
theano

#theano

Table of Contents

About 1

Chapter 1: Getting started with theano 2

Remarks 2

Examples 2

Installation or Setup 2

Installing Theano and configuring the GPU on Ubuntu 14.04 2

Adding cuDNN 3

Adding CNMeM 4

Running Theano on multiple CPU cores 5

Your first theano program 5

Chapter 2: Loops with theano 7

Examples 7

Basic scan usage 7

theano map and reduce 9

making while loop 9

Credits 11

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: theano

It is an unofficial and free theano ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official theano.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/theano
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with theano

Remarks

Theano is a python library, which handles defining and evaluating symbolic expressions over
tensor variables. Has various application, but most popular is deep learning.

Examples

Installation or Setup

Detailed instructions on getting theano set up or installed.

Installing Theano and configuring the GPU on Ubuntu 14.04

You can use the following instructions to install Theano and configure the GPU (assume a freshly
installed Ubuntu 14.04):

Install Theano
sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++
libopenblas-dev git
sudo pip install Theano

Install Nvidia drivers, CUDA and CUDA toolkit, following some instructions from
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
wget http://developer.download.nvidia.com/compute/cuda/7.5/Prod/local_installers/cuda-repo-
ubuntu1404-7-5-local_7.5-18_amd64.deb # Got the link at https://developer.nvidia.com/cuda-
downloads
sudo dpkg -i cuda-repo-ubuntu1404-7-5-local_7.5-18_amd64.deb
sudo apt-get update
sudo apt-get install cuda

sudo reboot

At that point, running nvidia-smi should work, but running nvcc won't work.

Execute in console, or (add in ~/.bash_profile then run "source ~/.bash_profile"):
export PATH=/usr/local/cuda-7.5/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-7.5/lib64:$LD_LIBRARY_PATH

At that point, both nvidia-smi and nvcc should work.

To test whether Theano is able to use the GPU:

Copy-paste the following in gpu_test.py:

Start gpu_test.py
From http://deeplearning.net/software/theano/tutorial/using_gpu.html#using-gpu
from theano import function, config, shared, sandbox

https://riptutorial.com/ 2

import theano.tensor as T
import numpy
import time

vlen = 10 * 30 * 768 # 10 x #cores x # threads per core
iters = 1000

rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
f = function([], T.exp(x))
print(f.maker.fgraph.toposort())
t0 = time.time()
for i in xrange(iters):
 r = f()
t1 = time.time()
print("Looping %d times took %f seconds" % (iters, t1 - t0))
print("Result is %s" % (r,))
if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]):
 print('Used the cpu')
else:
 print('Used the gpu')
End gpu_test.py

and run it:

THEANO_FLAGS='mode=FAST_RUN,device=gpu,floatX=float32' python gpu_test.py

which should return:

f@f-Aurora-R4:~$ THEANO_FLAGS='mode=FAST_RUN,device=gpu,floatX=float32' python gpu_test.py
Using gpu device 0: GeForce GTX 690
[GpuElemwise{exp,no_inplace}(<CudaNdarrayType(float32, vector)>),
HostFromGpu(GpuElemwise{exp,no_inplace}.0)]
Looping 1000 times took 0.658292 seconds
Result is [1.23178029 1.61879349 1.52278066 ..., 2.20771813 2.29967761
 1.62323296]
Used the gpu

To know your CUDA version:

nvcc -V

Example:

username@server:~$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2015 NVIDIA Corporation
Built on Tue_Aug_11_14:27:32_CDT_2015
Cuda compilation tools, release 7.5, V7.5.17

Adding cuDNN

To add cuDNN (instructions from

https://riptutorial.com/ 3

http://deeplearning.net/software/theano/library/sandbox/cuda/dnn.html):

Download cuDNN from https://developer.nvidia.com/rdp/cudnn-download (need registration,
which is free)

1.

tar -xvf cudnn-7.0-linux-x64-v3.0-prod.tgz2.
Do one of the following3.

Option 1: Copy the *.h files to CUDA_ROOT/include and the *.so* files to CUDA_ROOT/lib64 (by default,
CUDA_ROOT is /usr/local/cuda on Linux).

sudo cp cuda/lib64/* /usr/local/cuda/lib64/
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/

Option 2:

export LD_LIBRARY_PATH=/home/user/path_to_CUDNN_folder/lib64:$LD_LIBRARY_PATH
export CPATH=/home/user/path_to_CUDNN_folder/include:$CPATH
export LIBRARY_PATH=/home/user/path_to_CUDNN_folder/lib64:$LD_LIBRARY_PATH

By default, Theano will detect if it can use cuDNN. If so, it will use it. If not, Theano optimizations
will not introduce cuDNN ops. So Theano will still work if the user did not introduce them manually.

To get an error if Theano can not use cuDNN, use this Theano flag: optimizer_including=cudnn.

Example:

THEANO_FLAGS='mode=FAST_RUN,device=gpu,floatX=float32,optimizer_including=cudnn' python
gpu_test.py

To know your cuDNN version:

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

Adding CNMeM

The CNMeM library is a "Simple library to help the Deep Learning frameworks manage CUDA
memory.".

Build CNMeM without the unit tests
git clone https://github.com/NVIDIA/cnmem.git cnmem
cd cnmem
mkdir build
cd build
sudo apt-get install -y cmake
cmake ..
make

Copy files to proper location
sudo cp ../include/cnmem.h /usr/local/cuda/include
sudo cp *.so /usr/local/cuda/lib64/

https://riptutorial.com/ 4

http://deeplearning.net/software/theano/library/sandbox/cuda/dnn.html)
https://developer.nvidia.com/rdp/cudnn-download
https://github.com/NVIDIA/cnmem

cd ../..

To use with Theano, you need to add the lib.cnmem flag. Example:

THEANO_FLAGS='mode=FAST_RUN,device=gpu,floatX=float32,lib.cnmem=0.8,optimizer_including=cudnn'
python gpu_test.py

The first output of the script should be:

Using gpu device 0: GeForce GTX TITAN X (CNMeM is enabled with initial size: 80.0% of memory,
cuDNN 5005)

lib.cnmem=0.8 means that it can use up to 80% of the GPU.

CNMeM has been reported to give some interesting speed improvements, and is supported by
Theano, Torch, and Caffee.

Theano - source 1:

The speed up depend of many factor, like the shapes and the model itself. The speed
up go from 0 to 2x faster.

Theano - source 2:

If you don't change the Theano flag allow_gc, you can expect 20% speed up on the
GPU. In some case (small models), we saw a 50% speed up.

Common issues:

Importing theano: AttributeError: 'module' object has no attribute 'find_graphviz'•

Running Theano on multiple CPU cores

You can run Theano on multiple CPU cores with the OMP_NUM_THREADS=[number_of_cpu_cores] flag.

Example:

OMP_NUM_THREADS=4 python gpu_test.py

The script theano/misc/check_blas.py outputs information regarding which BLAS is used:

cd [theano_git_directory]
OMP_NUM_THREADS=4 python theano/misc/check_blas.py

Your first theano program

In this example, we will compile functions that computes sum and difference given two real
number.

https://riptutorial.com/ 5

https://github.com/fchollet/keras/issues/987
https://groups.google.com/d/msg/theano-users/nvfrmlJ96TA/Y9NhxP7k6qgJ
http://stackoverflow.com/q/38446771/395857
http://deeplearning.net/software/theano/tutorial/multi_cores.html
http://deeplearning.net/software/theano/tutorial/multi_cores.html
https://github.com/Theano/Theano/blob/master/theano/misc/check_blas.py

from __future__ import print_function
import theano
import theano.tensor as T

#define two symbolic scalar
s_x = T.fscalar()
s_y = T.fscalar()

#compute something
s_sum = s_x + s_y
s_diff = s_x - s_y

#compile a function that adds two number
#theano will call system compiler at here
fn_add = theano.function(inputs=[s_x, s_y], outputs=s_sum)
fn_diff = theano.function(inputs=[s_x, s_y], outputs=s_diff)

#call the compiled functions
print(fn_add(2., 2.)) #4.
print(fn_diff(2., 2.)) #0.

Read Getting started with theano online: https://riptutorial.com/theano/topic/5439/getting-started-
with-theano

https://riptutorial.com/ 6

https://riptutorial.com/theano/topic/5439/getting-started-with-theano
https://riptutorial.com/theano/topic/5439/getting-started-with-theano

Chapter 2: Loops with theano

Examples

Basic scan usage

scan is used for calling function multiple times over a list of values, the function may contain state.

scan syntax (as of theano 0.9):

scan(
 fn,
 sequences=None,
 outputs_info=None,
 non_sequences=None,
 n_steps=None,
 truncate_gradient=-1,
 go_backwards=False,
 mode=None,
 name=None,
 profile=False,
 allow_gc=None,
 strict=False)

This can be very confusing at a first glance. We will explain several basic but important scan usage
in multiple code examples.

The following code examples assume you have executed imports:

import numpy as np
import theano
import theano.tensor as T

sequences - Map a function over a list

In the simplest case, scan just maps a pure function (a function without state) to a list. The lists is
specified in the sequences argument

 s_x = T.ivector()
 s_y, _ = theano.scan(
 fn = lambda x:x*x,
 sequences = [s_x])
 fn = theano.function([s_x], s_y)
 fn([1,2,3,4,5]) #[1,4,9,16,25]

Note scan have two return values, the former is the resulting list, and the latter is the updates to
state value, which will be explained later.

sequences - Zip a function over a list

https://riptutorial.com/ 7

Almost same as above, just give sequences argument a list of two elements. The order of the two
elements should match to the order of arguments in fn

 s_x1 = T.ivector()
 s_x2 = T.ivector()
 s_y, _ = theano.scan(
 fn = lambda x1,x2:x1**x2,
 sequences = [s_x1, s_x2])
 fn = theano.function([s_x], s_y)
 fn([1,2,3,4,5],[0,1,2,3,4]) #[1,2,9,64,625]

outputs_info - Accumulate a list

Accumulation involves a state variable. State variables need initial values, which shall be specified
in the outputs_info parameter.

 s_x = T.ivector()
 v_sum = th.shared(np.int32(0))
 s_y, update_sum = theano.scan(
 lambda x,y:x+y,
 sequences = [s_x],
 outputs_info = [s_sum])
 fn = theano.function([s_x], s_y, updates=update_sum)

 v_sum.get_value() # 0
 fn([1,2,3,4,5]) # [1,3,6,10,15]
 v_sum.get_value() # 15
 fn([-1,-2,-3,-4,-5]) # [14,12,9,5,0]
 v_sum.get_value() # 0

We put a shared variable into outputs_info, this will cause scan return updates to our shared
variable, which can then be put into theano.function.

non_sequences and n_steps - Orbit of logistic map x -> lambda*x*(1-x)

You can give inputs that does not change during scan in non_sequences argument. In this case
s_lambda is a non-changing variable (but NOT a constant since it must be supplied during runtime).

 s_x = T.fscalar()
 s_lambda = T.fscalar()
 s_t = T.iscalar()
 s_y, _ = theano.scan(
 fn = lambda x,l: l*x*(1-x),
 outputs_info = [s_x],
 non_sequences = [s_lambda],
 n_steps = s_t
)
 fn = theano.function([s_x, s_lambda, s_t], s_y)

 fn(.75, 4., 10) #a stable orbit

 #[0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75]

 fn(.65, 4., 10) #a chaotic orbit

 #[0.91000003, 0.32759991, 0.88111287, 0.41901192, 0.97376364,

https://riptutorial.com/ 8

 # 0.10219204, 0.3669953 , 0.92923898, 0.2630156 , 0.77535355]

Taps - Fibonacci

states/inputs may come in multiple timesteps. This is done by:

putting dict(input=<init_value>, taps=<list of int>) inside sequences argument.•

putting dict(initial=<init_value>, taps=<list of int>) inside outputs_info argument.•

In this example, we use two taps in outputs_info to compute recurrence relation x_n = x_{n-1} +
x_{n-2}.

s_x0 = T.iscalar()
s_x1 = T.iscalar()
s_n = T.iscalar()
s_y, _ = theano.scan(
 fn = lambda x1,x2: x1+x2,
 outputs_info = [dict(initial=T.join(0,[s_x0, s_x1]), taps=[-2,-1])],
 n_steps = s_n
)
fn_fib = theano.function([s_x0, s_x1, s_n], s_y)
fn_fib(1,1,10)
[2, 3, 5, 8, 13, 21, 34, 55, 89, 144]

theano map and reduce

theano.map and theano.scan_module.reduce are wrappers of theano_scan. They can be seen as
handicapped version of scan. You can view Basic scan usage section for reference.

import theano
import theano.tensor as T
s_x = T.ivector()
s_sqr, _ = theano.map(
 fn = lambda x:x*x,
 sequences = [s_x])
s_sum, _ = theano.reduce(
 fn = lambda: x,y:x+y,
 sequences = [s_x],
 outputs_info = [0])
fn = theano.function([s_x], [s_sqr, s_sum])
fn([1,2,3,4,5]) #[1,4,9,16,25], 15

making while loop

As of theano 0.9, while loops can be done via theano.scan_module.scan_utils.until. To use, you
should return until object in fn of scan.

In the following example, we build a function that checks whether a complex number is inside
Mandelbrot set. A complex number z_0 is inside mandelbrot set if series z_{n+1} = z_{n}^2 + z_0
does not converge.

https://riptutorial.com/ 9

MAX_ITER = 256
BAILOUT = 2.
s_z0 = th.cscalar()
def iterate(s_i_, s_z_, s_z0_):
 return [s_z_*s_z_+s_z0_,s_i_+1], {}, until(T.abs_(s_z_)>BAILOUT)
(_1, s_niter), _2 = theano.scan(
 fn = iterate,
 outputs_info = [0, s_z0],
 non_sequences = [s_z0],
 n_steps = MAX_ITER
)
fn_mandelbrot_iters = theano.function([s_z0], s_niter)
def is_in_mandelbrot(z_):
 return fn_mandelbrot_iters(z_)>=MAX_ITER

is_in_mandelbrot(0.24+0.j) # True
is_in_mandelbrot(1.j) # True
is_in_mandelbrot(0.26+0.j) # False

Read Loops with theano online: https://riptutorial.com/theano/topic/7609/loops-with-theano

https://riptutorial.com/ 10

https://riptutorial.com/theano/topic/7609/loops-with-theano

Credits

S.
No

Chapters Contributors

1
Getting started with
theano

Alleo, Community, Franck Dernoncourt, Kh40tiK

2 Loops with theano Kh40tiK

https://riptutorial.com/ 11

https://riptutorial.com/contributor/498892/alleo
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/1950580/kh40tik
https://riptutorial.com/contributor/1950580/kh40tik

	About
	Chapter 1: Getting started with theano
	Remarks
	Examples
	Installation or Setup
	Installing Theano and configuring the GPU on Ubuntu 14.04

	Adding cuDNN
	Adding CNMeM
	Running Theano on multiple CPU cores
	Your first theano program

	Chapter 2: Loops with theano
	Examples
	Basic scan usage
	theano map and reduce
	making while loop

	Credits

