LEARNING
three.|s

Free unaffiliated eBook created from
Stack Overflow contributors.

Table of Contents

A OUL . .. 1
Chapter 1: Getting started with three.jS. ... 2
RIS . .. 2
Y] £ 2
= 1] 0] [T 2
INSEAllAtiON OF SEIUP.o et e e e e 2
Simple Boilerplate : spinning cube and orbit controls with damping................... i 2
Hello WO, . e 4
Chapter 2: Camera Controls in Three.jS................o 6
I OdU G ON. . e 6

[1 11] o [U 6
OFDIt CONMIOIS. . . o e e e e e e 6
X M. 6
SN . S . . 6
Custom Camera Control - Mouse-based Sliding. ... 7
INAEX M. 7
SO . S . .t 8
Chapter 3: GEOMBIIES 10
RIS . 10
EX APl . .. 10
THREE . BOXGOOM I Y . . oottt ettt et et e e et e e e e e e e e e et e et 10
CUD S .. 10
CUDIOIAS 11
More (proving the cube is three-dimensional)....................... 11
ColOUITUL. .. 11
N O S .. 12
THREE. CyliNAerGeOmMI I Yo 12
Y N . . 13

More (proving the cylinder is three-dimensional)............................ 13

Chapter 4: MESNES ... 15

M OAU G ON . .. e 15
) 1= G U 15
RIS . . .o 15

E XM S . . .o 15
Render a cube mesh with a box geometry and a basic material................. i 15
Chapter 5: Object PiCKiNg 16
= 10] o] (S T 16
Object PICKING / RAYCASTING.ottt ettt 16
ObJeCt PICKING [GPU . .. e e e e e 18
Chapter 6: Render Loops for Animation: Dynamically updating objects................................. 20
I OdU G ON . .. e 20
RIS . .. 20
BN S . .o 21
SPINNING CUDE . . .ot 21
Chapter 7: Textures and MaterialS. 22
I OAU G ON . . 22

P A A S . . 22
RIS . ..o 22
o= 10] 0] (2 T 22
Creating a Model Earth. e 22

(0 =T [(= 35

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: three-|s

It is an unofficial and free three.js ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official three.js.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/three-js
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

C_hapter 1: Getting started with three.js

Remarks

The aim of the project is to create a lightweight 3D library with a very low level of complexity — in
other words, for dummies. The library provides canvas, svg, CSS3D and WebGL renderers.

Versions
R85 Link 2017-04-25
R84 Link 2017-01-19
R83 Link 2016-12-15
R82 Link 2016-12-15
R81 Link 2016-09-16
R80 Link 2016-08-23
R79 Link 2016-07-14
R78 Link 2016-06-20

Examples

Installation or Setup
* You can install three.js via npm:
npm install three
* You can add it from a CDN to your HTML.:

<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r83/three.js"></script>

* You can use the three.|s editor to give it a try and download the project as an example or
starting point.

Simple Boilerplate : spinning cube and orbit controls with damping

This is the basic HTML file that can be used as a boilerplate when starting a project. This

https://riptutorial.com/

https://github.com/mrdoob/three.js/releases/tag/r85
https://github.com/mrdoob/three.js/releases/tag/r84
https://github.com/mrdoob/three.js/releases/tag/r83
https://github.com/mrdoob/three.js/releases/tag/r82
https://github.com/mrdoob/three.js/releases/tag/r81
https://github.com/mrdoob/three.js/releases/tag/r80
https://github.com/mrdoob/three.js/releases/tag/r79
https://github.com/mrdoob/three.js/releases/tag/r78
https://threejs.org/
https://threejs.org/editor/

boilerplate uses orbit controls with damping (camera that can move around an object with
deceleration effect) and creates a spinning cube.

<!DOCTYPE html>

<html>
<head>
<title>Three.]js Boilerplate</title>
<!--This is important to get a correct canvas size on mobile——>
<meta name='viewport' content='width=device-width, user-scalable=no'/>
<style>
body{
margin:0;
overflow:hidden;
}
/*
Next 2 paragraphs are a good practice.
In IE/Edge you have to provide the cursor images.
=/
canvas {
cursor:grab;
cursor:-webkit-grab;
cursor:-moz-grab;
}
canvas:active(
cursor:grabbing;
cursor:-webkit—-grabbing;
cursor:-moz—grabbing;
}
</style>
</head>
<body>

<script src='three.js/build/three.js'></script>
<script src='three.js/examples/js/controls/OrbitControls.js'></script>

<script>
var scene, renderer, camera, controls, cube;

init () ;

function init () {
renderer = new THREE.WebGLRenderer () ;

//this is to get the correct pixel detail on portable devices
renderer.setPixelRatio(window.devicePixelRatio);

//and this sets the canvas' size.
renderer.setSize(window.innerWidth, window.innerHeight);
document .body.appendChild(renderer.domElement);

scene = new THREE.Scene () ;

camera = new THREE.PerspectiveCamera (

70, //EOV
window.innerWidth / window.innerHeight, //aspect

i, //near clipping plane
100 //far clipping plane

https://riptutorial.com/

)i
camera.position.set(1, 3, 5);

controls = new THREE.OrbitControls(camera, renderer.domElement);
controls.rotateSpeed = .07;

controls.enableDamping = true;

controls.dampingFactor = .05;

window.addEventListener ('resize', function () {

camera.aspect = window.innerWidth / window.innerHeight;

camera.updateProjectionMatrix () ;

renderer.setSize (window.innerWidth, window.innerHeight);
}, false);

cube = new THREE.Mesh (
new THREE.BoxGeometry(1, 1, 1),
new THREE.MeshBasicMaterial ()
)i

scene.add(cube);

animate () ;

function animate () {
requestAnimationFrame (animate);
controls.update () ;
renderer.render (scene, camera);

cube.rotation.x += 0.01;

}

</script>
</body>
</html>
Hello world!

The example is taken from threejs website.
You may want to download three.js and change the script source below.
There are many more advanced examples under this link.

HTML:

<html>
<head>
<meta charset=utf-8>
<title>My first Three.js app</title>
<style>
body { margin: 0; }
canvas { width: 100%; height: 100% }
</style>
</head>
<body>
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r83/three.js"></script>
<script>
// Our JavaScript will go here.
</script>

https://riptutorial.com/

https://threejs.org/docs/index.html#manual/introduction/Creating-a-scene
http://threejs.org/build/three.js

</body>

The basic scene with a static cube in JavaScript:

var scene = new THREE.Scene () ;
var camera = new THREE.PerspectiveCamera(75, window.innerWidth/window.innerHeight, 0.1, 1000

)i

var renderer = new THREE.WebGLRenderer () ;
renderer.setSize(window.innerWidth, window.innerHeight);
document .body.appendChild(renderer.domElement);

var geometry = new THREE.BoxGeometry(1, 1, 1);

var material = new THREE.MeshBasicMaterial({ color: 0xO00f£f00 });
var cube = new THREE.Mesh (geometry, material);

scene.add(cube);

camera.position.z = 5;

To actually see anything, we need a Render() loop:

function render () {
requestAnimationFrame (render);
renderer.render (scene, camera);

}

render () ;

Read Getting started with three.js online: https://riptutorial.com/three-js/topic/2102/getting-started-
with-three-js

https://riptutorial.com/

https://riptutorial.com/three-js/topic/2102/getting-started-with-three-js
https://riptutorial.com/three-js/topic/2102/getting-started-with-three-js

C_hapter 2. Camera Controls in Three.js

Introduction

This document outlines how you can easily add some existing Camera Controls to your scene, as
well as provide guidance on creating custom controls. Note, the pre-made control scripts can be
found in the /examples/js/controls folder of the library.

Examples

Orbit Controls

An Orbit Camera is one that allows the user to rotate around a central point, but while keeping a
particular axis locked. This is extremely popular because it prevents the scene from getting "tilted"
off-axis. This version locks the Y (vertical) axis, and allows users to Orbit, Zoom, and Pan with the
left, middle, and right mouse buttons (or specific touch events).

Index.html

<html>
<head>
<title>Three.]js Orbit Controller Example</title>
<script src="/javascripts/three.js"></script>
<script src="/javascripts/OrbitControls.js"></script>
</head>
<body>
<script src="javascripts/scene. js"></script>
</body>
</html>

scene.|s

var scene, renderer, camera;
var cube;
var controls;

init ();
animate () ;

function init ()
{
renderer = new THREE.WebGLRenderer ({antialias:true});
var width = window.innerWidth;
var height = window.innerHeight;
renderer.setSize (width, height);
document .body.appendChild (renderer.domElement) ;

https://riptutorial.com/

scene = new THREE.Scene () ;

var cubeGeometry = new THREE.BoxGeometry (10,10,10);
var cubeMaterial = new THREE.MeshBasicMaterial ({color: 0xlec876});
cube = new THREE.Mesh (cubeGeometry, cubeMaterial);

cube.position.set (0, 0, 0);
scene.add (cube);

camera = new THREE.PerspectiveCamera (45, width/height, 1, 10000);
camera.position.y = 160;

camera.position.z = 400;

camera.lookAt (new THREE.Vector3(0,0,0));

controls = new THREE.OrbitControls (camera, renderer.domElement);

var gridXZ = new THREE.GridHelper (100, 10);
gridXZ.setColors(new THREE.Color (0xff0000), new THREE.Color (Oxffffff));
scene.add (gridX2z) ;

function animate ()

{
controls.update () ;
requestAnimationFrame (animate);
renderer.render (scene, camera);

The OrbitControls script has a several settings that can be modified. The code is well documented,
so look in OrbitControls.js to see those. As an example, here is a code snippet showing a few of
those being modified on a new OrbitControls object.

controls = new THREE.OrbitControls(camera, renderer.domElement);
controls.enableDamping = true;

controls.dampingFactor = 0.25;

controls.enableZoom = true;

controls.autoRotate = true;

Custom Camera Control - Mouse-based Sliding

Here's an example of a custom camera controller. This reads the position of the mouse within the
client window, and then slides the camera around as if it were following the mouse on the window.

Index.html

<html>

<head>
<title>Three.js Custom Mouse Camera Control Example</title>
<script src="/javascripts/three.js"></script>

</head>

<body>
<script src="javascripts/scene.js"></script>

</body>

https://riptutorial.com/ 7

https://github.com/mrdoob/three.js/blob/master/examples/js/controls/OrbitControls.js

</html>

scene.|s

var
var
var
var
var
var

scene, renderer, camera;

cube;

cameraCenter = new THREE.Vector3();
cameraHorzLimit = 50;
cameraVertLimit = 50;

mouse = new THREE.Vector2();

init () ;

animate () ;

function init ()

{

renderer = new THREE.WebGLRenderer ({antialias:true});
var width = window.innerWidth;

var height = window.innerHeight;

renderer.setSize (width, height);

document .body.appendChild (renderer.domElement) ;

scene = new THREE.Scene () ;

var cubeGeometry = new THREE.BoxGeometry (10,10,10);
var cubeMaterial = new THREE.MeshBasicMaterial ({color: 0xlec876});
cube = new THREE.Mesh (cubeGeometry, cubeMaterial);

cube.position.set (0, 0, 0);
scene.add (cube);

camera = new THREE.PerspectiveCamera (45, width/height, 1, 10000);
camera.position.y = 160;

camera.position.z = 400;

camera.lookAt (new THREE.Vector3(0,0,0));

cameraCenter.x = camera.position.x;

cameraCenter.y = camera.position.y;

//set up mouse stuff
document .addEventListener ('mousemove', onDocumentMouseMove, false);
window.addEventListener ('resize', onWindowResize, false);

var gridXZ = new THREE.GridHelper (100, 10);
gridXZ.setColors(new THREE.Color (0xff0000), new THREE.Color (Oxffffff)
scene.add (gridX2z) ;

function onWindowResize ()

{

camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix () ;
renderer.setSize (window.innerWidth, window.innerHeight);

function animate ()

{

updateCamera () ;
requestAnimationFrame (animate);

)i

https://riptutorial.com/

renderer.render (scene, camera);

function updateCamera () {
//offset the camera x/y based on the mouse's position in the window
camera.position.x = cameraCenter.x + (cameraHorzLimit * mouse.x);

camera.position.y = cameraCenter.y + (cameraVertLimit * mouse.y);

function onDocumentMouseMove (event) {
event .preventDefault () ;
mouse.xX = (event.clientX / window.innerWidth) * 2 - 1;

mouse.y = —(event.clientY / window.innerHeight) * 2 + 1;

function onWindowResize () {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix () ;

renderer.setSize (window.innerWidth, window.innerHeight);

As you can see, here we are merely updating the Camera position during the rendering's animate
phase, like we could for any object in the scene. In this case, we are simply re-positioning the
camera at a point offset from it's original X and Y coordinates. This could just as easily be the X

and Z coordinates, or a point along a path, or something completely different not even related to
the mouse's position at all.

Read Camera Controls in Three.js online: https://riptutorial.com/three-js/topic/8270/camera-
controls-in-three-js

https://riptutorial.com/

https://riptutorial.com/three-js/topic/8270/camera-controls-in-three-js
https://riptutorial.com/three-js/topic/8270/camera-controls-in-three-js

C_hapter 3: Geometries

Remarks
Examples work as of three.js R79 (revision 79).
Examples

THREE.BoxGeometry

THREE.BoxGeometry builds boxes such as cuboids and cubes.

Cubes

Cubes created using THREE.BoxGeometry would use the same length for all sides.

JavaScript

//Creates scene and camera

var scene = new THREE.Scene();
var camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1,
1000);

//Creates renderer and adds it to the DOM

var renderer = new THREE.WebGLRenderer () ;
renderer.setSize(window.innerWidth, window.innerHeight);
document .body.appendChild(renderer.domElement);

//The Box!

//BoxGeometry (makes a geometry)

var geometry = new THREE.BoxGeometry(1, 1, 1);

//Material to apply to the cube (green)

var material = new THREE.MeshBasicMaterial({ color: 0x00f£f00 });
//Rpplies material to BoxGeometry

var cube = new THREE.Mesh(geometry, material);

//Adds cube to the scene

scene.add(cube);

//Sets camera's distance away from cube (using this explanation only for simplicity's sake -
in reality this actually sets the 'depth' of the camera's position)

camera.position.z = 5;
//Rendering
function render () {

requestAnimationFrame (render);
renderer.render (scene, camera);

https://riptutorial.com/ 10

}

render () ;

Notice the 'render' function. This renders the cube 60 times a second.

Full Code (with HTML)

<!DOCTYPE html>
<html>

<head>

<title>THREE.BoxGeometry</title>

<script src="http://threejs.org/build/three.js"></script>
</head>
<body>

<script>

//Rbove JavaScript goes here
</script>

</body>

</html>

Cuboids

The line var geometry = new THREE.BoxGeometry(1, 1, 1); giveS us a cube. To make a CUbOid, jUSt
change the parameters - they define the length, height and depth of the cube respectively.

Example:

//Longer cuboid
var geometry = new THREE.BoxGeometry(2, 1, 1);

More (proving the cube is three-dimensional)

The cube may seem to be just a square. To prove that it is, without doubt, three-dimensional, add
the following lines of code to the 'render' function:

cube.rotation.x += 0.05;
cube.rotation.y += 0.05;

And watch as the merry cube spins round... and round... and round...

https://riptutorial.com/ 11

Colourful

Not for the faint-hearted...

The uniform colour for the entire cube is... green. Boring. To make each face a different colour,
we've to dig to the geometry's faces.

var geometry = new THREE.BoxGeometry (3, 3, 3, 1, 1, 1);

/*Right of spawn facex/
geometry.faces[0].color = new THREE.Color (0xd9d9d9) ;
geometry.faces[l].color = new THREE.Color (0xd9d9d9) ;

/*Left of spawn face*/
geometry.faces[2].color = new THREE.Color (0x2196£f3);
geometry.faces[3].color = new THREE.Color (0x2196£f3);

/*Above spawn face*/
geometry.faces[4].color = new THREE.Color (Oxffffff);
geometry.faces[5].color = new THREE.Color (Oxffffff);

/*Below spawn face*/
geometry.faces[6].color = new THREE.Color (1, 0, 0);
geometry.faces[7].color = new THREE.Color (1, 0, 0);

/*Spawn face*/
geometry.faces[8].color = new THREE.Color (0, 1, 0);
geometry.faces[9].color = new THREE.Color (0, 1, 0);

/*Opposite spawn face*x/
geometry.faces[10].color = new THREE.Color (0, 0, 1);
geometry.faces[1l1l].color = new THREE.Color (0, 0, 1);

var material = new THREE.MeshBasicMaterial({color: Oxffffff, vertexColors: THREE.FaceColors}

)i
var cube = new THREE.Mesh (geometry, material);

NOTE: The method of colouring the faces is not the best method, but it works well (enough).

Notes

Where's the canvas in the HTML document's body?

There is no need to add a canvas to the body manually. The following three lines

var renderer = new THREE.WebGLRenderer () ;
renderer.setSize(window.innerWidth, window.innerHeight);
document .body.appendChild(renderer.domElement);

create the renderer, itS canvas and add the canvas to the DOM.

THREE.CylinderGeometry

https://riptutorial.com/

12

THREE.CylinderGeometry build cylinders.

Cylinder

Continuing from the previous example, the code to create the box could be replaced with the
below.

//Makes a new cylinder with

// — a circle of radius 5 on top (lst parameter)

// — a circle of radius 5 on the bottom (2nd parameter)

// — a height of 20 (3rd parameter)

// — 32 segments around its circumference (4th parameter)

var geometry = new THREE.CylinderGeometry(5, 5, 20, 32);
//Yellow

var material = new THREE.MeshBasicMaterial({color: Oxffff00});
var cylinder = new THREE.Mesh(geometry, material);

scene.add(cylinder);

To build from scratch, here's the code.

//Creates scene and camera

var scene = new THREE.Scene();
var camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1,
1000);

//Creates renderer and adds it to the DOM

var renderer = new THREE.WebGLRenderer () ;
renderer.setSize(window.innerWidth, window.innerHeight);
document .body.appendChild(renderer.domElement);

//The Cylinder!

var geometry = new THREE.CylinderGeometry(5, 5, 20, 32);
//Yellow

var material = new THREE.MeshBasicMaterial({color: Oxffff00});
var cylinder = new THREE.Mesh (geometry, material);

scene.add(cylinder);

//Sets camera's distance away from cube (using this explanation only for simplicity's sake -
in reality this actually sets the 'depth' of the camera's position)

camera.position.z = 30;

//Rendering

function render () {
requestAnimationFrame (render);

renderer.render (scene, camera);

}

render () ;

More (proving the cylinder is three-

https://riptutorial.com/ 13

dimensional)

The cylinder may seem to be just... two-dimensional. To prove that it is, without doubt, three-
dimensional, add the following lines of code to the 'render' function:

cylinder.rotation.x += 0.05;
cylinder.rotation.z += 0.05;

And the happy bright cylinder would spin randomly, amidst a dark, black background...

Read Geometries online: https://riptutorial.com/three-js/topic/5762/geometries

https://riptutorial.com/

14

https://riptutorial.com/three-js/topic/5762/geometries

C_hapter 4: Meshes

Introduction

A Three.js Mesh is a base class that inherits from Object3d and is used to instantiate polygonal
objects by combining a Geometry with a Material. vesh is also the base class for the more
advanced MorphAnimMesh and skinnedMesh classes.

Syntax

* new THREE.Mesh(geometry, material);

Remarks

Both the geometry and material are optional and will default to sutferceometry and
MeshBasicMaterial respectively if they are not provided in the constructor.

Examples
Render a cube mesh with a box geometry and a basic material

var scene = new THREE.Scene();
var camera = new THREE.PerspectiveCamera (75, window.innerWidth / window.innerHeight, 0.1, 50);
camera.position.z = 25;

var renderer = new THREE.WebGLRenderer () ;
renderer.setSize (window.innerWidth, window.innerHeight);
document .body.appendChild (renderer.domElement) ;

var geometry = new THREE.BoxGeometry(l, 1, 1);
var material = new THREE.MeshBasicMaterial ({ color: 0x00ff00 });
var cubeMesh = new THREE.Mesh (geometry, material);

scene.add (cubeMesh) ;

var render = function () {
requestAnimationFrame (render) ;

renderer.render (scene, camera);

bi

render () ;

Read Meshes online: https://riptutorial.com/three-js/topic/8838/meshes

https://riptutorial.com/ 15

https://threejs.org/docs/?q=mesh#Reference/Objects/Mesh
https://threejs.org/docs/?q=geomet#Reference/Core/Object3D
https://threejs.org/docs/?q=geomet#Reference/Core/Geometry
https://threejs.org/docs/?q=mater#Reference/Materials/Material
https://riptutorial.com/three-js/topic/8838/meshes

C_hapter 5: Object Picking

Examples

Object picking / Raycasting

Raycasting means throwing a ray from the mouse position on the screen to the scene, this is how
threejs determines what object you want to click on if you have implemented it. Threejs gets that
information using an octree, but still in production you may not want to compute the result at each
frame or on the nousemove €vent, but rather on the c1ick event for a more accessible app with low
requirements.

var raycaster, mouse = { x : 0, y : 0 };
init () ;
function init () {

//Usual setup code here.

raycaster = new THREE.Raycaster();
renderer.domElement .addEventListener ('click', raycast, false);

//Next setup code there.

function raycast (e) {

//1. sets the mouse position with a coordinate system where the center

// of the screen is the origin
mouse.x = (e.clientX / window.innerWidth) * 2 - 1;
mouse.y = — (e.clientY / window.innerHeight) * 2 + 1;

//2. set the picking ray from the camera position and mouse coordinates
raycaster.setFromCamera (mouse, camera);

//3. compute intersections

var intersects = raycaster.intersectObjects(scene.children);
for (var 1 = 0; i < intersects.length; i++) {

console.log(intersects|[1]);

/*

An intersection has the following properties
— object : intersected object (THREE.Mesh)
— distance : distance from camera to intersection (number)
— face : intersected face (THREE.Face3)
— faceIndex : intersected face index (number)
- point : intersection point (THREE.Vector3)
— uv : intersection point in the object's UV coordinates (THREE.Vector2)

*/

https://riptutorial.com/ 16

https://en.wikipedia.org/wiki/Octree

CAUTION! You may lose your time gazing at the blank screen if you don't read the
next part.

If you want to detect the light helper, set the second parameter of raycaster.intersectobjects (
scene.children); tO true.

It means raycaster.intersectObjects(scene.children , true);
The raycast code will only detect the light helper.

If you want it to detect normal objects as well as light helper, you need to copy the above raycast
function again. See this guestion.

The full raycast code is

function raycast (e) {
// Step 1: Detect light helper
//1. sets the mouse position with a coordinate system where the center

// of the screen is the origin
mouse.X = (e.clientX / window.innerWidth) * 2 - 1;
mouse.y = — (e.clientY / window.innerHeight) * 2 + 1;

//2. set the picking ray from the camera position and mouse coordinates
raycaster.setFromCamera (mouse, camera);

//3. compute intersections (note the 2nd parameter)
var intersects = raycaster.intersectObjects(scene.children, true);

for (var 1 = 0; i < intersects.length; i++) {
console.log(intersects|[1]);
/*
An intersection has the following properties
- object : intersected object (THREE.Mesh)
— distance : distance from camera to intersection (number)
— face : intersected face (THREE.Face3)
— faceIndex : intersected face index (number)
- point : intersection point (THREE.Vector3)
— uv : intersection point in the object's UV coordinates (THREE.Vector2)
=/
}
// Step 2: Detect normal objects
//1. sets the mouse position with a coordinate system where the center

// of the screen is the origin
mouse.xX = (e.clientX / window.innerWidth) * 2 - 1;
mouse.y = — (e.clientY / window.innerHeight) * 2 + 1;

//2. set the picking ray from the camera position and mouse coordinates
raycaster.setFromCamera (mouse, camera);

//3. compute intersections (no 2nd parameter true anymore)
var intersects = raycaster.intersectObjects(scene.children);

for (var 1 = 0; i < intersects.length; i++) {
console.log(intersects|[1]);
/*
An intersection has the following properties
- object : intersected object (THREE.Mesh)
— distance : distance from camera to intersection (number)

https://riptutorial.com/

http://stackoverflow.com/questions/39760790/how-can-i-listen-to-onclick-event-spotlight-helper-and-attach-the-transformcontr/39823545#39823545

— face : intersected face (THREE.Face3)

— faceIndex : intersected face index (number)

- point : intersection point (THREE.Vector3)

— uv : intersection point in the object's UV coordinates (THREE.Vector2)

*/

Object Picking / GPU

Object picking using Raycasting might be a heavy task for your CPU depending on your setup (for
example if you don't have an octree like setup) and number of objects in the scene.

If you don't need the world coordinates under the mouse cursor but only to identify the object
under it you can use GPU picking.

Short explanation, GPU can be a powerful tool for computation but you need to know how to get
the results back. The idea is, if you render the objects with a color that represents their id, you can
read the color of the pixel under the cursor and findout the id of the object that is picked.
Remember RGB is just a hex value so there is a conversion exists between id (integer) and color
(hex).

1. Create a new scene and a new rendering target for your object

var pickingScene = new THREE.Scene();
var pickingTexture = new THREE.WebGLRenderTarget (renderer.domElement.clientWidth,
renderer.domElement .clientHeight) ;

pickingTexture.texture.minFilter = THREE.LinearFilter;

2. Create a new shader Material for object picking;

var vs3D = °

attribute vec3 idcolor;

varying vec3 wvidcolor;

void main () {

vidcolor = idcolor;

gl_Position = projectionMatrix * modelViewMatrix * vecd4(position, 1.0);

} i

var f£s3D = °

varying vec3 vidcolor;

void main (void) {

gl_FragColor = vecd (vidcolor,1.0);
i

var pickingMaterial = new THREE.ShaderMaterial (
{
vertexShader: vs3D,
fragmentShader: £s3D,
transparent: false,
side: THREE.DoubleSide

https://riptutorial.com/ 18

3. Add your mesh/line geometries a new attribute that represents their id in RGB, create the
pickingObject using the same geometry and add it to the picking scene, and add the actual
mesh to a id->object dictionary

var selectionObjects = [];
for (var i=0; i<myMeshes.length; i++) {
var mesh = myMeshes([i];
var positions = mesh.geometry.attributes|["position"].array;

var idColor = new Float32Array (positions.length);

var color = new THREE.Color();
color.setHex (mesh.id) ;

for (var j=0; j< positions.length; j+=3) {

idColor[j] = color.r;
idColor[j+1] = color.g;
idColor[j+2] = color.b;

mesh.geometry.addAttribute ('idcolor', new THREE.BufferAttribute (idColor, 3));
var pickingObject = new THREE.Mesh (mesh.geometry, pickingMaterial);

pickingScene.add (pickingObject) ;
selectionObjects[mesh.id] = mesh;

4. Finally, on your mouse click handler

renderer.render (pickingScene, camera, pickingTexture);

var pixelBuffer = new Uint8Array(4);

renderer.readRenderTargetPixels (pickingTexture, event.pageX, pickingTexture.height -
event .pageY, 1, 1, pixelBuffer);

var id = (pixelBuffer[0] << 16) | (pixelBuffer[l] << 8) | (pixelBuffer([2]);
if (1id>0) {

//this is the id of the picked object
lelse{

//it's 0. clicked on an empty space

Read Object Picking online: https://riptutorial.com/three-js/topic/4848/object-picking

https://riptutorial.com/

19

https://riptutorial.com/three-js/topic/4848/object-picking

C_hapter 6. Render Loops for Animation:
Dynamically updating objects

Introduction

This document describes some common ways to add animation directly into your Three.js scenes.
While there are libraries and frameworks that can add dynamic movement to your scene (tweens,
physics, etc), it is helpful to understand how you can do this yourself simply with a few lines of
code.

Remarks

The core concept of animation is updating an object's properties (rotation and translation, usually)
in small amounts over a period of time. For example, if you translate an object by increasing the X
position by 0.1 every tenth of a second, it will be 1 unit further on the X axis in 1 second, but the
viewer will perceive it as having smoothly moved to that position over that time instead of jumping
directly to the new position.

To assist us, we create a render loop in the script.

var render = function () {
requestAnimationFrame (render);
//update some properties here
renderer.render (scene, camera);

In the spinning cube example above, we use this idea - small incremental updates - to change the
rotation of the cube every time a new frame of animation is requested. By incrementing the
rotation.x and rotation.y properties of the cuve object on every frame, the cube appears to spin
on those two axes.

As another example, it's not uncommon to separate your needed update into other functions,
where you can do additional calculations and checks while keeping the render loop uncluttered.
For example, the render loop below calls four different update functions, each one intended to
update a separate object (or an array of objects, in the case of updateroints()) in the scene.

//render loop
function render () {
requestAnimationFrame (render);
updateGrid() ;
updateCube () ;
updateCamera () ;
updatePoints (pList) ;
renderer.render (scene, camera);
}

render () ;

https://riptutorial.com/ 20

You may notice in examples online that the camera controls are also part of the render loop.

controls = new THREE.OrbitControls(camera, renderer.domElement);
controls.enableDamping = true;

controls.dampingFactor = 0.25;

controls.enableZoom = true;

controls.autoRotate = true;

var render = function () {
requestAnimationFrame (render);
controls.update () ;
renderer.render (scene, camera);

}i

This is because the script for controlling the camera is doing the same thing; updating it over time.
The changes might be caused by user input such as a mouse position, or something
programmatic like following a path. In either case though, we are just animating the camera as
well.

Examples
Spinning Cube

var scene = new THREE.Scene () ;
var camera = new THREE.PerspectiveCamera(75, window.innerWidth/window.innerHeight, 0.1, 1000
)i

var renderer = new THREE.WebGLRenderer ();
renderer.setSize(window.innerWidth, window.innerHeight);
document .body.appendChild(renderer.domElement);

var geometry = new THREE.BoxGeometry(1, 1, 1);

var material = new THREE.MeshBasicMaterial({ color: 0x00f£f00 });
var cube = new THREE.Mesh (geometry, material);

scene.add(cube);

camera.position.z = 5;
//Create an render loop to allow animation
var render = function () {

requestAnimationFrame (render);

cube.rotation.x += 0.1;
cube.rotation.y += 0.1;

renderer.render (scene, camera);

}i

render () ;

Read Render Loops for Animation: Dynamically updating objects online:
https://riptutorial.com/three-js/topic/8271/render-loops-for-animation--dynamically-updating-objects

https://riptutorial.com/ 21

https://riptutorial.com/three-js/topic/8271/render-loops-for-animation--dynamically-updating-objects

C_hapter /. Textures and Materials

Introduction

A nice introduction to material and textures.

Diffuse, Bump, Specular, and Transparent Textures.

Parameters
color Numeric value of the RGB component of the color.
intensity Numeric value of the light's strength/intensity.
fov Camera frustum vertical field of view.
aspect Camera frustum aspect ratio.
near Camera frustum near plane.
far Camera frustum far plane.
radius sphere radius. Default is 50.

widthSegments number of horizontal segments. Minimum value is 3, and the default is 8.

heightSegments number of vertical segments. Minimum value is 2, and the default is 6.

phiStart specify horizontal starting angle. Default is 0.
phiLength specify horizontal sweep angle size. Default is Math.PI * 2.
thetaStart specify vertical starting angle. Default is O.
thetaLength specify vertical sweep angle size. Default is Math.PI.
Remarks
Demo Link
Examples

Creating a Model Earth

https://riptutorial.com/

https://geethujp.github.io/earthModel/index.html

Textures for this example are available at: hitp://planetpixelemporium.com/planets.htm|
Installation or Setup

You can install three via npm

npm install three

Or add it as a script to your HTML page

<script type="text/javascript"
src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r85/three.min.js" />

HTML:

<html>
<head>
<meta charset=utf-8>
<title>Earth Model</title>
<style>
body { margin: 0; }
canvas { width: 100%; height: 100% }
</style>
</head>
<body>
<script type="text/javascript"
src="https://cdnjs.cloudflare.com/ajax/libs/three. js/r83/three.js" />
<script>
// Our Javascript will go here.
</script>
</body>
</html>

Creating the scene

To actually be able to display anything with three.js, we need three things: A scene, a camera, and
a renderer. We will render the scene with the camera.

var scene = new THREE.Scene();
var camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1,
1000);

var renderer = new THREE.WebGLRenderer () ;

renderer.setSize(window.innerWidth, window.innerHeight);
document .body.appendChild(renderer.domElement);

Creating the Sphere

Create geometry for the sphere
Create a phong material
Create a 3D Object

Add it to the scene

https://riptutorial.com/ 23

http://planetpixelemporium.com/planets.html

var geometry = new THREE.SphereGeometry(l, 32, 32);
var material = new THREE.MeshPhongMaterial () ;
var earthmesh = new THREE.Mesh (geometry, material);

Add a Diffuse Texture

The diffuse texture set the main color of the surface. When we apply it to a sphere, we get the
following image.

https://riptutorial.com/

24

https://i.stack.imgur.com/SWapM.png

https://riptutorial.com/ 25

https://i.stack.imgur.com/7MXox.jpg

material.map = THREE.ImageUtils.loadTexture ('images/earthmaplk. jpg');

Adding a Bump Map Texture

» Each of its pixels acts as a height on the surface.

» The mountains appear more clearly thanks to their shadow.

* Itis possible to change how much the map affects lighting with bumpScale parameter.

* No extra vertices are created or needed to use a bump map (unlike a displacement map)

https://riptutorial.com/

https://i.stack.imgur.com/wD5jr.png

https://riptutorial.com/ 27

https://i.stack.imgur.com/dG4sE.jpg

material .bumpMap = THREE.ImageUtils.loadTexture ('images/earthbumplk.jpg');
material .bumpScale 0.05;

Adding a Specular Texture

Changes the 'shininess' of an object with a texture.
Each pixel determines the intensity of specularity.
In this case, only the sea is specular because water reflects light more than earth.

You can control the specular color with the specular parameter.

https://riptutorial.com/

https://i.stack.imgur.com/epsjo.png

https://riptutorial.com/ 29

https://i.stack.imgur.com/3tqI6.jpg

material.specularMap = THREE.ImageUtils.loadTexture ('images/earthspeclk. jpg')
material.specular = new THREE.Color ('grey')

Adding a Cloud Layer

* We create canvascioud With a canvas, and use it as a texture.
* We do this because jpg doesn’t handle an alpha channel. (However, a PNG image does)
* We need to make the code to build the texture based on the following images.

https://riptutorial.com/

https://i.stack.imgur.com/mq6o7.png

https://riptutorial.com/ 31

https://i.stack.imgur.com/rzA2U.jpg

https://riptutorial.com/ 32

https://i.stack.imgur.com/ngioK.jpg

var geometry = new THREE.SphereGeometry (0.51, 32,

var material = new THREE.MeshPhongMaterial ({
map : new THREE.Texture (canvasCloud),
side : THREE.DoubleSide,
opacity : 0.8,
transparent : true,
depthWrite : false,

P
var cloudMesh = new THREE.Mesh (geometry, material)
earthMesh.add (cloudMesh)

Adding Rotational Movement

In your render loop, you simply increase the rotation

32)

We attach the cioudmesh tO earthMesh SO they will move together.
We disable depthwrite and set transparent: true to tell three.js the cloudmesh is transparent.
We set sides to tureE.Doubleside SO both sides will be visible.
o This avoids creating artifacts on the edge of the earth.
Finally, we set opacity: 0.8 to make the clouds more translucent

https://riptutorial.com/

33

https://i.stack.imgur.com/Bv2pf.png

As a final touch, we will animate the cloud layer in order to make it look more realistic.

updateFcts.push (function (delta, now) {
cloudMesh.rotation.y += 1 / 8 * delta;
earthMesh.rotation.y += 1 / 16 * delta;
})

Read Textures and Materials online: https://riptutorial.com/three-js/topic/9333/textures-and-
materials

https://riptutorial.com/

34

https://riptutorial.com/three-js/topic/9333/textures-and-materials
https://riptutorial.com/three-js/topic/9333/textures-and-materials

Credits

Chapters Contributors

Atrahasis, Blogueira, Community, Gero3, guardabrazo, Hasan,

Getting started with

1 . Hectate, Joel Martinez, juagicre, Learn How To Be Transparent,
three.js . :
Xander Luciano, Zeromatiker, zya
mer ntrols in
2 came .a Controls Hectate
Three.js
3 Geometries streppel, Theo
4 Meshes Paul Graffam
5 Object Picking Gero3, Kris Roofe, Learn How To Be Transparent, winseybash
Render Loops for
Animation:
6 at.0 Hectate
Dynamically
updating objects
7 Textures and Geethu Jose, Xander Luciano

Materials

https://riptutorial.com/

35

https://riptutorial.com/contributor/4236091/atrahasis
https://riptutorial.com/contributor/1579771/blogueira
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/360770/gero3
https://riptutorial.com/contributor/2630454/guardabrazo
https://riptutorial.com/contributor/1675709/hasan
https://riptutorial.com/contributor/6300485/hectate
https://riptutorial.com/contributor/5416/joel-martinez
https://riptutorial.com/contributor/3568131/juagicre
https://riptutorial.com/contributor/6820627/learn-how-to-be-transparent
https://riptutorial.com/contributor/1425140/xander-luciano
https://riptutorial.com/contributor/6357725/zeromatiker
https://riptutorial.com/contributor/2179498/zya
https://riptutorial.com/contributor/6300485/hectate
https://riptutorial.com/contributor/1670308/streppel
https://riptutorial.com/contributor/5719584/theo
https://riptutorial.com/contributor/803841/paul-graffam
https://riptutorial.com/contributor/360770/gero3
https://riptutorial.com/contributor/6521116/kris-roofe
https://riptutorial.com/contributor/6820627/learn-how-to-be-transparent
https://riptutorial.com/contributor/4270597/winseybash
https://riptutorial.com/contributor/6300485/hectate
https://riptutorial.com/contributor/6666152/geethu-jose
https://riptutorial.com/contributor/1425140/xander-luciano

	About
	Chapter 1: Getting started with three.js
	Remarks
	Versions
	Examples
	Installation or Setup
	Simple Boilerplate : spinning cube and orbit controls with damping
	Hello world!

	Chapter 2: Camera Controls in Three.js
	Introduction
	Examples
	Orbit Controls

	index.html
	scene.js
	Custom Camera Control - Mouse-based Sliding

	index.html
	scene.js
	Chapter 3: Geometries
	Remarks
	Examples
	THREE.BoxGeometry

	Cubes
	Cuboids
	More (proving the cube is three-dimensional)
	Colourful
	Notes
	THREE.CylinderGeometry

	Cylinder
	More (proving the cylinder is three-dimensional)
	Chapter 4: Meshes
	Introduction
	Syntax
	Remarks
	Examples
	Render a cube mesh with a box geometry and a basic material

	Chapter 5: Object Picking
	Examples
	Object picking / Raycasting
	Object Picking / GPU

	Chapter 6: Render Loops for Animation: Dynamically updating objects
	Introduction
	Remarks
	Examples
	Spinning Cube

	Chapter 7: Textures and Materials
	Introduction
	Parameters
	Remarks
	Examples
	Creating a Model Earth

	Credits

