

Why to use tf.py_func

The tf.py_func() operator enables you to run arbitrary Python code in the middle of a TensorFlow
graph. It is particularly convenient for wrapping custom NumPy operators for which no equivalent
TensorFlow operator (yet) exists. Adding tf.py_func() is an alternative to using sess.run() calls
inside the graph.

Another way of doing that is to cut the graph in two parts:

Part 1 of the graph
inputs = ... # in the TF graph

https://riptutorial.com/ 7

https://www.tensorflow.org/versions/master/api_docs/python/script_ops.html#py_func

Get the numpy array and apply func
val = sess.run(inputs) # get the value of inputs
output_val = func(val) # numpy array

Part 2 of the graph
output = tf.placeholder(tf.float32, shape=...)
train_op = ...

We feed the output_val to the tensor output
sess.run(train_op, feed_dict={output: output_val})

With tf.py_func this is much easier:

Part 1 of the graph
inputs = ...

call to tf.py_func
output = tf.py_func(func, [inputs], [tf.float32])[0]

Part 2 of the graph
train_op = ...

Only one call to sess.run, no need of a intermediate placeholder
sess.run(train_op)

Read Creating a custom operation with tf.py_func (CPU only) online:
https://riptutorial.com/tensorflow/topic/3856/creating-a-custom-operation-with-tf-py-func--cpu-only-

https://riptutorial.com/ 8

https://riptutorial.com/tensorflow/topic/3856/creating-a-custom-operation-with-tf-py-func--cpu-only-

Chapter 3: Creating RNN, LSTM and
bidirectional RNN/LSTMs with TensorFlow

Examples

Creating a bidirectional LSTM

import tensorflow as tf

dims, layers = 32, 2
Creating the forward and backwards cells
lstm_fw_cell = tf.nn.rnn_cell.BasicLSTMCell(dims, forget_bias=1.0)
lstm_bw_cell = tf.nn.rnn_cell.BasicLSTMCell(dims, forget_bias=1.0)
Pass lstm_fw_cell / lstm_bw_cell directly to tf.nn.bidrectional_rnn
if only a single layer is needed
lstm_fw_multicell = tf.nn.rnn_cell.MultiRNNCell([lstm_fw_cell]*layers)
lstm_bw_multicell = tf.nn.rnn_cell.MultiRNNCell([lstm_bw_cell]*layers)

tf.nn.bidirectional_rnn takes a list of tensors with shape
[batch_size x cell_fw.state_size], so separate the input into discrete
timesteps.
_X = tf.unpack(state_below, axis=1)
state_fw and state_bw are the final states of the forwards/backwards LSTM, respectively
outputs, state_fw, state_bw = tf.nn.bidirectional_rnn(lstm_fw_multicell, lstm_bw_multicell,
_X, dtype='float32')

Parameters

state_below is a 3D tensor of with the following dimensions: [batch_size, maximum sequence
index, dims]. This comes from a previous operation, such as looking up a word embedding.

•

dims is the number of hidden units.•
layers can be adjusted above 1 to create a stacked LSTM network.•

Notes

tf.unpack may not be able to determine the size of a given axis (use the nums argument if this
is the case).

•

It may be helpful to add an additional weight + bias multiplication beneath the LSTM (e.g.
tf.matmul(state_below, U) + b.

•

Read Creating RNN, LSTM and bidirectional RNN/LSTMs with TensorFlow online:
https://riptutorial.com/tensorflow/topic/4827/creating-rnn--lstm-and-bidirectional-rnn-lstms-with-
tensorflow

https://riptutorial.com/ 9

https://riptutorial.com/tensorflow/topic/4827/creating-rnn--lstm-and-bidirectional-rnn-lstms-with-tensorflow
https://riptutorial.com/tensorflow/topic/4827/creating-rnn--lstm-and-bidirectional-rnn-lstms-with-tensorflow

Chapter 4: How to debug a memory leak in
TensorFlow

Examples

Use Graph.finalize() to catch nodes being added to the graph

The most common mode of using TensorFlow involves first building a dataflow graph of
TensorFlow operators (like tf.constant() and tf.matmul(), then running steps by calling the
tf.Session.run() method in a loop (e.g. a training loop).

A common source of memory leaks is where the training loop contains calls that add nodes to the
graph, and these run in every iteration, causing the graph to grow. These may be obvious (e.g. a
call to a TensorFlow operator like tf.square()), implicit (e.g. a call to a TensorFlow library function
that creates operators like tf.train.Saver()), or subtle (e.g. a call to an overloaded operator on a
tf.Tensor and a NumPy array, which implicitly calls tf.convert_to_tensor() and adds a new
tf.constant() to the graph).

The tf.Graph.finalize() method can help to catch leaks like this: it marks a graph as read-only,
and raises an exception if anything is added to the graph. For example:

loss = ...
train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
init = tf.initialize_all_variables()

with tf.Session() as sess:
 sess.run(init)
 sess.graph.finalize() # Graph is read-only after this statement.

 for _ in range(1000000):
 sess.run(train_op)
 loss_sq = tf.square(loss) # Exception will be thrown here.
 sess.run(loss_sq)

In this case, the overloaded * operator attempts to add new nodes to the graph:

loss = ...
...
with tf.Session() as sess:
 # ...
 sess.graph.finalize() # Graph is read-only after this statement.
 # ...
 dbl_loss = loss * 2.0 # Exception will be thrown here.

Use the tcmalloc allocator

To improve memory allocation performance, many TensorFlow users often use tcmalloc instead of
the default malloc() implementation, as tcmalloc suffers less from fragmentation when allocating

https://riptutorial.com/ 10

https://www.tensorflow.org/api_docs/python/tf/Session#run
https://www.tensorflow.org/api_docs/python/tf/Graph#finalize
http://goog-perftools.sourceforge.net/doc/tcmalloc.html

and deallocating large objects (such as many tensors). Some memory-intensive TensorFlow
programs have been known to leak heap address space (while freeing all of the individual objects
they use) with the default malloc(), but performed just fine after switching to tcmalloc. In addition,
tcmalloc includes a heap profiler, which makes it possible to track down where any remaining
leaks might have occurred.

The installation for tcmalloc will depend on your operating system, but the following works on
Ubuntu 14.04 (trusty) (where script.py is the name of your TensorFlow Python program):

$ sudo apt-get install google-perftools4
$ LD_PRELOAD=/usr/lib/libtcmalloc.so.4 python script.py ...

As noted above, simply switching to tcmalloc can fix a lot of apparent leaks. However, if the
memory usage is still growing, you can use the heap profiler as follows:

$ LD_PRELOAD=/usr/lib/libtcmalloc.so.4 HEAPPROFILE=/tmp/profile python script.py ...

After you run the above command, the program will periodically write profiles to the filesystem.
The sequence of profiles will be named:

/tmp/profile.0000.heap•
/tmp/profile.0001.heap•
/tmp/profile.0002.heap•
...•

You can read the profiles using the google-pprof tool, which (for example, on Ubuntu 14.04) can be
installed as part of the google-perftools package. For example, to look at the third snapshot
collected above:

$ google-pprof --gv `which python` /tmp/profile.0002.heap

Running the above command will pop up a GraphViz window, showing the profile information as a
directed graph.

Read How to debug a memory leak in TensorFlow online:
https://riptutorial.com/tensorflow/topic/3883/how-to-debug-a-memory-leak-in-tensorflow

https://riptutorial.com/ 11

http://goog-perftools.sourceforge.net/doc/heap_profiler.html
http://packages.ubuntu.com/trusty/libs/libtcmalloc-minimal4
https://riptutorial.com/tensorflow/topic/3883/how-to-debug-a-memory-leak-in-tensorflow

Chapter 5: How to use TensorFlow Graph
Collections?

Remarks

When you have huge model, it is useful to form some groups of tensors in your computational
graph, that are connected with each other. For example tf.GraphKeys class contains such standart
collections as:

tf.GraphKeys.VARIABLES
tf.GraphKeys.TRAINABLE_VARIABLES
tf.GraphKeys.SUMMARIES

Examples

Create your own collection and use it to collect all your losses.

Here we will create collection for losses of Neural Network's computational graph.

First create a computational graph like so:

with tf.variable_scope("Layer"):
 W = tf.get_variable("weights", [m, k],
 initializer=tf.zeros_initializer([m, k], dtype=tf.float32))
 b1 = tf.get_variable("bias", [k],
 initializer = tf.zeros_initializer([k], dtype=tf.float32))
 z = tf.sigmoid((tf.matmul(input, W) + b1))

 with tf.variable_scope("Softmax"):
 U = tf.get_variable("weights", [k, r],
 initializer=tf.zeros_initializer([k,r], dtype=tf.float32))
 b2 = tf.get_variable("bias", [r],
 initializer=tf.zeros_initializer([r], dtype=tf.float32))
 out = tf.matmul(z, U) + b2
cross_entropy = tf.reduce_mean(
 tf.nn.sparse_softmax_cross_entropy_with_logits(out, labels))

To create a new collection, you can simply start calling tf.add_to_collection() - the first call will
create the collection.

tf.add_to_collection("my_losses",
 self.config.l2 * (tf.add_n([tf.reduce_sum(U ** 2), tf.reduce_sum(W ** 2)])))
tf.add_to_collection("my_losses", cross_entropy)

And finally you can get tensors from your collection:

loss = sum(tf.get_collection("my_losses"))

https://riptutorial.com/ 12

Note that tf.get_collection() returns a copy of the collection or an empty list if the collection does
not exist. Also, it does NOT create the collection if it does not exist. To do so, you could use
tf.get_collection_ref() which returns a reference to the collection and actually creates an empty
one if it does not exist yet.

Collect variables from nested scopes

Below is a single hidden layer Multilayer Perceptron (MLP) using nested scoping of variables.

def weight_variable(shape):
 return tf.get_variable(name="weights", shape=shape,
 initializer=tf.zeros_initializer(dtype=tf.float32))

def bias_variable(shape):
 return tf.get_variable(name="biases", shape=shape,
 initializer=tf.zeros_initializer(dtype=tf.float32))

def fc_layer(input, in_dim, out_dim, layer_name):
 with tf.variable_scope(layer_name):
 W = weight_variable([in_dim, out_dim])
 b = bias_variable([out_dim])
 linear = tf.matmul(input, W) + b
 output = tf.sigmoid(linear)

with tf.variable_scope("MLP"):
 x = tf.placeholder(dtype=tf.float32, shape=[None, 1], name="x")
 y = tf.placeholder(dtype=tf.float32, shape=[None, 1], name="y")
 fc1 = fc_layer(x, 1, 8, "fc1")
 fc2 = fc_layer(fc1, 8, 1, "fc2")

mse_loss = tf.reduce_mean(tf.reduce_sum(tf.square(fc2 - y), axis=1))

The MLP uses the the top level scope name MLP and it has two layers with their respective scope
names fc1 and fc2. Each layer also has its own weights and biases variables.

The variables can be collected like so:

trainable_var_key = tf.GraphKeys.TRAINABLE_VARIABLES
all_vars = tf.get_collection(key=trainable_var_key, scope="MLP")
fc1_vars = tf.get_collection(key=trainable_var_key, scope="MLP/fc1")
fc2_vars = tf.get_collection(key=trainable_var_key, scope="MLP/fc2")
fc1_weight_vars = tf.get_collection(key=trainable_var_key, scope="MLP/fc1/weights")
fc1_bias_vars = tf.get_collection(key=trainable_var_key, scope="MLP/fc1/biases")

The values of the variables can be collected using the sess.run() command. For example if we
would like to collect the values of the fc1_weight_vars after training, we could do the following:

sess = tf.Session()
add code to initialize variables
add code to train the network
add code to create test data x_test and y_test

fc1_weight_vals = sess.run(fc1, feed_dict={x: x_test, y: y_test})
print(fc1_weight_vals) # This should be an ndarray with ndim=2 and shape=[1, 8]

https://riptutorial.com/ 13

Read How to use TensorFlow Graph Collections? online:
https://riptutorial.com/tensorflow/topic/6902/how-to-use-tensorflow-graph-collections-

https://riptutorial.com/ 14

https://riptutorial.com/tensorflow/topic/6902/how-to-use-tensorflow-graph-collections-

Chapter 6: Math behind 2D convolution with
advanced examples in TF

Introduction

2D convolution is computed in a similar way one would calculate 1D convolution: you slide your
kernel over the input, calculate the element-wise multiplications and sum them up. But instead of
your kernel/input being an array, here they are matrices.

Examples

No padding, strides=1

This is the most basic example, with the easiest calculations. Let's assume your input and kernel

are:

When you your kernel you will receive the following output: , which is calculated in the
following way:

14 = 4 * 1 + 3 * 0 + 1 * 1 + 2 * 2 + 1 * 1 + 0 * 0 + 1 * 0 + 2 * 0 + 4 * 1•
6 = 3 * 1 + 1 * 0 + 0 * 1 + 1 * 2 + 0 * 1 + 1 * 0 + 2 * 0 + 4 * 0 + 1 * 1•
6 = 2 * 1 + 1 * 0 + 0 * 1 + 1 * 2 + 2 * 1 + 4 * 0 + 3 * 0 + 1 * 0 + 0 * 1•
12 = 1 * 1 + 0 * 0 + 1 * 1 + 2 * 2 + 4 * 1 + 1 * 0 + 1 * 0 + 0 * 0 + 2 * 1•

TF's conv2d function calculates convolutions in batches and uses a slightly different format. For an
input it is [batch, in_height, in_width, in_channels] for the kernel it is [filter_height,
filter_width, in_channels, out_channels]. So we need to provide the data in the correct format:

import tensorflow as tf
k = tf.constant([
 [1, 0, 1],
 [2, 1, 0],
 [0, 0, 1]
], dtype=tf.float32, name='k')
i = tf.constant([
 [4, 3, 1, 0],
 [2, 1, 0, 1],
 [1, 2, 4, 1],
 [3, 1, 0, 2]
], dtype=tf.float32, name='i')
kernel = tf.reshape(k, [3, 3, 1, 1], name='kernel')

https://riptutorial.com/ 15

http://www.riptutorial.com/tensorflow/example/30750/math-behind-1d-convolution-with-advanced-examples-in-tf
https://i.stack.imgur.com/yTCl8.png
https://i.stack.imgur.com/TPhBi.png
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d

image = tf.reshape(i, [1, 4, 4, 1], name='image')

Afterwards the convolution is computed with:

res = tf.squeeze(tf.nn.conv2d(image, kernel, [1, 1, 1, 1], "VALID"))
VALID means no padding
with tf.Session() as sess:
 print sess.run(res)

And will be equivalent to the one we calculated by hand.

Some padding, strides=1

Padding is just a fancy name of telling: surround your input matrix with some constant. In most of
the cases the constant is zero and this is why people call it zero padding. So if you want to use a
padding of 1 in our original input (check the first example with padding=0, strides=1), the matrix will
look like this:

To calculate the values of the convolution you do the same sliding. Notice that in our case many
values in the middle do not need to be recalculated (they will be the same as in previous example.
I also will not show all the calculations here, because the idea is straight-forward. The result is:

where

5 = 0 * 1 + 0 * 0 + 0 * 1 + 0 * 2 + 4 * 1 + 3 * 0 + 0 * 0 + 0 * 1 + 1 * 1•
...•
6 = 4 * 1 + 1 * 0 + 0 * 1 + 0 * 2 + 2 * 1 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 1•

TF does not support an arbitrary padding in conv2d function, so if you need some padding that is
not supported, use tf.pad(). Luckily for our input the padding 'SAME' will be equal to padding = 1.
So we need to change almost nothing in our previous example:

res = tf.squeeze(tf.nn.conv2d(image, kernel, [1, 1, 1, 1], "SAME"))
'SAME' makes sure that our output has the same size as input and
uses appropriate padding. In our case it is 1.
with tf.Session() as sess:

https://riptutorial.com/ 16

https://i.stack.imgur.com/tPJk4.png
https://i.stack.imgur.com/zQ6s9.png
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/pad

 print sess.run(res)

You can verify that the answer will be the same as calculated by hand.

Padding and strides (the most general case)

Now we will apply a strided convolution to our previously described padded example and calculate
the convolution where p = 1, s = 2

Previously when we used strides = 1, our slided window moved by 1 position, with strides = s it
moves by s positions (you need to calculate s^2 elements less. But in our case we can take a
shortcut and do not perform any computations at all. Because we already computed the values for
s = 1, in our case we can just grab each second element.

So if the solution is case of s = 1 was

in case of s = 2 it will be:

Check the positions of values 14, 2, 12, 6 in the previous matrix. The only change we need to
perform in our code is to change the strides from 1 to 2 for width and height dimension (2-nd, 3-
rd).

res = tf.squeeze(tf.nn.conv2d(image, kernel, [1, 2, 2, 1], "SAME"))
with tf.Session() as sess:
 print sess.run(res)

By the way, there is nothing that stops us from using different strides for different dimensions.

Read Math behind 2D convolution with advanced examples in TF online:
https://riptutorial.com/tensorflow/topic/10015/math-behind-2d-convolution-with-advanced-
examples-in-tf

https://riptutorial.com/ 17

https://i.stack.imgur.com/68ZsM.png
https://i.stack.imgur.com/rRse4.png
https://i.stack.imgur.com/0Ydz6.png
https://riptutorial.com/tensorflow/topic/10015/math-behind-2d-convolution-with-advanced-examples-in-tf
https://riptutorial.com/tensorflow/topic/10015/math-behind-2d-convolution-with-advanced-examples-in-tf

Chapter 7: Matrix and Vector Arithmetic

Examples

Elementwise Multiplication

To perform elementwise multiplication on tensors, you can use either of the following:

a*b•
tf.multiply(a, b)•

Here is a full example of elementwise multiplication using both methods.

import tensorflow as tf
import numpy as np

Build a graph
graph = tf.Graph()
with graph.as_default():
 # A 2x3 matrix
 a = tf.constant(np.array([[1, 2, 3],
 [10,20,30]]),
 dtype=tf.float32)
 # Another 2x3 matrix
 b = tf.constant(np.array([[2, 2, 2],
 [3, 3, 3]]),
 dtype=tf.float32)

 # Elementwise multiplication
 c = a * b
 d = tf.multiply(a, b)

Run a Session
with tf.Session(graph=graph) as session:
 (output_c, output_d) = session.run([c, d])
 print("output_c")
 print(output_c)
 print("\noutput_d")
 print(output_d)

Prints out the following:

output_c
[[2. 4. 6.]
 [30. 60. 90.]]

output_d
[[2. 4. 6.]
 [30. 60. 90.]]

Scalar Times a Tensor

In the following example a 2 by 3 tensor is multiplied by a scalar value (2).

https://riptutorial.com/ 18

Build a graph
graph = tf.Graph()
with graph.as_default():
 # A 2x3 matrix
 a = tf.constant(np.array([[1, 2, 3],
 [10,20,30]]),
 dtype=tf.float32)

 # Scalar times Matrix
 c = 2 * a

Run a Session
with tf.Session(graph=graph) as session:
 output = session.run(c)
 print(output)

This prints out

[[2. 4. 6.]
 [20. 40. 60.]]

Dot Product

The dot product between two tensors can be performed using:

tf.matmul(a, b)

A full example is given below:

Build a graph
graph = tf.Graph()
with graph.as_default():
 # A 2x3 matrix
 a = tf.constant(np.array([[1, 2, 3],
 [2, 4, 6]]),
 dtype=tf.float32)
 # A 3x2 matrix
 b = tf.constant(np.array([[1, 10],
 [2, 20],
 [3, 30]]),
 dtype=tf.float32)

 # Perform dot product
 c = tf.matmul(a, b)

Run a Session
with tf.Session(graph=graph) as session:
 output = session.run(c)
 print(output)

prints out

[[14. 140.]
 [28. 280.]]

https://riptutorial.com/ 19

Read Matrix and Vector Arithmetic online: https://riptutorial.com/tensorflow/topic/2953/matrix-and-
vector-arithmetic

https://riptutorial.com/ 20

https://riptutorial.com/tensorflow/topic/2953/matrix-and-vector-arithmetic
https://riptutorial.com/tensorflow/topic/2953/matrix-and-vector-arithmetic

Chapter 8: Measure the execution time of
individual operations

Examples

Basic example with TensorFlow's Timeline object

The Timeline object allows you to get the execution time for each node in the graph:

you use a classic sess.run() but also specify the optional arguments options and run_metadata•
you then create a Timeline object with the run_metadata.step_stats data•

Here is an example program that measures the performance of a matrix multiplication:

import tensorflow as tf
from tensorflow.python.client import timeline

x = tf.random_normal([1000, 1000])
y = tf.random_normal([1000, 1000])
res = tf.matmul(x, y)

Run the graph with full trace option
with tf.Session() as sess:
 run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
 run_metadata = tf.RunMetadata()
 sess.run(res, options=run_options, run_metadata=run_metadata)

 # Create the Timeline object, and write it to a json
 tl = timeline.Timeline(run_metadata.step_stats)
 ctf = tl.generate_chrome_trace_format()
 with open('timeline.json', 'w') as f:
 f.write(ctf)

You can then open Google Chrome, go to the page chrome://tracing and load the timeline.json
file. You should see something like:

https://riptutorial.com/ 21

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/client/timeline.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/client/timeline.py

Read Measure the execution time of individual operations online:
https://riptutorial.com/tensorflow/topic/3850/measure-the-execution-time-of-individual-operations

https://riptutorial.com/ 22

http://i.stack.imgur.com/qrPyb.png
https://riptutorial.com/tensorflow/topic/3850/measure-the-execution-time-of-individual-operations

Chapter 9: Minimalist example code for
distributed Tensorflow.

Introduction

This document shows how to create a cluster of TensorFlow servers, and how to distribute a
computation graph across that cluster.

Examples

Distributed training example

import tensorflow as tf

FLAGS = None

def main(_):
 ps_hosts = FLAGS.ps_hosts.split(",")
 worker_hosts = FLAGS.worker_hosts.split(",")

 # Create a cluster from the parameter server and worker hosts.
 cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})

 # Create and start a server for the local task.
 server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index)

 if FLAGS.job_name == "ps":
 server.join()
 elif FLAGS.job_name == "worker":

 # Assigns ops to the local worker by default.
 with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:%d" %
FLAGS.task_index, cluster=cluster)):

 # Build model...
 loss = ...
 global_step = tf.contrib.framework.get_or_create_global_step()

 train_op = tf.train.AdagradOptimizer(0.01).minimize(loss, global_step=global_step)

 # The StopAtStepHook handles stopping after running given steps.
 hooks=[tf.train.StopAtStepHook(last_step=1000000)]

 # The MonitoredTrainingSession takes care of session initialization,
 # restoring from a checkpoint, saving to a checkpoint, and closing when done
 # or an error occurs.
 with tf.train.MonitoredTrainingSession(master=server.target,
 is_chief=(FLAGS.task_index == 0),
 checkpoint_dir="/tmp/train_logs",
 hooks=hooks) as mon_sess:
 while not mon_sess.should_stop():
 # Run a training step asynchronously.
 # See `tf.train.SyncReplicasOptimizer` for additional details on how to

https://riptutorial.com/ 23

perform *synchronous* training.
 # mon_sess.run handles AbortedError in case of preempted PS.
 mon_sess.run(train_op)

Read Minimalist example code for distributed Tensorflow. online:
https://riptutorial.com/tensorflow/topic/10950/minimalist-example-code-for-distributed-tensorflow-

https://riptutorial.com/ 24

https://riptutorial.com/tensorflow/topic/10950/minimalist-example-code-for-distributed-tensorflow-

Chapter 10: Multidimensional softmax

Examples

Creating a Softmax Output Layer

When state_below is a 2D Tensor, U is a 2D weights matrix, b is a class_size-length vector:

logits = tf.matmul(state_below, U) + b
return tf.nn.softmax(logits)

When state_below is a 3D tensor, U, b as before:

def softmax_fn(current_input):
 logits = tf.matmul(current_input, U) + b
 return tf.nn.softmax(logits)

raw_preds = tf.map_fn(softmax_fn, state_below)

Computing Costs on a Softmax Output Layer

Use tf.nn.sparse_softmax_cross_entropy_with_logits, but beware that it can't accept the output of
tf.nn.softmax. Instead, calculate the unscaled activations, and then the cost:

logits = tf.matmul(state_below, U) + b
cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels)

In this case: state_below and U should be 2D matrices, b should be a vector of a size equal to the
number of classes, and labels should be a 2D matrix of int32 or int64. This function also supports
activation tensors with more than two dimensions.

Read Multidimensional softmax online:
https://riptutorial.com/tensorflow/topic/4999/multidimensional-softmax

https://riptutorial.com/ 25

https://www.tensorflow.org/versions/r0.10/api_docs/python/nn.html#sparse_softmax_cross_entropy_with_logits
https://riptutorial.com/tensorflow/topic/4999/multidimensional-softmax

Chapter 11: Placeholders

Parameters

Parameter Details

data type
(dtype)

specifically one of the data types provided by the tensorflow package. E.g.
tensorflow.float32

data shape
(shape)

Dimensions of placeholder as list or tuple. None can be used for dimensions
that are unknown. E.g. (None,30) would define a (? x 30) dimension
placeholder

name (name) A name for the operation (optional).

Examples

Basics of Placeholders

Placeholders allow you to feed values into a tensorflow graph. Aditionally They allow you to
specify constraints regarding the dimensions and data type of the values being fed in. As such
they are useful when creating a neural network to feed new training examples.

The following example declares a placeholder for a 3 by 4 tensor with elements that are (or can be
typecasted to) 32 bit floats.

a = tf.placeholder(tf.float32, shape=[3,4], name='a')

Placeholders will not contain any values on their own, so it is important to feed them with values
when running a session otherwise you will get an error message. This can be done using the
feed_dict argument when calling session.run(), eg:

run the graph up to node b, feeding the placeholder `a` with values in my_array
session.run(b, feed_dict={a: my_array})

Here is a simple example showing the entire process of declaring and feeding a placeholer.

import tensorflow as tf
import numpy as np

Build a graph
graph = tf.Graph()
with graph.as_default():
 # declare a placeholder that is 3 by 4 of type float32
 a = tf.placeholder(tf.float32, shape=(3, 4), name='a')

 # Perform some operation on the placeholder

https://riptutorial.com/ 26

https://www.tensorflow.org/api_docs/python/tf/placeholder

 b = a * 2

Create an array to be fed to `a`
input_array = np.ones((3,4))

Create a session, and run the graph
with tf.Session(graph=graph) as session:
 # run the session up to node b, feeding an array of values into a
 output = session.run(b, feed_dict={a: input_array})
 print(output)

The placeholder takes a 3 by 4 array of ones, and that tensor is then multiplied by 2 at node b,
wich then returns and prints out the following:

[[2. 2. 2. 2.]
 [2. 2. 2. 2.]
 [2. 2. 2. 2.]]

Placeholder with Default

Often one wants to intermittently run one or more validation batches during the course of training a
deep network. Typically the training data are fed by a queue while the validation data might be
passed through the feed_dict parameter in sess.run(). tf.placeholder_with_default() is designed
to work well in this situation:

import numpy as np
import tensorflow as tf

IMG_SIZE = [3, 3]
BATCH_SIZE_TRAIN = 2
BATCH_SIZE_VAL = 1

def get_training_batch(batch_size):
 ''' training data pipeline '''
 image = tf.random_uniform(shape=IMG_SIZE)
 label = tf.random_uniform(shape=[])
 min_after_dequeue = 100
 capacity = min_after_dequeue + 3 * batch_size
 images, labels = tf.train.shuffle_batch(
 [image, label], batch_size=batch_size, capacity=capacity,
 min_after_dequeue=min_after_dequeue)
 return images, labels

define the graph
images_train, labels_train = get_training_batch(BATCH_SIZE_TRAIN)
image_batch = tf.placeholder_with_default(images_train, shape=None)
label_batch = tf.placeholder_with_default(labels_train, shape=None)
new_images = tf.mul(image_batch, -1)
new_labels = tf.mul(label_batch, -1)

start a session
with tf.Session() as sess:
 sess.run(tf.initialize_all_variables())
 coord = tf.train.Coordinator()
 threads = tf.train.start_queue_runners(sess=sess, coord=coord)

https://riptutorial.com/ 27

 # typical training step where batch data are drawn from the training queue
 py_images, py_labels = sess.run([new_images, new_labels])
 print('Data from queue:')
 print('Images: ', py_images) # returned values in range [-1.0, 0.0]
 print('\nLabels: ', py_labels) # returned values [-1, 0.0]

 # typical validation step where batch data are supplied through feed_dict
 images_val = np.random.randint(0, 100, size=np.hstack((BATCH_SIZE_VAL, IMG_SIZE)))
 labels_val = np.ones(BATCH_SIZE_VAL)
 py_images, py_labels = sess.run([new_images, new_labels],
 feed_dict={image_batch:images_val, label_batch:labels_val})
 print('\n\nData from feed_dict:')
 print('Images: ', py_images) # returned values are integers in range [-100.0, 0.0]
 print('\nLabels: ', py_labels) # returned values are -1.0

 coord.request_stop()
 coord.join(threads)

In this example image_batch and label_batch are generated by get_training_batch() unless the
corresponding values are passed as the feed_dict parameter during a call to sess.run().

Read Placeholders online: https://riptutorial.com/tensorflow/topic/2952/placeholders

https://riptutorial.com/ 28

https://riptutorial.com/tensorflow/topic/2952/placeholders

Chapter 12: Q-learning

Examples

Minimal Example

Q-learning is a variant of model-free reinforcement learning. In Q-learning we want the agent to
estimate how good a (state, action) pair is so that it can choose good actions in each state. This is
done by approximating an action-value function (Q) that fits in equation below:

Where s and a are state and action at current time step. R is the immediate reward and is
discount factor. And, s' is the observed next state.

As the agent interacts with the environment, it sees a state that it is in, performs an action, gets
the reward, and observes the new state that it has moved to. This cycle continues until the agent
reaches a terminating state. Since Q-learning is an off-policy method, we can save each (state,
action, reward, next_state) as an experience in a replay buffer. These experiences are sampled in
each training iteration and used to improve our estimation of Q. Here is how:

From next_state calculate the Q value for next step by assuming that the agent greedily
chooses an action in that state, hence the np.max(next_state_value) in the code below.

1.

The Q value of next step is discounted and added to the immediate reward observed by the
agent: (state, action, reward, state')

2.

If a state-action result in termination of the episode, we use Q = reward instead of steps 1 and
2 above (episodic learning). So we need to also add termination flag to each experience that
is being added to the buffer: (state, action, reward, next_state, terminated)

3.

At this point, we have a Q value calculated from reward and next_state and also we have
another Q value that is the output of the q-network function approximator. By changing the
parameters of q-network function approximator using gradient descend and minimizing the
difference between these two action values, the Q function approximator converges toward
the true action values.

4.

Here is an implementation of deep Q network.

import tensorflow as tf
import gym
import numpy as np

def fullyConnected(name, input_layer, output_dim, activation=None):
 """
 Adds a fully connected layer after the `input_layer`. `output_dim` is
 the size of next layer. `activation` is the optional activation
 function for the next layer.
 """
 initializer = tf.random_uniform_initializer(minval=-.003, maxval=.003)

https://riptutorial.com/ 29

 input_dims = input_layer.get_shape().as_list()[1:]
 weight = tf.get_variable(name + "_w", shape=[*input_dims, output_dim],
 dtype=tf.float32, initializer=initializer)
 bias = tf.get_variable(name + "_b", shape=output_dim, dtype=tf.float32,
 initializer=initializer)
 next_layer = tf.matmul(input_layer, weight) + bias

 if activation:
 next_layer = activation(next_layer, name=name + "_activated")

 return next_layer

class Memory(object):
 """
 Saves experiences as (state, action, reward, next_action,
 termination). It only supports discrete action spaces.
 """

 def __init__(self, size, state_dims):
 self.length = size

 self.states = np.empty([size, state_dims], dtype=float)
 self.actions = np.empty(size, dtype=int)
 self.rewards = np.empty((size, 1), dtype=float)
 self.states_next = np.empty([size, state_dims], dtype=float)
 self.terminations = np.zeros((size, 1), dtype=bool)

 self.memory = [self.states, self.actions,
 self.rewards, self.states_next, self.terminations]

 self.pointer = 0
 self.count = 0

 def add(self, state, action, reward, next_state, termination):
 self.states[self.pointer] = state
 self.actions[self.pointer] = action
 self.rewards[self.pointer] = reward
 self.states_next[self.pointer] = next_state
 self.terminations[self.pointer] = termination
 self.pointer = (self.pointer + 1) % self.length
 self.count += 1

 def sample(self, batch_size):
 index = np.random.randint(
 min(self.count, self.length), size=(batch_size))
 return (self.states[index], self.actions[index],
 self.rewards[index], self.states_next[index],
 self.terminations[index])

class DQN(object):
 """
 Deep Q network agent.
 """

 def __init__(self, state_dim, action_dim, memory_size, layer_dims,
 optimizer):

 self.action_dim = action_dim
 self.state = tf.placeholder(
 tf.float32, [None, state_dim], "states")
 self.action_ph = tf.placeholder(tf.int32, [None], "actions")

https://riptutorial.com/ 30

 self.action_value_ph = tf.placeholder(
 tf.float32, [None], "action_values")
 self.memory = Memory(memory_size, state_dim)

 def _make():
 flow = self.state
 for i, size in enumerate(layer_dims):
 flow = fullyConnected(
 "layer%i" % i, flow, size, tf.nn.relu)

 return fullyConnected(
 "output_layer", flow, self.action_dim)

 # generate the learner network
 with tf.variable_scope('learner'):
 self.action_value = _make()
 # generate the target network
 with tf.variable_scope('target'):
 self.target_action_value = _make()

 # get parameters for learner and target networks
 from_list = tf.get_collection(
 tf.GraphKeys.TRAINABLE_VARIABLES, scope='learner')
 target_list = tf.get_collection(
 tf.GraphKeys.TRAINABLE_VARIABLES, scope='target')

 # create a copy operation from parameters of learner
 # to parameters of target network
 from_list = sorted(from_list, key=lambda v: v.name)
 target_list = sorted(target_list, key=lambda v: v.name)
 self.update_target_network = []
 for i in range(len(from_list)):
 self.update_target_network.append(target_list[i].assign(from_list[i]))

 # gather the action-values of the performed actions
 row = tf.range(0, tf.shape(self.action_value)[0])
 indexes = tf.stack([row, self.action_ph], axis=1)
 action_value = tf.gather_nd(self.action_value, indexes)

 # calculate loss of Q network
 self.single_loss = tf.square(action_value - self.action_value_ph)
 self._loss = tf.reduce_mean(self.single_loss)

 self.train_op = optimizer.minimize(self._loss)

 def train(self, session, batch=None, discount=.97):
 states, actions, rewards, next_states, terminals =\
 self.memory.sample(batch)
 next_state_value = session.run(
 self.target_action_value, {self.state: next_states})
 observed_value = rewards + discount * \
 np.max(next_state_value, 1, keepdims=True)
 observed_value[terminals] = rewards[terminals]

 _, batch_loss = session.run([self.train_op, self._loss], {
 self.state: states, self.action_ph: actions,
 self.action_value_ph: observed_value[:, 0]})
 return batch_loss

 def policy(self, session, state):
 return session.run(self.action_value, {self.state: [state]})[0]

https://riptutorial.com/ 31

 def memorize(self, state, action, reward, next_state, terminal):
 self.memory.add(state, action, reward, next_state, terminal)

 def update(self, session):
 session.run(self.update_target_network)

In deep Q network few mechanisms are used to improve the convergence of the agent. One is
emphasis on randomly sampling the experiences from replay buffer to prevent any temporal
relation between sampled experiences. Another mechanism is using target network in evaluation
of the Q-value for next_state. The target network is similar the the learner network but its
parameters are modified much less frequently. Also, the target network is not updated by the
gradient descent, instead every once in a while its parameters are copied from the learner
network.

The code below, is an example of this agent learning to perform actions in a cartpole environment.

ENVIRONMENT = 'CartPole-v1' # environment name from `OpenAI`.
MEMORY_SIZE = 50000 # how many of recent time steps should be saved in agent's memory
LEARNING_RATE = .01 # learning rate for Adam optimizer
BATCH_SIZE = 8 # number of experiences to sample in each training step
EPSILON = .1 # how often an action should be chosen randomly. This encourages exploration
EPXILON_DECAY = .99 # the rate of decaying `EPSILON`
NETWORK_ARCHITECTURE = [100] # shape of the q network. Each element is one layer
TOTAL_EPISODES = 500 # number of total episodes
MAX_STEPS = 200 # maximum number of steps in each episode
REPORT_STEP = 10 # how many episodes to run before printing a summary

env = gym.make(ENVIRONMENT) # initialize environment
state_dim = env.observation_space.shape[
 0] # dimensions of observation space
action_dim = env.action_space.n

optimizer = tf.train.AdamOptimizer(LEARNING_RATE)
agent = DQN(state_dim, action_dim, MEMORY_SIZE,
 NETWORK_ARCHITECTURE, optimizer)

eps = [EPSILON]

def runEpisode(env, session):
 state = env.reset()
 total_l = 0.
 total_reward = 0.
 for i in range(MAX_STEPS):
 if np.random.uniform() < eps[0]:
 action = np.random.randint(action_dim)
 else:
 action_values = agent.policy(session, state)
 action = np.argmax(action_values)

 next_state, reward, terminated, _ = env.step(action)

 if terminated:
 reward = -1

 total_reward += reward

 agent.memorize(state, action, reward, next_state, terminated)

https://riptutorial.com/ 32

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://gym.openai.com/envs/CartPole-v0

 state = next_state
 total_l += agent.train(session, BATCH_SIZE)

 if terminated:
 break

 eps[0] *= EPXILON_DECAY
 i += 1

 return i, total_reward / i, total_l / i

session = tf.InteractiveSession()
session.run(tf.global_variables_initializer())

for i in range(1, TOTAL_EPISODES + 1):
 leng, reward, loss = runEpisode(env, session)
 agent.update(session)
 if i % REPORT_STEP == 0:
 print(("Episode: %4i " +
 "| Episod Length: %3i " +
 "| Avg Reward: %+.3f " +
 "| Avg Loss: %6.3f " +
 "| Epsilon: %.3f") %
 (i, leng, reward, loss, eps[0]))

Read Q-learning online: https://riptutorial.com/tensorflow/topic/9967/q-learning

https://riptutorial.com/ 33

https://riptutorial.com/tensorflow/topic/9967/q-learning

Chapter 13: Reading the data

Examples

Count examples in CSV file

import tensorflow as tf
filename_queue = tf.train.string_input_producer(["file.csv"], num_epochs=1)
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
col1, col2 = tf.decode_csv(value, record_defaults=[[0], [0]])

with tf.Session() as sess:
 sess.run(tf.initialize_local_variables())
 tf.train.start_queue_runners()
 num_examples = 0
 try:
 while True:
 c1, c2 = sess.run([col1, col2])
 num_examples += 1
 except tf.errors.OutOfRangeError:
 print "There are", num_examples, "examples"

num_epochs=1 makes string_input_producer queue to close after processing each file on the list
once. It leads to raising OutOfRangeError which is caught in try:. By default, string_input_producer
produces the filenames infinitely.

tf.initialize_local_variables() is a tensorflow Op, which, when executed, initializes num_epoch
local variable inside string_input_producer.

tf.train.start_queue_runners() start extra treads that handle adding data to the queues
asynchronically.

Read & Parse TFRecord file

TFRecord files is the native tensorflow binary format for storing data (tensors). To read the file you
can use a code similar to the CSV example:

import tensorflow as tf
filename_queue = tf.train.string_input_producer(["file.tfrecord"], num_epochs=1)
reader = tf.TFRecordReader()
key, serialized_example = reader.read(filename_queue)

Then, you need to parse the examples from serialized_example Queue. You can do it either using
tf.parse_example, which requires previous batching, but is faster or tf.parse_single_example:

batch = tf.train.batch([serialized_example], batch_size=100)
parsed_batch = tf.parse_example(batch, features={
 "feature_name_1": tf.FixedLenFeature(shape=[1], tf.int64),
 "feature_name_2": tf.FixedLenFeature(shape=[1], tf.float32)

https://riptutorial.com/ 34

https://www.tensorflow.org/versions/r0.10/api_docs/python/python_io.html#tfrecords-format-details
https://github.com/tensorflow/tensorflow/issues/390

})

tf.train.batch joins consecutive values of given tensors of shape [x, y, z] to tensors of shape
[batch_size, x, y, z]. features dict maps names of the features to tensorflow's definitions of
features. You use parse_single_example in a similar way:

parsed_example = tf.parse_single_example(serialized_example, {
 "feature_name_1": tf.FixedLenFeature(shape=[1], tf.int64),
 "feature_name_2": tf.FixedLenFeature(shape=[1], tf.float32)
})

tf.parse_example and tf.parse_single_example return a dictionary mapping feature names to the
tensor with the values.

To batch examples coming from parse_single_example you should extract the tensors from the dict
and use tf.train.batch as before:

parsed_batch = dict(zip(parsed_example.keys(),
 tf.train.batch(parsed_example.values(), batch_size=100)

You read the data as before, passing the list of all the tensors to evaluate to sess.run:

with tf.Session() as sess:
 sess.run(tf.initialize_local_variables())
 tf.train.start_queue_runners()
 try:
 while True:
 data_batch = sess.run(parsed_batch.values())
 # process data
 except tf.errors.OutOfRangeError:
 pass

Random shuffling the examples

To randomly shuffle the examples, you can use tf.train.shuffle_batch function instead of
tf.train.batch, as follows:

parsed_batch = tf.train.shuffle_batch([serialized_example],
 batch_size=100, capacity=1000,
 min_after_dequeue=200)

tf.train.shuffle_batch (as well as tf.train.batch) creates a tf.Queue and keeps adding
serialized_examples to it.

capacity measures how many elements can be stored in Queue in one time. Bigger capacity leads
to bigger memory usage, but lower latency caused by threads waiting to fill it up.

min_after_dequeue is the minimum number of elements present in the queue after getting elements
from it. The shuffle_batch queue is not shuffling elements perfectly uniformly - it is designed with
huge data, not-fitting-memory one, in mind. Instead, it reads between min_after_dequeue and
capacity

https://riptutorial.com/ 35

https://www.tensorflow.org/versions/r0.10/api_docs/python/io_ops.html#FixedLenFeature

elements, store them in memory and randomly chooses a batch of them. After that it enqueues
some more elements, to keep its number between min_after_dequeue and capacity. Thus, the
bigger value of min_after_dequeue, the more random elements are - the choice of batch_size
elements is guaranteed to be taken from at least min_after_dequeue consecutive elements, but the
bigger capacity has to be and the longer it takes to fill the queue initially.

Reading data for n epochs with batching

Assume your data examples are already read to a python's variable and you would like to read it n
times, in batches of given size:

import numpy as np
import tensorflow as tf
data = np.array([1, 2, 3, 4, 5])
n = 4

To merge data in batches, possibly with random shuffling, you can use tf.train.batch or
tf.train.batch_shuffle, but you need to pass to it the tensor that would produce whole data n
times:

limited_tensor = tf.train.limit_epochs(data, n)
batch = tf.train.shuffle_batch([limited_tensor], batch_size=3, enqueue_many=True, capacity=4)

The limit_epochs converts the numpy array to tensor under the hood and returns a tensor
producing it n times and throwing an OutOfRangeError afterwards. The enqueue_many=True
argument passed to shuffle_batch denotes that each tensor in the tensor list [limited_tensor]
should be interpreted as containing a number of examples. Note that capacity of the batching
queue can be smaller than the number of examples in the tensor.

One can process the data as usual:

with tf.Session() as sess:
 sess.run(tf.initialize_local_variables())
 tf.train.start_queue_runners()
 try:
 while True:
 data_batch = sess.run(batch)
 # process data
 except tf.errors.OutOfRangeError:
 pass

How to load images and labels from a TXT file

It has not been explained in the Tensorflow documentation how to load images and labels directly
from a TXT file. The code below illustrates how I achieved it. However, it does not mean that is the
best way to do it and that this way will help in further steps.

For instance, I'm loading the labels in one single integer value {0,1} while the documentation uses
a one-hot vector [0,1].

https://riptutorial.com/ 36

Learning how to import images and labels from a TXT file

TXT file format

path/to/imagefile_1 label_1
path/to/imagefile_2 label_2
... ...

where label_X is either {0,1}

#Importing Libraries
import os
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.python.framework import ops
from tensorflow.python.framework import dtypes

#File containing the path to images and the labels [path/to/images label]
filename = '/path/to/List.txt'

#Lists where to store the paths and labels
filenames = []
labels = []

#Reading file and extracting paths and labels
with open(filename, 'r') as File:
 infoFile = File.readlines() #Reading all the lines from File
 for line in infoFile: #Reading line-by-line
 words = line.split() #Splitting lines in words using space character as separator
 filenames.append(words[0])
 labels.append(int(words[1]))

NumFiles = len(filenames)

#Converting filenames and labels into tensors
tfilenames = ops.convert_to_tensor(filenames, dtype=dtypes.string)
tlabels = ops.convert_to_tensor(labels, dtype=dtypes.int32)

#Creating a queue which contains the list of files to read and the value of the labels
filename_queue = tf.train.slice_input_producer([tfilenames, tlabels], num_epochs=10,
shuffle=True, capacity=NumFiles)

#Reading the image files and decoding them
rawIm= tf.read_file(filename_queue[0])
decodedIm = tf.image.decode_png(rawIm) # png or jpg decoder

#Extracting the labels queue
label_queue = filename_queue[1]

#Initializing Global and Local Variables so we avoid warnings and errors
init_op = tf.group(tf.local_variables_initializer() ,tf.global_variables_initializer())

#Creating an InteractiveSession so we can run in iPython
sess = tf.InteractiveSession()

with sess.as_default():
 sess.run(init_op)

 # Start populating the filename queue.
 coord = tf.train.Coordinator()
 threads = tf.train.start_queue_runners(coord=coord)

https://riptutorial.com/ 37

 for i in range(NumFiles): #length of your filenames list
 nm, image, lb = sess.run([filename_queue[0], decodedIm, label_queue])

 print image.shape
 print nm
 print lb

 #Showing the current image
 plt.imshow(image)
 plt.show()

 coord.request_stop()
 coord.join(threads)

Read Reading the data online: https://riptutorial.com/tensorflow/topic/6684/reading-the-data

https://riptutorial.com/ 38

https://riptutorial.com/tensorflow/topic/6684/reading-the-data

Chapter 14: Save and Restore a Model in
TensorFlow

Introduction

Tensorflow distinguishes between saving/restoring the current values of all the variables in a
graph and saving/restoring the actual graph structure. To restore the graph, you are free to use
either Tensorflow's functions or just call your piece of code again, that built the graph in the first
place. When defining the graph, you should also think about which and how variables/ops should
be retrievable once the graph has been saved and restored.

Remarks

In the restoring model section above if I understand correctly you build the model and then restore
the variables. I believe rebuilding the model is not necessary so long as you add the relevant
tensors/placeholders when saving using tf.add_to_collection(). For example:

tf.add_to_collection('cost_op', cost_op)

Then later you can restore the saved graph and get access to cost_op using

with tf.Session() as sess:
 new_saver = tf.train.import_meta_graph('model.meta')`
 new_saver.restore(sess, 'model')
 cost_op = tf.get_collection('cost_op')[0]

Even if you don't run tf.add_to_collection(), you can retrieve your tensors, but the process is a bit
more cumbersome, and you may have to do some digging to find the right names for things. For
example:

in a script that builds a tensorflow graph, we define some set of tensors lab_squeeze:

...
with tf.variable_scope("inputs"):
 y=tf.convert_to_tensor([[0,1],[1,0]])
 split_labels=tf.split(1,0,x,name='lab_split')
 split_labels=[tf.squeeze(i,name='lab_squeeze') for i in split_labels]
...
with tf.Session().as_default() as sess:
 saver=tf.train.Saver(sess,split_labels)
 saver.save("./checkpoint.chk")

we can recall them later on as follows:

with tf.Session() as sess:
 g=tf.get_default_graph()

https://riptutorial.com/ 39

 new_saver = tf.train.import_meta_graph('./checkpoint.chk.meta')`
 new_saver.restore(sess, './checkpoint.chk')
 split_labels=['inputs/lab_squeeze:0','inputs/lab_squeeze_1:0','inputs/lab_squeeze_2:0']

 split_label_0=g.get_tensor_by_name('inputs/lab_squeeze:0')
 split_label_1=g.get_tensor_by_name("inputs/lab_squeeze_1:0")

There are a number of ways to find the name of a tensor -- you can find it in your graph on tensor
board, or you can search through for it with something like:

sess=tf.Session()
g=tf.get_default_graph()
...
x=g.get_collection_keys()
[i.name for j in x for i in g.get_collection(j)] # will list out most, if not all, tensors on
the graph

Examples

Saving the model

Saving a model in tensorflow is pretty easy.

Let's say you have a linear model with input x and want to predict an output y. The loss here is the
mean square error (MSE). The batch size is 16.

Define the model
x = tf.placeholder(tf.float32, [16, 10]) # input
y = tf.placeholder(tf.float32, [16, 1]) # output

w = tf.Variable(tf.zeros([10, 1]), dtype=tf.float32)

res = tf.matmul(x, w)
loss = tf.reduce_sum(tf.square(res - y))

train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss)

Here comes the Saver object, which can have multiple parameters (cf. doc).

Define the tf.train.Saver object
(cf. params section for all the parameters)
saver = tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=1)

Finally we train the model in a tf.Session(), for 1000 iterations. We only save the model every 100
iterations here.

Start a session
max_steps = 1000
with tf.Session() as sess:
 # initialize the variables

https://riptutorial.com/ 40

https://www.tensorflow.org/versions/r0.10/api_docs/python/state_ops.html#Saver

 sess.run(tf.initialize_all_variables())

 for step in range(max_steps):
 feed_dict = {x: np.random.randn(16, 10), y: np.random.randn(16, 1)} # dummy input
 _, loss_value = sess.run([train_op, loss], feed_dict=feed_dict)

 # Save the model every 100 iterations
 if step % 100 == 0:
 saver.save(sess, "./model", global_step=step)

After running this code, you should see the last 5 checkpoints in your directory:

model-500 and model-500.meta•
model-600 and model-600.meta•
model-700 and model-700.meta•
model-800 and model-800.meta•
model-900 and model-900.meta•

Note that in this example, while the saver actually saves both the current values of the variables as
a checkpoint and the structure of the graph (*.meta), no specific care was taken w.r.t how to
retrieve e.g. the placeholders x and y once the model was restored. E.g. if the restoring is done
anywhere else than this training script, it can be cumbersome to retrieve x and y from the restored
graph (especially in more complicated models). To avoid that, always give names to your variables
/ placeholders / ops or think about using tf.collections as shown in one of the remarks.

Restoring the model

Restoring is also quite nice and easy.

Here's a handy helper function:

def restore_vars(saver, sess, chkpt_dir):
 """ Restore saved net, global score and step, and epsilons OR
 create checkpoint directory for later storage. """
 sess.run(tf.initialize_all_variables())

 checkpoint_dir = chkpt_dir

 if not os.path.exists(checkpoint_dir):
 try:
 print("making checkpoint_dir")
 os.makedirs(checkpoint_dir)
 return False
 except OSError:
 raise

 path = tf.train.get_checkpoint_state(checkpoint_dir)
 print("path = ",path)
 if path is None:
 return False
 else:
 saver.restore(sess, path.model_checkpoint_path)
 return True

https://riptutorial.com/ 41

Main code:

path_to_saved_model = './'
max_steps = 1

Start a session
with tf.Session() as sess:

 ... define the model here ...

 print("define the param saver")
 saver = tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=1)

 # restore session if there is a saved checkpoint
 print("restoring model")
 restored = restore_vars(saver, sess, path_to_saved_model)
 print("model restored ",restored)

 # Now continue training if you so choose

 for step in range(max_steps):

 # do an update on the model (not needed)
 loss_value = sess.run([loss])
 # Now save the model
 saver.save(sess, "./model", global_step=step)

Read Save and Restore a Model in TensorFlow online:
https://riptutorial.com/tensorflow/topic/5000/save-and-restore-a-model-in-tensorflow

https://riptutorial.com/ 42

https://riptutorial.com/tensorflow/topic/5000/save-and-restore-a-model-in-tensorflow

Chapter 15: Save Tensorflow model in Python
and load with Java

Introduction

Building and especially training a model may be easiest done in Python so how to you load and
use the trained model in Java?

Remarks

The model can accept any number of inputs, so change the NUM_PREDICTIONS if you want to
run more predictions than one. Realize that the Java is using JNI to call into the C++ tensorflow
model, so you will see some info messages coming from the model when you run this.

Examples

Create and save a model with Python

import tensorflow as tf
good idea
tf.reset_default_graph()

DO MODEL STUFF
Pretrained weighting of 2.0
W = tf.get_variable('w', shape=[], initializer=tf.constant(2.0), dtype=tf.float32)
Model input x
x = tf.placeholder(tf.float32, name='x')
Model output y = W*x
y = tf.multiply(W, x, name='y')

DO SESSION STUFF
sess = tf.Session()
sess.run(tf.global_variables_initializer())

SAVE THE MODEL
builder = tf.saved_model.builder.SavedModelBuilder("/tmp/model")
builder.add_meta_graph_and_variables(
 sess,
 [tf.saved_model.tag_constants.SERVING]
)
builder.save()

Load and use the model in Java.

public static void main(String[] args) throws IOException
{
 // good idea to print the version number, 1.2.0 as of this writing
 System.out.println(TensorFlow.version());

https://riptutorial.com/ 43

 final int NUM_PREDICTIONS = 1;

 // load the model Bundle
 try (SavedModelBundle b = SavedModelBundle.load("/tmp/model", "serve")) {

 // create the session from the Bundle
 Session sess = b.session();
 // create an input Tensor, value = 2.0f
 Tensor x = Tensor.create(
 new long[] {NUM_PREDICTIONS},
 FloatBuffer.wrap(new float[] {2.0f})
);

 // run the model and get the result, 4.0f.
 float[] y = sess.runner()
 .feed("x", x)
 .fetch("y")
 .run()
 .get(0)
 .copyTo(new float[NUM_PREDICTIONS]);

 // print out the result.
 System.out.println(y[0]);
 }
}

Read Save Tensorflow model in Python and load with Java online:
https://riptutorial.com/tensorflow/topic/10718/save-tensorflow-model-in-python-and-load-with-java

https://riptutorial.com/ 44

https://riptutorial.com/tensorflow/topic/10718/save-tensorflow-model-in-python-and-load-with-java

Chapter 16: Simple linear regression
structure in TensorFlow with Python

Introduction

A model widely used in traditional statistics is the linear regression model. In this article, the
objective is to follow the step-by-step implementation of this type of models. We are going to
represent a simple linear regression structure.

For our study, we will analyze the age of the children on the x axis and the height of the children
on the y axis. We will try to predict the height of the children, using their age, applying simple
linear regression.[in TF finding the best W and b]

Parameters

Parameter Description

train_X np array with x dimension of information

train_Y np array with y dimension of information

Remarks

I used TensorBoard sintaxis to track the behavior of some parts of the model, cost, train and
activation elements.

with tf.name_scope("") as scope:

Imports used:

import numpy as np
import tensorflow as tf

Type of application and language used:

I have used a traditional console implementation app type, developed in Python, to
represent the example.

Version of TensorFlow used:

1.0.1

https://riptutorial.com/ 45

Conceptual academic example/reference extracted from here:

Examples

Simple regression function code structure

Function definition:

def run_training(train_X, train_Y):

Inputs variables:

X = tf.placeholder(tf.float32, [m, n])
Y = tf.placeholder(tf.float32, [m, 1])

Weight and bias representation

W = tf.Variable(tf.zeros([n, 1], dtype=np.float32), name="weight")
b = tf.Variable(tf.zeros([1], dtype=np.float32), name="bias")

Lineal Model:

with tf.name_scope("linear_Wx_b") as scope:
 activation = tf.add(tf.matmul(X, W), b)

Cost:

with tf.name_scope("cost") as scope:
 cost = tf.reduce_sum(tf.square(activation - Y)) / (2 * m)
 tf.summary.scalar("cost", cost)

Training:

with tf.name_scope("train") as scope:
 optimizer = tf.train.GradientDescentOptimizer(0.07).minimize(cost)

TensorFlow session:

with tf.Session() as sess:
 merged = tf.summary.merge_all()
 writer = tf.summary.FileWriter(log_file, sess.graph)

Note: merged and writer are part of the TensorBoard strategy to track the model behavior.

https://riptutorial.com/ 46

http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex2/ex2.html

 init = tf.global_variables_initializer()
 sess.run(init)

Repeating 1.5k times the training loop:

 for step in range(1500):
 result, _ = sess.run([merged, optimizer], feed_dict={X: np.asarray(train_X), Y:
np.asarray(train_Y)})
 writer.add_summary(result, step)

Print Training Cost:

 training_cost = sess.run(cost, feed_dict={X: np.asarray(train_X), Y: np.asarray(train_Y)})
 print "Training Cost: ", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n'

Concrete prediction based on the model trained:

 print "Prediction for 3.5 years"
 predict_X = np.array([3.5], dtype=np.float32).reshape([1, 1])

 predict_X = (predict_X - mean) / std
 predict_Y = tf.add(tf.matmul(predict_X, W), b)
 print "Child height(Y) =", sess.run(predict_Y)

Main Routine

def main():
 train_X, train_Y = read_data()
 train_X = feature_normalize(train_X)
 run_training(train_X, train_Y)

Note: remember review functions dependencies. read_data, feature_normalize and
run_training

Normalization Routine

def feature_normalize(train_X):
 global mean, std
 mean = np.mean(train_X, axis=0)
 std = np.std(train_X, axis=0)

 return np.nan_to_num((train_X - mean) / std)

Read Data routine

def read_data():
 global m, n

https://riptutorial.com/ 47

 m = 50
 n = 1

 train_X = np.array(

Internal data for the array

).astype('float32')

 train_Y = np.array(

Internal data for the array

).astype('float32')

 return train_X, train_Y

Read Simple linear regression structure in TensorFlow with Python online:
https://riptutorial.com/tensorflow/topic/9954/simple-linear-regression-structure-in-tensorflow-with-
python

https://riptutorial.com/ 48

https://riptutorial.com/tensorflow/topic/9954/simple-linear-regression-structure-in-tensorflow-with-python
https://riptutorial.com/tensorflow/topic/9954/simple-linear-regression-structure-in-tensorflow-with-python

Chapter 17: Tensor indexing

Introduction

Various examples showing how Tensorflow supports indexing into tensors, highlighting differences
and similarities to numpy-like indexing where possible.

Examples

Extract a slice from a tensor

Refer to the tf.slice(input, begin, size) documentation for detailed information.

Arguments:

input: Tensor•
begin: starting location for each dimension of input•
size: number of elements for each dimension of input, using -1 includes all remaining
elements

•

Numpy-like slicing:

x has shape [2, 3, 2]
x = tf.constant([[[1., 2.], [3., 4.], [5. , 6.]],
 [[7., 8.], [9., 10.], [11., 12.]]])

Extracts x[0, 1:2, :] == [[[3., 4.]]]
res = tf.slice(x, [0, 1, 0], [1, 1, -1])

Using negative indexing, to retrieve the last element in the third dimension:

Extracts x[0, :, -1:] == [[[2.], [4.], [6.]]]
last_indice = x.get_shape().as_list()[2] - 1
res = tf.slice(x, [0, 1, last_indice], [1, -1, -1])

Extract non-contiguous slices from the first dimension of a tensor

Generally tf.gather gives you access to elements in the first dimension of a tensor (e.g. rows 1, 3
and 7 in a 2-dimensional Tensor). If you need access to any other dimension than the first one, or
if you don't need the whole slice, but e.g. only the 5th entry in the 1st, 3rd and 7th row, you are
better off using tf.gather_nd (see upcoming example for this).

tf.gather arguments:

params: A tensor you want to extract values from.•
indices•

https://riptutorial.com/ 49

https://www.tensorflow.org/api_docs/python/tf/slice

: A tensor specifying the indices pointing into params

Refer to the tf.gather(params, indices) documentation for detailed information.

We want to extract the 1st and 4th row in a 2-dimensional tensor.

data is [[0, 1, 2, 3, 4, 5],
[6, 7, 8, 9, 10, 11],
...
[24, 25, 26, 27, 28, 29]]
data = np.reshape(np.arange(30), [5, 6])
params = tf.constant(data)
indices = tf.constant([0, 3])
selected = tf.gather(params, indices)

selected has shape [2, 6] and printing its value gives

[[0 1 2 3 4 5]
 [18 19 20 21 22 23]]

indices can also just be a scalar (but cannot contain negative indices). E.g. in the above example:

tf.gather(params, tf.constant(3))

would print

[18 19 20 21 22 23]

Note that indices can have any shape, but the elements stored in indices always only refer to the
first dimension of params. E.g. if you want to retrieve both the 1st and 3rd row and the 2nd and 4th
row at the same time, you can do this:

indices = tf.constant([[0, 2], [1, 3]])
selected = tf.gather(params, indices)

Now selected will have shape [2, 2, 6] and its content reads:

[[[0 1 2 3 4 5]
 [12 13 14 15 16 17]]

 [[6 7 8 9 10 11]
 [18 19 20 21 22 23]]]

You can use tf.gather to compute a permutation. E.g. the following reverses all rows of params:

indices = tf.constant(list(range(4, -1, -1)))
selected = tf.gather(params, indices)

https://riptutorial.com/ 50

https://www.tensorflow.org/versions/r0.12/api_docs/python/array_ops/slicing_and_joining#gather

selected is now

[[24 25 26 27 28 29]
 [18 19 20 21 22 23]
 [12 13 14 15 16 17]
 [6 7 8 9 10 11]
 [0 1 2 3 4 5]]

If you need access to any other than the first dimension, you could work around that using
tf.transpose: E.g. to gather columns instead of rows in our example, you could do this:

indices = tf.constant([0, 2])
selected = tf.gather(tf.transpose(params, [1, 0]), indices)
selected_t = tf.transpose(selected, [1, 0])

selected_t is of shape [5, 2] and reads:

[[0 2]
 [6 8]
 [12 14]
 [18 20]
 [24 26]]

However, tf.transpose is rather expensive, so it might be better to use tf.gather_nd for this use
case.

Numpy-like indexing using tensors

This example is based on this post: TensorFlow - numpy-like tensor indexing.

In Numpy you can use arrays to index into an array. E.g. in order to select the elements at (1, 2)
and (3, 2) in a 2-dimensional array, you can do this:

data is [[0, 1, 2, 3, 4, 5],
[6, 7, 8, 9, 10, 11],
[12 13 14 15 16 17],
[18 19 20 21 22 23],
[24, 25, 26, 27, 28, 29]]
data = np.reshape(np.arange(30), [5, 6])
a = [1, 3]
b = [2, 2]
selected = data[a, b]
print(selected)

This will print:

[8 20]

To get the same behaviour in Tensorflow, you can use tf.gather_nd, which is an extension of
tf.gather. The above example can be written like this:

https://riptutorial.com/ 51

http://stackoverflow.com/questions/33736795/tensorflow-numpy-like-tensor-indexing
https://www.tensorflow.org/api_docs/python/tf/gather_nd

x = tf.constant(data)
idx1 = tf.constant(a)
idx2 = tf.constant(b)
result = tf.gather_nd(x, tf.stack((idx1, idx2), -1))

with tf.Session() as sess:
 print(sess.run(result))

This will print:

[8 20]

tf.stack is the equivalent of np.asarray and in this case stacks the two index vectors along the last
dimension (which in this case is the 1st) to produce:

[[1 2]
 [3 2]]

How to use tf.gather_nd

tf.gather_nd is an extension of tf.gather in the sense that it allows you to not only access the 1st
dimension of a tensor, but potentially all of them.

Arguments:

params: a Tensor of rank P representing the tensor we want to index into•
indices: a Tensor of rank Q representing the indices into params we want to access•

The output of the function depends on the shape of indices. If the innermost dimension of indices
has length P, we are collecting single elements from params. If it is less than P, we are collecting
slices, just like with tf.gather but without the restriction that we can only access the 1st dimension.

Collecting elements from a tensor of rank 2

To access the element at (1, 2) in a matrix, we can use:

data is [[0, 1, 2, 3, 4, 5],
[6, 7, 8, 9, 10, 11],
[12 13 14 15 16 17],
[18 19 20 21 22 23],
[24, 25, 26, 27, 28, 29]]
data = np.reshape(np.arange(30), [5, 6])
x = tf.constant(data)
result = tf.gather_nd(x, [1, 2])

where result will just be 8 as expected. Note how this is different from tf.gather: the same indices
passed to tf.gather(x, [1, 2]) would have given as the 2nd and 3rd row from data.

If you want to retrieve more than one element at the same time, just pass a list of index pairs:

https://riptutorial.com/ 52

https://www.tensorflow.org/api_docs/python/tf/gather_nd
https://www.tensorflow.org/api_docs/python/tf/gather

result = tf.gather_nd(x, [[1, 2], [4, 3], [2, 5]])

which will return [8 27 17]

Collecting rows from a tensor of rank 2

If in the above example you want to collect rows (i.e. slices) instead of elements, adjust the indices
parameter as follows:

data = np.reshape(np.arange(30), [5, 6])
x = tf.constant(data)
result = tf.gather_nd(x, [[1], [3]])

This will give you the 2nd and 4th row of data, i.e.

[[6 7 8 9 10 11]
 [18 19 20 21 22 23]]

Collecting elements from a tensor of rank 3

The concept of how to access rank-2 tensors directly translates to higher dimensional tensors. So,
to access elements in a rank-3 tensor, the innermost dimension of indices must have length 3.

data is [[[0 1]
[2 3]
[4 5]]

[[6 7]
[8 9]
[10 11]]]
data = np.reshape(np.arange(12), [2, 3, 2])
x = tf.constant(data)
result = tf.gather_nd(x, [[0, 0, 0], [1, 2, 1]])

result will now look like this: [0 11]

Collecting batched rows from a tensor of rank 3

Let's think of a rank-3 tensor as a batch of matrices shaped (batch_size, m, n). If you want to
collect the first and second row for every element in the batch, you could use this:

data is [[[0 1]
[2 3]
[4 5]]

[[6 7]
[8 9]
[10 11]]]
data = np.reshape(np.arange(12), [2, 3, 2])
x = tf.constant(data)

https://riptutorial.com/ 53

result = tf.gather_nd(x, [[[0, 0], [0, 1]], [[1, 0], [1, 1]]])

which will result in this:

[[[0 1]
 [2 3]]

 [[6 7]
 [8 9]]]

Note how the shape of indices influences the shape of the output tensor. If we would have used a
rank-2 tensor for the indices argument:

result = tf.gather_nd(x, [[0, 0], [0, 1], [1, 0], [1, 1]])

the output would have been

[[0 1]
 [2 3]
 [6 7]
 [8 9]]

Read Tensor indexing online: https://riptutorial.com/tensorflow/topic/2511/tensor-indexing

https://riptutorial.com/ 54

https://riptutorial.com/tensorflow/topic/2511/tensor-indexing

Chapter 18: TensorFlow GPU setup

Introduction

This topic is about setting up and managing GPUs in TensorFlow.

It assumes that the GPU version of TensorFlow has been installed (see
https://www.tensorflow.org/install/ for more information on the GPU installation).

You also might want to have a look to the official documentation:
https://www.tensorflow.org/tutorials/using_gpu

Remarks

Main sources:

https://www.tensorflow.org•
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/protobuf/config.proto•
https://stackoverflow.com/a/37901914•
https://github.com/tensorflow/tensorflow/issues/152•
https://github.com/tensorflow/tensorflow/issue/9201•

Examples

Run TensorFlow on CPU only - using the `CUDA_VISIBLE_DEVICES`
environment variable.

To ensure that a GPU version TensorFlow process only runs on CPU:

import os
os.environ["CUDA_VISIBLE_DEVICES"]="-1"
import tensorflow as tf

For more information on the CUDA_VISIBLE_DEVICES, have a look to this answer or to the CUDA
documentation.

Run TensorFlow Graph on CPU only - using `tf.config`

import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(device_count={'GPU': 0}))

Bear in mind that this method prevents the TensorFlow Graph from using the GPU but TensorFlow
still lock the GPU device as described in this an issue opened on this method. Using the
CUDA_VISIBLE_DEVICES seems to be the best way to ensure that TensorFlow is kept away from the
GPU card (see this answer).

https://riptutorial.com/ 55

https://www.tensorflow.org/install/
https://www.tensorflow.org/tutorials/using_gpu
https://www.tensorflow.org
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/protobuf/config.proto
https://stackoverflow.com/a/37901914
https://github.com/tensorflow/tensorflow/issues/152
https://github.com/tensorflow/tensorflow/issue/9201
https://stackoverflow.com/a/44518219/4282745
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars
https://github.com/tensorflow/tensorflow/issues/9201#issue-221681884
https://github.com/tensorflow/tensorflow/issues/9201#issuecomment-294092781

Use a particular set of GPU devices

To use a particular set of GPU devices, the CUDA_VISIBLE_DEVICES environment variable can be
used:

import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"]="0" # Will use only the first GPU device

os.environ["CUDA_VISIBLE_DEVICES"]="0,3" # Will use only the first and the fourth GPU devices

(Quoted from this answer; more information on the CUDA environment variables here.)

List the available devices available by TensorFlow in the local process.

from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())

Control the GPU memory allocation

By default, TensorFlow pre-allocate the whole memory of the GPU card (which can causes
CUDA_OUT_OF_MEMORY warning).

To change this, it is possible to

change the percentage of memory pre-allocated, using per_process_gpu_memory_fraction
config option,

A value between 0 and 1 that indicates what fraction of the
available GPU memory to pre-allocate for each process. 1 means
to pre-allocate all of the GPU memory, 0.5 means the process
allocates ~50% of the available GPU memory.

•

disable the pre-allocation, using allow_growth config option. Memory allocation will grow as
usage grows.

If true, the allocator does not pre-allocate the entire specified
GPU memory region, instead starting small and growing as needed.

•

For example:

config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.4
sess = tf.Session(config=config) as sess:

or

config = tf.ConfigProto()

https://riptutorial.com/ 56

https://stackoverflow.com/a/37901914
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars

config.gpu_options.allow_growth = True
sess= tf.Session(config=config):

More information on the config options here.

Read TensorFlow GPU setup online: https://riptutorial.com/tensorflow/topic/10621/tensorflow-gpu-
setup

https://riptutorial.com/ 57

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/protobuf/config.proto
https://riptutorial.com/tensorflow/topic/10621/tensorflow-gpu-setup
https://riptutorial.com/tensorflow/topic/10621/tensorflow-gpu-setup

Chapter 19: Using 1D convolution

Examples

Basic example

Update: TensorFlow now supports 1D convolution since version r0.11, using tf.nn.conv1d.

Consider a basic example with an input of length 10, and dimension 16. The batch size is 32. We
therefore have a placeholder with input shape [batch_size, 10, 16].

batch_size = 32
x = tf.placeholder(tf.float32, [batch_size, 10, 16])

We then create a filter with width 3, and we take 16 channels as input, and output also 16
channels.

filter = tf.zeros([3, 16, 16]) # these should be real values, not 0

Finally we apply tf.nn.conv1d with a stride and a padding:

stride: integer s•
padding: this works like in 2D, you can choose between SAME and VALID. SAME will output the
same input length, while VALID will not add zero padding.

•

For our example we take a stride of 2, and a valid padding.

output = tf.nn.conv1d(x, filter, stride=2, padding="VALID")

The output shape should be [batch_size, 4, 16].
With padding="SAME", we would have had an output shape of [batch_size, 5, 16].

For previous versions of TensorFlow, you can just use 2D convolutions while setting the height of
the inputs and the filters to 1.

Math behind 1D convolution with advanced examples in TF

`To calculate 1D convolution by hand, you slide your kernel over the input, calculate the element-
wise multiplications and sum them up.

The easiest way is for padding=0, stride=1

https://riptutorial.com/ 58

https://www.tensorflow.org/versions/r0.11/api_docs/python/nn.html#conv1d

So if your input = [1, 0, 2, 3, 0, 1, 1] and kernel = [2, 1, 3] the result of the convolution is [8,
11, 7, 9, 4], which is calculated in the following way:

8 = 1 * 2 + 0 * 1 + 2 * 3•
11 = 0 * 2 + 2 * 1 + 3 * 3•
7 = 2 * 2 + 3 * 1 + 0 * 3•
9 = 3 * 2 + 0 * 1 + 1 * 3•
4 = 0 * 2 + 1 * 1 + 1 * 3•

TF's conv1d function calculates convolutions in batches, so in order to do this in TF, we need to
provide the data in the correct format (doc explains that input should be in [batch, in_width,
in_channels], it also explains how kernel should look like). So

import tensorflow as tf
i = tf.constant([1, 0, 2, 3, 0, 1, 1], dtype=tf.float32, name='i')
k = tf.constant([2, 1, 3], dtype=tf.float32, name='k')

print i, '\n', k, '\n'

data = tf.reshape(i, [1, int(i.shape[0]), 1], name='data')
kernel = tf.reshape(k, [int(k.shape[0]), 1, 1], name='kernel')

print data, '\n', kernel, '\n'

res = tf.squeeze(tf.nn.conv1d(data, kernel, 1, 'VALID'))
with tf.Session() as sess:
 print sess.run(res)

which will give you the same answer we calculated previously: [8. 11. 7. 9. 4.]

Convolution with padding

Padding is just a fancy way to tell append and prepend your input with some value. In most of the
cases this value is 0, and this is why most of the time people name it zero-padding. TF support
'VALID' and 'SAME' zero-padding, for an arbitrary padding you need to use tf.pad(). 'VALID'
padding means no padding at all, where the same means that the output will have the same size
of the input. Let's calculate the convolution with padding=1 on the same example (notice that for our
kernel this is 'SAME' padding). To do this we just append our array with 1 zero at the
beginning/end: input = [0, 1, 0, 2, 3, 0, 1, 1, 0].

Here you can notice that you do not need to recalculate everything: all the elements stay the same
except of the first/last one which are:

1 = 0 * 2 + 1 * 1 + 0 * 3•
3 = 1 * 2 + 1 * 1 + 0 * 3•

So the result is [1, 8, 11, 7, 9, 4, 3] which is the same as calculated with TF:

res = tf.squeeze(tf.nn.conv1d(data, kernel, 1, 'SAME'))
with tf.Session() as sess:

https://riptutorial.com/ 59

https://www.tensorflow.org/api_docs/python/tf/nn/conv1d
https://www.tensorflow.org/api_docs/python/tf/pad

 print sess.run(res)

Convolution with strides

Strides allow you to skip elements while sliding. In all our previous examples we slided 1 element,
now you can slide s elements at a time. Because we will use a previous example, there is a trick:
sliding by n elements is equivalent to sliding by 1 element and selecting every n-th element.

So if we use our previous example with padding=1 and change stride to 2, you just take the
previous result [1, 8, 11, 7, 9, 4, 3] and leave each 2-nd element, which will result in [1, 11, 9,
3]. You can do this in TF in the following way:

res = tf.squeeze(tf.nn.conv1d(data, kernel, 2, 'SAME'))
with tf.Session() as sess:
 print sess.run(res)

Read Using 1D convolution online: https://riptutorial.com/tensorflow/topic/5447/using-1d-
convolution

https://riptutorial.com/ 60

https://riptutorial.com/tensorflow/topic/5447/using-1d-convolution
https://riptutorial.com/tensorflow/topic/5447/using-1d-convolution

Chapter 20: Using Batch Normalization

Parameters

contrib.layers.batch_norm
params

Remarks

beta python bool type. Whether or not to center the moving_mean and
moving_variance

------ ------

gamma python bool type. Whether or not to scale the moving_mean and
moving_variance

------ ------

is_training Accepts python bool or TensorFlow tf.palceholder(tf.bool)

------ ------

decay
The default setting is decay=0.999. A smaller value (i.e.
decay=0.9) is better for smaller dataset and/or less training
steps.

Remarks

Here is a screen shot of the result of the working example above.

https://riptutorial.com/ 61

The code and a jupyter notebook version of this working example can be found at the author's
repository

Examples

A Full Working Example of 2-layer Neural Network with Batch Normalization
(MNIST Dataset)

Import libraries (language dependency:
python 2.7)

import tensorflow as tf
import numpy as np
from sklearn.datasets import fetch_mldata
from sklearn.model_selection import train_test_split

load data, prepare data

mnist = fetch_mldata('MNIST original', data_home='./')
print "MNIST data, X shape\t", mnist.data.shape
print "MNIST data, y shape\t", mnist.target.shape

https://riptutorial.com/ 62

https://i.stack.imgur.com/fiV1E.png
https://github.com/zhongyuk/CNNplayground/tree/master/studybn
https://github.com/zhongyuk/CNNplayground/tree/master/studybn

print mnist.data.dtype
print mnist.target.dtype

mnist_X = mnist.data.astype(np.float32)
mnist_y = mnist.target.astype(np.float32)
print mnist_X.dtype
print mnist_y.dtype

One-Hot-Encode y

num_classes = 10
mnist_y = np.arange(num_classes)==mnist_y[:, None]
mnist_y = mnist_y.astype(np.float32)
print mnist_y.shape

Split training, validation, testing data

train_X, valid_X, train_y, valid_y = train_test_split(mnist_X, mnist_y,
test_size=10000,\
 random_state=102, stratify=mnist.target)
train_X, test_X, train_y, test_y = train_test_split(train_X, train_y, test_size=10000,\
 random_state=325, stratify=train_y)
print 'Dataset\t\tFeatureShape\tLabelShape'
print 'Training set:\t', train_X.shape,'\t', train_y.shape
print 'Validation set:\t', valid_X.shape,'\t', valid_y.shape
print 'Testing set:\t', test_X.shape, '\t', test_y.shape

Build a simple 2 layer neural network graph

num_features = train_X.shape[1]
batch_size = 64
hidden_layer_size = 1024

An initialization function

def initialize(scope, shape, wt_initializer, center=True, scale=True):
 with tf.variable_scope(scope, reuse=None) as sp:
 wt = tf.get_variable("weights", shape, initializer=wt_initializer)
 bi = tf.get_variable("biases", shape[-1], initializer=tf.constant_initializer(1.))
 if center:
 beta = tf.get_variable("beta", shape[-1],
initializer=tf.constant_initializer(0.0))
 if scale:
 gamma = tf.get_variable("gamma", shape[-1],
initializer=tf.constant_initializer(1.0))
 moving_avg = tf.get_variable("moving_mean", shape[-1],
initializer=tf.constant_initializer(0.0), \

https://riptutorial.com/ 63

 trainable=False)
 moving_var = tf.get_variable("moving_variance", shape[-1],
initializer=tf.constant_initializer(1.0), \
 trainable=False)
 sp.reuse_variables()

Build Graph

init_lr = 0.001
graph = tf.Graph()
with graph.as_default():
 # prepare input tensor
 tf_train_X = tf.placeholder(tf.float32, shape=[batch_size, num_features])
 tf_train_y = tf.placeholder(tf.float32, shape=[batch_size, num_classes])
 tf_valid_X, tf_valid_y = tf.constant(valid_X), tf.constant(valid_y)
 tf_test_X, tf_test_y = tf.constant(test_X), tf.constant(test_y)

 # setup layers
 layers = [{'scope':'hidden_layer', 'shape':[num_features, hidden_layer_size],
 'initializer':tf.truncated_normal_initializer(stddev=0.01)},
 {'scope':'output_layer', 'shape':[hidden_layer_size, num_classes],
 'initializer':tf.truncated_normal_initializer(stddev=0.01)}]
 # initialize layers
 for layer in layers:
 initialize(layer['scope'], layer['shape'], layer['initializer'])

 # build model - for each layer: -> X -> X*wt+bi -> batch_norm -> activation -> dropout (if
not output layer) ->
 layer_scopes = [layer['scope'] for layer in layers]
 def model(X, layer_scopes, is_training, keep_prob, decay=0.9):
 output_X = X
 for scope in layer_scopes:
 # X*wt+bi
 with tf.variable_scope(scope, reuse=True):
 wt = tf.get_variable("weights")
 bi = tf.get_variable("biases")
 output_X = tf.matmul(output_X, wt) + bi
 # Insert Batch Normalization
 # set `updates_collections=None` to force updates in place however it comes with
speed penalty
 output_X = tf.contrib.layers.batch_norm(output_X, decay=decay,
is_training=is_training,
 updates_collections=ops.GraphKeys.UPDATE_OPS,
scope=scope, reuse=True)
 # ReLu activation
 output_X = tf.nn.relu(output_X)
 # Dropout for all non-output layers
 if scope!=layer_scopes[-1]:
 output_X = tf.nn.dropout(output_X, keep_prob)
 return output_X

 # setup keep_prob
 keep_prob = tf.placeholder(tf.float32)

 # compute loss, make predictions
 train_logits = model(tf_train_X, layer_scopes, True, keep_prob)
 train_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(train_logits,
tf_train_y))

https://riptutorial.com/ 64

 train_pred = tf.nn.softmax(train_logits)
 valid_logits = model(tf_valid_X, layer_scopes, False, keep_prob)
 valid_pred = tf.nn.softmax(valid_logits)
 test_logits = model(tf_test_X, layer_scopes, False, keep_prob)
 test_pred = tf.nn.softmax(test_logits)

 # compute accuracy
 def compute_accuracy(predictions, labels):
 correct_predictions = tf.equal(tf.argmax(predictions, 1), tf.argmax(labels, 1))
 accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32))
 return accuracy

 train_accuracy = compute_accuracy(train_pred, tf_train_y)
 valid_accuracy = compute_accuracy(valid_pred, tf_valid_y)
 test_accuracy = compute_accuracy(test_pred , tf_test_y)

 # setup learning rate, optimizer
 global_step = tf.Variable(0)
 learning_rate = tf.train.exponential_decay(init_lr,global_step, decay_steps=500,
decay_rate=0.95, staircase=True)
 optimizer = tf.train.AdamOptimizer(learning_rate).minimize(train_loss,
global_step=global_step)

Start a session

num_steps = 1000
with tf.Session(graph=graph) as sess:
 tf.initialize_all_variables().run()
 print('Initialized')
 for step in range(num_steps):
 offset = (step * batch_size) % (train_y.shape[0] - batch_size)
 batch_X = train_X[offset:(offset+batch_size), :]
 batch_y = train_y[offset:(offset+batch_size), :]
 feed_dict = {tf_train_X : batch_X, tf_train_y : batch_y, keep_prob : 0.6}
 _, tloss, tacc = sess.run([optimizer, train_loss, train_accuracy],
feed_dict=feed_dict)
 if step%50==0:
 # only evaluate validation accuracy every 50 steps to speed up training
 vacc = sess.run(valid_accuracy, feed_dict={keep_prob : 1.0})
 print('Epoch: %d:\tLoss: %f\t\tTrain Acc: %.2f%%\tValid Acc: %2.f%%\tLearning
rate: %.6f' \
 %(step, tloss, (tacc*100), (vacc*100), learning_rate.eval()))
 print("Finished training")
 tacc = sess.run([test_accuracy], feed_dict={keep_prob : 1.0})
 print("Test accuracy: %4f%%" %(tacc*100))

Read Using Batch Normalization online: https://riptutorial.com/tensorflow/topic/7909/using-batch-
normalization

https://riptutorial.com/ 65

https://riptutorial.com/tensorflow/topic/7909/using-batch-normalization
https://riptutorial.com/tensorflow/topic/7909/using-batch-normalization

Chapter 21: Using if condition inside the
TensorFlow graph with tf.cond

Parameters

Parameter Details

pred a TensorFlow tensor of type bool

fn1 a callable function, with no argument

fn2 a callable function, with no argument

name (optional) name for the operation

Remarks

pred cannot be just True or False, it needs to be a Tensor•
The function fn1 and fn2 should return the same number of outputs, with the same types.•

Examples

Basic example

x = tf.constant(1.)
bool = tf.constant(True)

res = tf.cond(bool, lambda: tf.add(x, 1.), lambda: tf.add(x, 10.))
sess.run(res) will give you 2.

When f1 and f2 return multiple tensors

The two functions fn1 and fn2 can return multiple tensors, but they have to return the exact same
number and types of outputs.

x = tf.constant(1.)
bool = tf.constant(True)

def fn1():
 return tf.add(x, 1.), x

def fn2():
 return tf.add(x, 10.), x

res1, res2 = tf.cond(bool, fn1, fn2)
tf.cond returns a list of two tensors

https://riptutorial.com/ 66

sess.run([res1, res2]) will return [2., 1.]

define and use functions f1 and f2 with parameters

You can pass parameters to the functions in tf.cond() using lambda and the code is as bellow.

x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
z = tf.placeholder(tf.float32)

def fn1(a, b):
 return tf.mul(a, b)

def fn2(a, b):
 return tf.add(a, b)

pred = tf.placeholder(tf.bool)
result = tf.cond(pred, lambda: fn1(x, y), lambda: fn2(y, z))

Then you can call it as bellowing:

with tf.Session() as sess:
 print sess.run(result, feed_dict={x: 1, y: 2, z: 3, pred: True})
 # The result is 2.0
 print sess.run(result, feed_dict={x: 1, y: 2, z: 3, pred: False})
 # The result is 5.0

Read Using if condition inside the TensorFlow graph with tf.cond online:
https://riptutorial.com/tensorflow/topic/2628/using-if-condition-inside-the-tensorflow-graph-with-tf-
cond

https://riptutorial.com/ 67

https://riptutorial.com/tensorflow/topic/2628/using-if-condition-inside-the-tensorflow-graph-with-tf-cond
https://riptutorial.com/tensorflow/topic/2628/using-if-condition-inside-the-tensorflow-graph-with-tf-cond

Chapter 22: Using transposed convolution
layers

Examples

Using tf.nn.conv2d_transpose for arbitary batch sizes and with automatic
output shape calculation.

Example of how to calculate the output shape and overcome the difficulties of using
tf.nn.conv2d_transpose with unknown batch size (when input.get_shape() is (?, H, W, C) or (?, C,
H, W)).

def upconvolution (input, output_channel_size, filter_size_h, filter_size_w,
 stride_h, stride_w, init_w, init_b, layer_name,
 dtype=tf.float32, data_format="NHWC", padding='VALID'):
 with tf.variable_scope(layer_name):
 #calculation of the output_shape:
 if data_format == "NHWC":
 input_channel_size = input.get_shape().as_list()[3]
 input_size_h = input.get_shape().as_list()[1]
 input_size_w = input.get_shape().as_list()[2]
 stride_shape = [1, stride_h, stride_w, 1]
 if padding == 'VALID':
 output_size_h = (input_size_h - 1)*stride_h + filter_size_h
 output_size_w = (input_size_w - 1)*stride_w + filter_size_w
 elif padding == 'SAME':
 output_size_h = (input_size_h - 1)*stride_h + 1
 output_size_w = (input_size_w - 1)*stride_w + 1
 else:
 raise ValueError("unknown padding")
 output_shape = tf.stack([tf.shape(input)[0],
 output_size_h, output_size_w,
 output_channel_size])
 elif data_format == "NCHW":
 input_channel_size = input.get_shape().as_list()[1]
 input_size_h = input.get_shape().as_list()[2]
 input_size_w = input.get_shape().as_list()[3]
 stride_shape = [1, 1, stride_h, stride_w]
 if padding == 'VALID':
 output_size_h = (input_size_h - 1)*stride_h + filter_size_h
 output_size_w = (input_size_w - 1)*stride_w + filter_size_w
 elif padding == 'SAME':
 output_size_h = (input_size_h - 1)*stride_h + 1
 output_size_w = (input_size_w - 1)*stride_w + 1
 else:
 raise ValueError("unknown padding")
 output_shape = tf.stack([tf.shape(input)[0],
 output_channel_size,
 output_size_h, output_size_w])
 else:
 raise ValueError("unknown data_format")

 #creating weights:

https://riptutorial.com/ 68

 shape = [filter_size_h, filter_size_w,
 output_channel_size, input_channel_size]
 W_upconv = tf.get_variable("w", shape=shape, dtype=dtype,
 initializer=init_w)

 shape=[output_channel_size]
 b_upconv = tf.get_variable("b", shape=shape, dtype=dtype,
 initializer=init_b)

 upconv = tf.nn.conv2d_transpose(input, W_upconv, output_shape, stride_shape,
 padding=padding,
 data_format=data_format)
 output = tf.nn.bias_add(upconv, b_upconv, data_format=data_format)

 #Now output.get_shape() is equal (?,?,?,?) which can become a problem in the
 #next layers. This can be repaired by reshaping the tensor to its shape:
 output = tf.reshape(output, output_shape)
 #now the shape is back to (?, H, W, C) or (?, C, H, W)

 return output

Read Using transposed convolution layers online:
https://riptutorial.com/tensorflow/topic/9640/using-transposed-convolution-layers

https://riptutorial.com/ 69

https://riptutorial.com/tensorflow/topic/9640/using-transposed-convolution-layers

Chapter 23: Variables

Examples

Declaring and Initializing Variable Tensors

Variable tensors are used when the values require updating within a session. It is the type of
tensor that would be used for the weights matrix when creating neural networks, since these
values will be updated as the model is being trained.

Declaring a variable tensor can be done using the tf.Variable() or tf.get_variable()function. It is
recommended to use tf.get_variable, as it offers more flexibility eg:

Declare a 2 by 3 tensor populated by ones
a = tf.Variable(tf.ones([2,3], dtype=tf.float32))
a = tf.get_variable('a', shape=[2, 3], initializer=tf.constant_initializer(1))

Something to note is that declaring a variable tensor does not automatically initialize the values.
The values need to be intialized explicitly when starting a session using one of the following:

tf.global_variables_initializer().run()•
session.run(tf.global_variables_initializer())•

The following example shows the full process of declaring and initializing a variable tensor.

Build a graph
graph = tf.Graph()
with graph.as_default():
 a = tf.get_variable('a', shape=[2,3], initializer=tf.constant_initializer(1),
dtype=tf.float32)) # Create a variable tensor

Create a session, and run the graph
with tf.Session(graph=graph) as session:
 tf.global_variables_initializer().run() # Initialize values of all variable tensors
 output_a = session.run(a) # Return the value of the variable tensor
 print(output_a) # Print this value

Which prints out the following:

[[1. 1. 1.]
 [1. 1. 1.]]

Fetch the value of a TensorFlow variable or a Tensor

Sometimes we need to fetch and print the value of a TensorFlow variable to guarantee our
program is correct.

For example, if we have the following program:

https://riptutorial.com/ 70

import tensorflow as tf
import numpy as np
a = tf.Variable(tf.random_normal([2,3])) # declare a tensorflow variable
b = tf.random_normal([2,2]) #declare a tensorflow tensor
init = tf.initialize_all_variables()

if we want to get the value of a or b, the following procedures can be used:

with tf.Session() as sess:
 sess.run(init)
 a_value = sess.run(a)
 b_value = sess.run(b)
 print a_value
 print b_value

or

with tf.Session() as sess:
 sess.run(init)
 a_value = a.eval()
 b_value = b.eval()
 print a_value
 print b_value

Read Variables online: https://riptutorial.com/tensorflow/topic/2954/variables

https://riptutorial.com/ 71

https://riptutorial.com/tensorflow/topic/2954/variables

Chapter 24: Visualizing the output of a
convolutional layer

Introduction

There are many ways of visualizing the convolutional layers, but they share same components:
fetching the values of a part of the convolutional neural networks, and visualizing those values.
Note those visualizations should not and can not display on the TensorBoard.

Examples

A basic example of 2 steps

The example assumes you have successfully run and fully understand the tutorial of MNIST(Deep
MNIST for expert).

%matplotlib inline
import matplotlib.pyplot as plt

con_val is a 4-d array, the first indicates the index of image, the last indicates the index
of kernel
def display(con_val, kernel):
 plt.axis('off')
 plt.imshow(np.sum(con_val[:, :, :, kernel], axis=0), cmap=plt.get_cmap('gray'))
 plt.show()

The above function visualizes an array (con_val) containing the values of a convolutional layer
given the kernel. The function sums up the values of all examples and plot them in gray-scale.

The following codes fetch values from the first convolutional layer and call the above function to
display.

labels = np.nonzero(mnist.test.labels)[1] # convert "one-hot vectors" to digits (0-9)

for i in range(2): # display only 0 and 1
 con_val = h_pool1.eval(feed_dict={x:mnist.test.images[labels == i, :]}) #fetch
 display(con_val, 3)

The codes only plot the visualizations corresponding to labels of 0 and 1. You will be able to see
the results as these.

https://riptutorial.com/ 72

https://www.tensorflow.org/get_started/mnist/pros
https://www.tensorflow.org/get_started/mnist/pros

Read Visualizing the output of a convolutional layer online:
https://riptutorial.com/tensorflow/topic/9346/visualizing-the-output-of-a-convolutional-layer

https://riptutorial.com/ 73

https://i.stack.imgur.com/uOduE.png
https://i.stack.imgur.com/uOduE.png
https://riptutorial.com/tensorflow/topic/9346/visualizing-the-output-of-a-convolutional-layer

Credits

S.
No

Chapters Contributors

1
Getting started with
tensorflow

adn, Community, daoliker, Engineero, Ishant Mrinal, Jacob
Holloway, Maciej Lipinski, Mad Matts, Nicolas, Olivier Moindrot,
Steven, Swapniel

2

Creating a custom
operation with
tf.py_func (CPU
only)

mrry, Olivier Moindrot, SherylHohman

3

Creating RNN, LSTM
and bidirectional
RNN/LSTMs with
TensorFlow

RamenChef, struct

4
How to debug a
memory leak in
TensorFlow

mrry, Vladimir Bystricky

5
How to use
TensorFlow Graph
Collections?

Augustin, Conchylicultor, kaufmanu, NCC, Nitred, Sultan
Kenjeyev, Андрей Задаянчук

6

Math behind 2D
convolution with
advanced examples
in TF

Salvador Dali

7
Matrix and Vector
Arithmetic

Ishant Mrinal, ronrest

8
Measure the
execution time of
individual operations

mrry, Olivier Moindrot

9
Minimalist example
code for distributed
Tensorflow.

Ishant Mrinal

10
Multidimensional
softmax

struct

11 Placeholders Huy Vo, Ishant Mrinal, RamenChef, RobR, ronrest, Tom

https://riptutorial.com/ 74

https://riptutorial.com/contributor/424986/adn
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6719992/daoliker
https://riptutorial.com/contributor/3670871/engineero
https://riptutorial.com/contributor/1896918/ishant-mrinal
https://riptutorial.com/contributor/3893224/jacob-holloway
https://riptutorial.com/contributor/3893224/jacob-holloway
https://riptutorial.com/contributor/7240351/maciej-lipinski
https://riptutorial.com/contributor/6242846/mad-matts
https://riptutorial.com/contributor/4282745/nicolas
https://riptutorial.com/contributor/5098368/olivier-moindrot
https://riptutorial.com/contributor/6416660/steven
https://riptutorial.com/contributor/2363354/swapniel
https://riptutorial.com/contributor/3574081/mrry
https://riptutorial.com/contributor/5098368/olivier-moindrot
https://riptutorial.com/contributor/5411817/sherylhohman
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/854911/struct
https://riptutorial.com/contributor/3574081/mrry
https://riptutorial.com/contributor/8315956/vladimir-bystricky
https://riptutorial.com/contributor/4304503/augustin
https://riptutorial.com/contributor/4172685/conchylicultor
https://riptutorial.com/contributor/1373669/kaufmanu
https://riptutorial.com/contributor/7374386/ncc
https://riptutorial.com/contributor/2598661/nitred
https://riptutorial.com/contributor/6626887/sultan-kenjeyev
https://riptutorial.com/contributor/6626887/sultan-kenjeyev
https://riptutorial.com/contributor/5520753/----------------
https://riptutorial.com/contributor/1090562/salvador-dali
https://riptutorial.com/contributor/1896918/ishant-mrinal
https://riptutorial.com/contributor/4285679/ronrest
https://riptutorial.com/contributor/3574081/mrry
https://riptutorial.com/contributor/5098368/olivier-moindrot
https://riptutorial.com/contributor/1896918/ishant-mrinal
https://riptutorial.com/contributor/854911/struct
https://riptutorial.com/contributor/7070779/huy-vo
https://riptutorial.com/contributor/1896918/ishant-mrinal
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5587428/robr
https://riptutorial.com/contributor/4285679/ronrest
https://riptutorial.com/contributor/1036426/tom

12 Q-learning BarzinM

13 Reading the data basuam, sygi

14
Save and Restore a
Model in TensorFlow

AryanJ-NYC, BarzinM, black_puppydog, danijar, Hara Hara
Mahadevaki, kaufmanu, Olivier Moindrot, Rajarshee Mitra,
Steven, Steven Hutt, Tom

15
Save Tensorflow
model in Python and
load with Java

Ishant Mrinal, Karl Nicholas

16

Simple linear
regression structure
in TensorFlow with
Python

ml4294, Nicolas Bortolotti

17 Tensor indexing Androbin, kaufmanu, Olivier Moindrot

18
TensorFlow GPU
setup

Nicolas

19 Using 1D convolution Olivier Moindrot, Salvador Dali

20
Using Batch
Normalization

Zhongyu Kuang

21

Using if condition
inside the
TensorFlow graph
with tf.cond

Kongsea, Olivier Moindrot, Paulo Alves

22
Using transposed
convolution layers

BlueSun

23 Variables Ishant Mrinal, kame, Kongsea, ronrest

24
Visualizing the
output of a
convolutional layer

Tengerye

https://riptutorial.com/ 75

https://riptutorial.com/contributor/4561668/barzinm
https://riptutorial.com/contributor/7479868/basuam
https://riptutorial.com/contributor/1951176/sygi
https://riptutorial.com/contributor/4048278/aryanj-nyc
https://riptutorial.com/contributor/4561668/barzinm
https://riptutorial.com/contributor/393885/black-puppydog
https://riptutorial.com/contributor/1079110/danijar
https://riptutorial.com/contributor/5223026/hara-hara-mahadevaki
https://riptutorial.com/contributor/5223026/hara-hara-mahadevaki
https://riptutorial.com/contributor/1373669/kaufmanu
https://riptutorial.com/contributor/5098368/olivier-moindrot
https://riptutorial.com/contributor/2452184/rajarshee-mitra
https://riptutorial.com/contributor/6416660/steven
https://riptutorial.com/contributor/6685347/steven-hutt
https://riptutorial.com/contributor/1036426/tom
https://riptutorial.com/contributor/1896918/ishant-mrinal
https://riptutorial.com/contributor/3795036/karl-nicholas
https://riptutorial.com/contributor/7847518/ml4294
https://riptutorial.com/contributor/1093708/nicolas-bortolotti
https://riptutorial.com/contributor/4969370/androbin
https://riptutorial.com/contributor/1373669/kaufmanu
https://riptutorial.com/contributor/5098368/olivier-moindrot
https://riptutorial.com/contributor/4282745/nicolas
https://riptutorial.com/contributor/5098368/olivier-moindrot
https://riptutorial.com/contributor/1090562/salvador-dali
https://riptutorial.com/contributor/4678222/zhongyu-kuang
https://riptutorial.com/contributor/4049614/kongsea
https://riptutorial.com/contributor/5098368/olivier-moindrot
https://riptutorial.com/contributor/845394/paulo-alves
https://riptutorial.com/contributor/4255553/bluesun
https://riptutorial.com/contributor/1896918/ishant-mrinal
https://riptutorial.com/contributor/237934/kame
https://riptutorial.com/contributor/4049614/kongsea
https://riptutorial.com/contributor/4285679/ronrest
https://riptutorial.com/contributor/3293726/tengerye

	About
	Chapter 1: Getting started with tensorflow
	Remarks
	Examples
	Installation or Setup
	Basic Example

	Linear Regression
	Tensorflow Basics
	Counting to 10

	Chapter 2: Creating a custom operation with tf.py_func (CPU only)
	Parameters
	Examples
	Basic example
	Why to use tf.py_func

	Chapter 3: Creating RNN, LSTM and bidirectional RNN/LSTMs with TensorFlow
	Examples
	Creating a bidirectional LSTM

	Chapter 4: How to debug a memory leak in TensorFlow
	Examples
	Use Graph.finalize() to catch nodes being added to the graph
	Use the tcmalloc allocator

	Chapter 5: How to use TensorFlow Graph Collections?
	Remarks
	Examples
	Create your own collection and use it to collect all your losses.
	Collect variables from nested scopes

	Chapter 6: Math behind 2D convolution with advanced examples in TF
	Introduction
	Examples
	No padding, strides=1
	Some padding, strides=1
	Padding and strides (the most general case)

	Chapter 7: Matrix and Vector Arithmetic
	Examples
	Elementwise Multiplication
	Scalar Times a Tensor
	Dot Product

	Chapter 8: Measure the execution time of individual operations
	Examples
	Basic example with TensorFlow's Timeline object

	Chapter 9: Minimalist example code for distributed Tensorflow.
	Introduction
	Examples
	Distributed training example

	Chapter 10: Multidimensional softmax
	Examples
	Creating a Softmax Output Layer
	Computing Costs on a Softmax Output Layer

	Chapter 11: Placeholders
	Parameters
	Examples
	Basics of Placeholders
	Placeholder with Default

	Chapter 12: Q-learning
	Examples
	Minimal Example

	Chapter 13: Reading the data
	Examples
	Count examples in CSV file
	Read & Parse TFRecord file
	Random shuffling the examples
	Reading data for n epochs with batching
	How to load images and labels from a TXT file

	Chapter 14: Save and Restore a Model in TensorFlow
	Introduction
	Remarks
	Examples
	Saving the model
	Restoring the model

	Chapter 15: Save Tensorflow model in Python and load with Java
	Introduction
	Remarks
	Examples
	Create and save a model with Python
	Load and use the model in Java.

	Chapter 16: Simple linear regression structure in TensorFlow with Python
	Introduction
	Parameters
	Remarks
	Examples
	Simple regression function code structure
	Main Routine
	Normalization Routine
	Read Data routine

	Chapter 17: Tensor indexing
	Introduction
	Examples
	Extract a slice from a tensor
	Extract non-contiguous slices from the first dimension of a tensor
	Numpy-like indexing using tensors
	How to use tf.gather_nd

	Chapter 18: TensorFlow GPU setup
	Introduction
	Remarks
	Examples
	Run TensorFlow on CPU only - using the `CUDA_VISIBLE_DEVICES` environment variable.
	Run TensorFlow Graph on CPU only - using `tf.config`
	Use a particular set of GPU devices
	List the available devices available by TensorFlow in the local process.
	Control the GPU memory allocation

	Chapter 19: Using 1D convolution
	Examples
	Basic example
	Math behind 1D convolution with advanced examples in TF

	The easiest way is for padding=0, stride=1
	Convolution with padding
	Convolution with strides
	Chapter 20: Using Batch Normalization
	Parameters
	Remarks
	Examples
	A Full Working Example of 2-layer Neural Network with Batch Normalization (MNIST Dataset)

	Import libraries (language dependency: python 2.7)
	load data, prepare data
	One-Hot-Encode y
	Split training, validation, testing data
	Build a simple 2 layer neural network graph
	An initialization function
	Build Graph
	Start a session
	Chapter 21: Using if condition inside the TensorFlow graph with tf.cond
	Parameters
	Remarks
	Examples
	Basic example
	When f1 and f2 return multiple tensors
	define and use functions f1 and f2 with parameters

	Chapter 22: Using transposed convolution layers
	Examples
	Using tf.nn.conv2d_transpose for arbitary batch sizes and with automatic output shape calculation.

	Chapter 23: Variables
	Examples
	Declaring and Initializing Variable Tensors
	Fetch the value of a TensorFlow variable or a Tensor

	Chapter 24: Visualizing the output of a convolutional layer
	Introduction
	Examples
	A basic example of 2 steps

	Credits

