
tomcat

#tomcat

Table of Contents

About 1

Chapter 1: Getting started with tomcat 2

Remarks 2

Versions 2

Examples 2

Installation or Setup 2

Installing Tomcat as a service on Ubuntu 2

1. Install the Java Runtime Environment (JRE) 2

2. Install Tomcat: 3

3. Making Tomcat boot at startup 3

Changing classpath or other Tomcat related environment variables: 4

Chapter 2: CAC enabling Tomcat for Development Purposes 5

Examples 5

Creating the Keystores and configuring Tomcat 5

Chapter 3: Configuring a JDBC Datasource 9

Introduction 9

Remarks 9

Examples 9

Configuring a server-wide JNDI reference 9

Using a JNDI reference as a JDBC Resource in Context 10

Chapter 4: Configuring a JNDI datasource 12

Parameters 12

Remarks 13

Attributes 13

DBCP vs Tomcat JDBC Connection Pool 13

Reference Documentation 13

Examples 13

JNDI Datasource for PostgreSQL & MySQL 13

JNDI Encrypted credentials 14

Chapter 5: Embedding into an application 19

Examples 19

Embed tomcat using maven 19

Chapter 6: Https configuration 20

Examples 20

SSL/TLS Configuration 20

Chapter 7: Tomcat Virtual Hosts 25

Remarks 25

Examples 25

Tomcat Host Manager Web Application 25

Adding a Virtual Host via the Tomcat Host Manager Web Application 25

Adding a Virtual Host to server.xml 26

Chapter 8: Tomcat(x) Directories Structures 28

Examples 28

Directory Structure in Ubuntu (Linux) 28

Credits 31

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: tomcat

It is an unofficial and free tomcat ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official tomcat.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/tomcat
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with tomcat

Remarks

This section provides an overview of what tomcat is, and why a developer might want to use it.

It should also mention any large subjects within tomcat, and link out to the related topics. Since the
Documentation for tomcat is new, you may need to create initial versions of those related topics.

Versions

Version Java Servlet JSP EL WebSocket JASPIC Released

6.0.x 5+ 2.5 2.1 2.1 n/a n/a 2006-12-01

7.0.x 6+ 3.0 2.2 2.2 1.1 n/a 2010-06-02

8.0.x 7+ 3.1 2.3 3.0 1.1 n/a 2013-08-05

8.5.x 7+ 3.1 2.3 3.0 1.1 1.1 2016-06-13

9.0.x 8+ 4.0 2.4 3.1 1.2 1.1 2016-06-13

Examples

Installation or Setup

Detailed instructions on getting tomcat set up or installed.

Installing Tomcat as a service on Ubuntu

This example demonstrates how to install Tomcat as a service on Ubuntu using the *.tar.gz
releases of both Tomcat as well as Java.

1. Install the Java Runtime Environment (JRE)

Download the desired jre .tar.gz release1.
Extract to /opt/
This will create a directory /opt/jre1.Xxxx/

2.

Create a symbolic link to the java home directory:
cd /opt; sudo ln -s jre1.Xxxxx java

3.

add the JRE to the JAVA_HOME environment variable:
sudo vim /etc/environment
JAVA_HOME="/opt/java"

4.

https://riptutorial.com/ 2

2. Install Tomcat:

Download tomcat in a .tar.gz (or similiar) release.1.
Create a tomcat system user:
sudo useradd -r tomcat

2.

Extract to /opt/
This will create a directory /opt/apache-tomcat-XXXX
assign this directory to the tomcat system user and group:
sudo chown -R tomcat ./*
sudo chgrp -R tomcat ./*

3.

Create the CATALINA_HOME environment variable:
sudo vim /etc/environment
CATALINA_HOME="/opt/tomcat"

4.

Add admin user in tomcat-users.xml
sudo vim /opt/tomcat/conf/tomcat-users.xml
and add something like <user username="admin" password="adminpw" roles="manager-gui">
between the <tomcat-users> ... </tomcat-users> tags

5.

3. Making Tomcat boot at startup

Add a script in /etc/init.d called tomcat and make it executable. The content of the script can look
something like:

RETVAL=$?
CATALINA_HOME="/opt/tomcat"

case "$1" in
 start)
 if [-f $CATALINA_HOME/bin/startup.sh];
 then
 echo $"Starting Tomcat"
 sudo -u tomcat $CATALINA_HOME/bin/startup.sh
 fi
 ;;
 stop)
 if [-f $CATALINA_HOME/bin/shutdown.sh];
 then
 echo $"Stopping Tomcat"
 sudo -u tomcat $CATALINA_HOME/bin/shutdown.sh
 fi
 ;;
 *)
 echo $"Usage: $0 {start|stop}"
 exit 1
 ;;
esac

exit $RETVAL

To make it start on boot, run: sudo update-rc.d tomcat defaults

You can also add a bash line to /etc/rc.local for example service tomcat start

https://riptutorial.com/ 3

Changing classpath or other Tomcat related environment
variables:

Edit the file $CATALINA_HOME/bin/setenv.sh and add the properties in here, for example:
CLASSPATH=/additional/class/directories

Read Getting started with tomcat online: https://riptutorial.com/tomcat/topic/2107/getting-started-
with-tomcat

https://riptutorial.com/ 4

https://riptutorial.com/tomcat/topic/2107/getting-started-with-tomcat
https://riptutorial.com/tomcat/topic/2107/getting-started-with-tomcat

Chapter 2: CAC enabling Tomcat for
Development Purposes

Examples

Creating the Keystores and configuring Tomcat

This writeup walks though steps to configure Tomcat to request CAC certificates from the client. It
is focused on setting up a development environment, so some features that should be considered
for production are not here. (For example it shows using a self-signed certificate for https and it
doesn’t consider checking for revoked certificates.)

Create Keystore for enabling HTTPS connections

The first step is to set up SSL on tomcat. This is documented on the tomcat website here:
https://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html for completeness the steps to set it up
with a self-signed certificate are listed below:

We need to create a keystore file that holds the SSL certificate for the server. The certificate is
what is required to create an https connection and doesn’t have anything to do with making the
server request CAC certificates from the client but https connections are required for client
certificate authentication. For a development environment creating a self-signed certificate is ok
but it’s discouraged for production. Java comes packaged with a utility called keytool (
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html) that is used to
managed certificates and keystores. It can be used to create a self signed certificate and add it to
a keystore. To do that you can issue the following command from a command prompt:

keytool -genkey -alias tomcat -keyalg RSA -keystore \path\to\my\keystore -storepass
changeit

You will be prompted for various bits of information and then a keystore file named
“\path\to\my\keystore” with a password of ‘changeit’ will be created and it will contain the generate
self-signed certificate.

Create truststore containing DoD root certificates

The next thing that is needed is to create a truststore that will contain the DoD root certificates.
The certificates in this truststore will be considered as trusted by tomcat and it will only accept
client certificates that have one of the trusted certs in their certificate chain.

To create the truststore we need to get a copy of the DoD root certificates. To do this download
“InstallRoot 5.0” from http://militarycac.com/dodcerts.htm. Install it and run then run it. Expand the
Install DoD Certificates pane and click on the Certificate tab:

https://riptutorial.com/ 5

https://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html)
http://militarycac.com/dodcerts.htm

Next select the three DoD Root CA certs from the list of certificates and click “PEM” under Export
tool group:

After clicking the “PEM” export button choose a location to export the certificates to and click OK.
This should have created three .cer files in the directory you selected. Open up a command
prompt and navigate to that directory.

Here we will use the keytool command to import the certificates into a truststore. Run the following

https://riptutorial.com/ 6

http://i.stack.imgur.com/Ol1Y9.jpg
http://i.stack.imgur.com/AT7PY.jpg

commands to import the three certificates:

keytool -importcert -file DoD_Root_CA_2__0x05__DoD_Root_CA_2.cer -alias
DODRoot2 -keystore truststore.jks -storepass changeit

keytool -importcert -file DoD_Root_CA_3__0x01__DoD_Root_CA_3.cer -alias
DODRoot3 -keystore truststore.jks -storepass changeit

keytool -importcert -file DoD_Root_CA_4__0x01__DoD_Root_CA_4.cer -alias
DODRoot4 -keystore truststore.jks -storepass changeit

This will create a truststore.jks file with a password of ‘changeit’ in the current working directory. It
will contain the three DoD Root Certs, you can see this by running:

keytool -list -keystore truststore.jks

Which should list out something like:

Your keystore contains 3 entries

dodroot4, Sep 23, 2016, trustedCertEntry, Certificate fingerprint (SHA1):
B8:26:9F:25:DB:D9:37:EC:AF:D4:C3:5A:98:38:57:17:23:F2:D0:26 dodroot3, Sep 23,
2016, trustedCertEntry, Certificate fingerprint (SHA1):
D7:3C:A9:11:02:A2:20:4A:36:45:9E:D3:22:13:B4:67:D7:CE:97:FB dodroot2, Sep 23,
2016, trustedCertEntry, Certificate fingerprint (SHA1):
8C:94:1B:34:EA:1E:A6:ED:9A:E2:BC:54:CF:68:72:52:B4:C9:B5:61

Configure Tomcat to use the Keystore and Truststore

We now have the keystore and truststore files we need, next is to configure tomcat to use them.
To do this we must change the /conf/server.xml file. Open the file in add a connector definition like
the following:

<Connector
 clientAuth="true"
 keystoreFile="path/to/keystore.jks"
 keystorepass="changeit"
 keystoreType="jks"
 truststoreFile="path/to/truststore.jks"
 truststoreType="jks"
 truststorepass="changeit"
 maxThreads="150"
 port="8443"
 protocol="org.apache.coyote.http11.Http11NioProtocol"
 scheme="https"
 secure="true"
 sslProtocol="TLS"
 SSLEnabled="true"
 />

You can go here for further definition of all of the attributes: http://tomcat.apache.org/tomcat-7.0-
doc/config/http.html

https://riptutorial.com/ 7

http://tomcat.apache.org/tomcat-7.0-doc/config/http.html
http://tomcat.apache.org/tomcat-7.0-doc/config/http.html

Once this is all done start up tomcat. From a computer that has a CAC reader with a CAC inserted
browse to the https://:8443/ url and if everything is configured properly you should be prompted to
pick a certificate from the CAC card.

Read CAC enabling Tomcat for Development Purposes online:
https://riptutorial.com/tomcat/topic/6995/cac-enabling-tomcat-for-development-purposes

https://riptutorial.com/ 8

https://:8443/
https://riptutorial.com/tomcat/topic/6995/cac-enabling-tomcat-for-development-purposes

Chapter 3: Configuring a JDBC Datasource

Introduction

In order to utilize a JDBC datasource, we must first set up a JNDI reference in Tomcat. After the
JNDI reference is made, JDBC datasources can be used within our Tomcat server and
applications using shared or independent references (Great for dev/staging/prod setup, or removing
connection strings/credentials from committed code).

Remarks

Utilizing JNDI and JDBC also affords you to use ORMs like Hibernate or platforms like JPA to
define "persistence units" for object and table mapp

Examples

Configuring a server-wide JNDI reference

Inside of your {CATALINA_HOME}/conf/ folder exists a server.xml and context.xml file. Each one of
these contains similar code, but references different parts of Tomcat to complete the same
task.

server.xml is server-wide configuration. This is where you can set up HTTPS, HTTP2, JNDI
Resources, etc.

context.xml is specific to each context in Tomcat, taken from Tomcat's documentation it explains
this well:

The Context element represents a web application, which is run within a particular
virtual host. Each web application is based on a Web Application Archive (WAR) file, or
a corresponding directory containing the corresponding unpacked contents, as
described in the Servlet Specification (version 2.2 or later). For more information about
web application archives, you can download the Servlet Specification, and review the
Tomcat Application Developer's Guide.

Essentially, it's application-specific configuration.

In order to operate correctly, we'll need to set up a Resource in server.xml and a reference to that
resource inside of context.xml.

Inside of server.xml's <GlobalNamingResources> element, we'll append a new <Resource> which will be
our JNDI reference:

 <GlobalNamingResources>
 <!--
 JNDI Connection Pool for AS400

https://riptutorial.com/ 9

http://stackoverflow.com/questions/4365621/what-is-jndi-what-is-its-basic-use-when-is-it-used
http://wiki.apache.org/tomcat/Specifications
https://tomcat.apache.org/tomcat-8.5-doc/appdev/index.html

 Since it uses an older version of JDBC, we have to specify a validationQuery
 to bypass errornous calls to isValid() (which doesn't exist in older JDBC)
 -->
 <Resource name="jdbc/SomeDataSource"
 auth="Container"
 type="javax.sql.DataSource"
 maxTotal="100"
 maxIdle="30"
 maxWaitMillis="10000"
 username="[databaseusername]"
 password="[databasepassword]"
 driverClassName="com.ibm.as400.access.AS400JDBCDriver"
 validationQuery="Select 1 from LIBRARY.TABLE"
 url="jdbc:as400://[yourserver]:[port]"/>

In this example, we're using a rather particular datasource (an IBMi - running DB2), which requires
a validationQuery element set since it's using an older version of JDBC. This example is given as
there is very little examples out there, as well as a display of the interoperability that a JDBC
system affords you, even for an antiquated DB2 system (as above). Similar configuration would be
the same for other popular database systems:

<Resource name="jdbc/SomeDataSource"
 auth="Container"
 type="javax.sql.DataSource"
 username="[DatabaseUsername]"
 password="[DatabasePassword]"
 driverClassName="com.mysql.jdbc.Driver"
 url="jdbc:mysql:/[yourserver]:[port]/[yourapplication]"
 maxActive="15"
 maxIdle="3"/>

Inside of context.xml we'll need to configure a "pointer" towards our jdbc datasource (which we
made with a JNDI reference):

<Context>
 ...
 <ResourceLink name="jdbc/SomeDataSource"
 global="jdbc/SomeDataSource"
 type="javax.sql.DataSource" />
</Context>

Utilizing ResourceLink inside of context.xml allows us to reference the same datasource across
applications and have it configured at the server level for multiple-database systems. (Although it
also works just as well with one database)

Using a JNDI reference as a JDBC Resource in Context

public void test() {
 Connection conn = null;
 Statement stmt = null;
 try {
 Context ctx = (Context) new InitialContext().lookup("java:comp/env");
 conn = ((DataSource) ctx.lookup("jdbc/SomeDataSource")).getConnection();

https://riptutorial.com/ 10

 stmt = conn.createStatement();
 //SQL data fetch using the connection
 ResultSet rs = stmt.executeQuery("SELECT * FROM TABLE");
 while (rs.next()) {
 System.out.println(rs.getString("Id"));
 }
 conn.close();
 conn = null;
 }
 catch(Exception e){
 e.printStackTrace();
 }
 finally {

 if (stmt != null || conn != null) try {
 assert stmt != null;
 stmt.close();
 } catch (SQLException ex) {
 // ignore -- as we can't do anything about it here
 ex.printStackTrace();
 }
 }
}

Read Configuring a JDBC Datasource online: https://riptutorial.com/tomcat/topic/8911/configuring-
a-jdbc-datasource

https://riptutorial.com/ 11

https://riptutorial.com/tomcat/topic/8911/configuring-a-jdbc-datasource
https://riptutorial.com/tomcat/topic/8911/configuring-a-jdbc-datasource

Chapter 4: Configuring a JNDI datasource

Parameters

Attribute Details

auth

(String) Specify whether the web Application code signs on to the
corresponding resource manager programmatically, or whether the
Container will sign on to the resource manager on behalf of the
application. The value of this attribute must be Application or Container.
This attribute is required if the web application will use a resource-ref
element in the web application deployment descriptor, but is optional if
the application uses a resource-env-ref instead.

driverClassName
(String) The fully qualified Java class name of the JDBC driver to be
used. The driver has to be accessible from the same classloader as the
database connection pool jar.

factory (String) Full class path to the connection datasource factory.

initialSize
(int)The initial number of connections that are created when the pool is
started. Default value is 10

maxIdle

(int) The minimum number of established connections that should be
kept in the pool at all times. The connection pool can shrink below this
number if validation queries fail. Default value is derived from initialSize
of 10

maxTotal /
maxActive

(int) The maximum number of active connections that can be allocated
from this pool at the same time. The default value is 100. Note that this
attribute name differs between pool implementations and documentation
is often incorrect.

maxWaitMillis /
maxWait

(int) The maximum number of milliseconds that the pool will wait (when
there are no available connections) for a connection to be returned
before throwing an exception. Default value is 30000 (30 seconds). Note
that this attribute name differs between pool implementations and
documentation is often incorrect.

name (String) Name used to bind to JNDI context.

password (String) DB connection password.

url (String) (String) JDBC connection URL.

username (String) DB connection username.

https://riptutorial.com/ 12

Attribute Details

testOnBorrow

(boolean) The indication of whether objects will be validated before being
borrowed from the pool. If the object fails to validate, it will be dropped
from the pool, and we will attempt to borrow another. NOTE - for a true
value to have any effect, the validationQuery or validatorClassName
parameter must be set to a non-null string. In order to have a more
efficient validation, see validationInterval. Default value is false.

validationQuery

(String) The SQL query that will be used to validate connections from
this pool before returning them to the caller. If specified, this query does
not have to return any data, it just can't throw a SQLException. The
default value is null. Example values are SELECT 1(mysql), select 1
from dual(oracle), SELECT 1(MS Sql Server)

Remarks

Attributes

The list of available attributes is extensive and fully covered in Tomcat's JDBC Connection Pool
reference documentation. Only the attributes used in the examples above are covered in the
parameters section here.

DBCP vs Tomcat JDBC Connection Pool

Many locations in reference documentation refer to use of DBCP connection pools. The history on
which connection pool implementation is actually being used in Tomcat, by default, is complex and
confusing. It depends on specific version of Tomcat being used. It's best to specify the factory
explicitly.

Reference Documentation

Tomcat 8 JDNI Resources HOW-TO - JDBC Data Sources•
Tomcat 8 JNDI Datasource HOW-TO - Examples•
Tomcat 8 JDBC Connection Pool Reference•
Tomcat 8 Context Resource Links Reference•

Examples

JNDI Datasource for PostgreSQL & MySQL

Declare JNDI resource in tomcat's server.xml, using the Tomcat JDBC connection pool:

<GlobalNamingResources>
 <Resource name="jdbc/DatabaseName"

https://riptutorial.com/ 13

https://tomcat.apache.org/tomcat-8.0-doc/jdbc-pool.html
https://tomcat.apache.org/tomcat-8.0-doc/jndi-resources-howto.html#JDBC_Data_Sources
https://tomcat.apache.org/tomcat-8.0-doc/jndi-datasource-examples-howto.html
https://tomcat.apache.org/tomcat-8.0-doc/jdbc-pool.html
https://tomcat.apache.org/tomcat-8.0-doc/config/context.html#Resource_Links

 factory="org.apache.tomcat.jdbc.pool.DataSourceFactory"
 auth="Container"
 type="javax.sql.DataSource"
 username="dbUser"
 password="dbPassword"
 url="jdbc:postgresql://host/dbname"
 driverClassName="org.postgresql.Driver"
 initialSize="20"
 maxWaitMillis="15000"
 maxTotal="75"
 maxIdle="20"
 maxAge="7200000"
 testOnBorrow="true"
 validationQuery="select 1"
 />
</GlobalNamingResources>

And reference the JNDI resource from Tomcat's web context.xml:

 <ResourceLink name="jdbc/DatabaseName"
 global="jdbc/DatabaseName"
 type="javax.sql.DataSource"/>

If using MySQL, change URL, driver, and validation query:

 url="jdbc:mysql://host:3306/dbname"
 driverClassName="com.mysql.jdbc.Driver"
 validationQuery="/* ping */ SELECT 1"

JNDI Encrypted credentials

In the JNDI declaration you may want to encrypt the username and password.

You have to implement a custom datasource factory in order to be able to decrypt the credentials.

In server.xml replace factory="org.apache.tomcat.jdbc.pool.DataSourceFactory" by
factory="cypher.MyCustomDataSourceFactory"

Then define your custom factory :

package cypher;

import java.util.Enumeration;
import java.util.Hashtable;

import javax.naming.Context;
import javax.naming.Name;
import javax.naming.RefAddr;
import javax.naming.Reference;
import javax.naming.StringRefAddr;

import org.apache.tomcat.dbcp.dbcp.BasicDataSourceFactory;

public class MyCustomDataSourceFactory extends BasicDataSourceFactory {
 //This must be the same key used while encrypting the data

https://riptutorial.com/ 14

 private static final String ENC_KEY = "aad54a5d4a5dad2ad1a2";

 public MyCustomDataSourceFactory() {}

 @Override
 public Object getObjectInstance(final Object obj, final Name name, final Context nameCtx,
final Hashtable environment) throws Exception {
 if (obj instanceof Reference) {
 setUsername((Reference) obj);
 setPassword((Reference) obj);
 }
 return super.getObjectInstance(obj, name, nameCtx, environment);
 }

 private void setUsername(final Reference ref) throws Exception {
 findDecryptAndReplace("username", ref);
 }

 private void setPassword(final Reference ref) throws Exception {
 findDecryptAndReplace("password", ref);
 }

 private void findDecryptAndReplace(final String refType, final Reference ref) throws
Exception {
 final int idx = find(refType, ref);
 final String decrypted = decrypt(idx, ref);
 replace(idx, refType, decrypted, ref);
 }

 private void replace(final int idx, final String refType, final String newValue, final
Reference ref) throws Exception {
 ref.remove(idx);
 ref.add(idx, new StringRefAddr(refType, newValue));
 }

 private String decrypt(final int idx, final Reference ref) throws Exception {
 return new CipherEncrypter(ENC_KEY).decrypt(ref.get(idx).getContent().toString());
 }

 private int find(final String addrType, final Reference ref) throws Exception {
 final Enumeration enu = ref.getAll();
 for (int i = 0; enu.hasMoreElements(); i++) {
 final RefAddr addr = (RefAddr) enu.nextElement();
 if (addr.getType().compareTo(addrType) == 0) {
 return i;
 }
 }

 throw new Exception("The \"" + addrType + "\" name/value pair was not found" + " in
the Reference object. The reference Object is" + " "
 + ref.toString());
 }
}

Of course you need an utility to encrypt the username and password ;

 package cypher;

import java.io.UnsupportedEncodingException;
import java.security.spec.AlgorithmParameterSpec;

https://riptutorial.com/ 15

import java.security.spec.KeySpec;

import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.PBEParameterSpec;

public class CipherEncrypter {

 Cipher ecipher;

 Cipher dcipher;

 byte[] salt = {
 (byte) 0xA9, (byte) 0x9B, (byte) 0xC8, (byte) 0x32, (byte) 0x56, (byte) 0x35,
(byte) 0xE3, (byte) 0x03
 };

 int iterationCount = 19;

 /**
 * A java.security.InvalidKeyException with the message "Illegal key size or default
parameters" means that the cryptography strength is limited; the unlimited strength
juridiction policy files are not in the correct location. In a JDK,
 * they should be placed under ${jdk}/jre/lib/security
 *
 * @param passPhrase
 */
 public CipherEncrypter(final String passPhrase) {
 try {
 // Create the key
 SecretKeyFactory factory = SecretKeyFactory.getInstance("PBEWithMD5AndDES");
 KeySpec spec = new PBEKeySpec(passPhrase.toCharArray(), salt, 65536, 256);
 SecretKey tmp = factory.generateSecret(spec);
 // SecretKey secret = new SecretKeySpec(tmp.getEncoded(), "AES");

 // Create the ciphers
 ecipher = Cipher.getInstance(tmp.getAlgorithm());
 dcipher = Cipher.getInstance(tmp.getAlgorithm());

 final AlgorithmParameterSpec paramSpec = new PBEParameterSpec(salt,
iterationCount);

 ecipher.init(Cipher.ENCRYPT_MODE, tmp, paramSpec);
 dcipher.init(Cipher.DECRYPT_MODE, tmp, paramSpec);

 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 public String encrypt(final String str) {
 try {
 final byte[] utf8 = str.getBytes("UTF8");
 byte[] ciphertext = ecipher.doFinal(utf8);
 return new sun.misc.BASE64Encoder().encode(ciphertext);
 }
 catch (final javax.crypto.BadPaddingException e) {

https://riptutorial.com/ 16

 //
 }
 catch (final IllegalBlockSizeException e) {
 //
 }
 catch (final UnsupportedEncodingException e) {
 //
 }
 catch (Exception e) {
 //
 }

 return null;
 }

 public String decrypt(final String str) {
 try {

 final byte[] dec = new sun.misc.BASE64Decoder().decodeBuffer(str);
 return new String(dcipher.doFinal(dec), "UTF-8");
 }
 catch (final javax.crypto.BadPaddingException e) {
 //TODO
 }
 catch (final IllegalBlockSizeException e) {
 //TODO
 }
 catch (final UnsupportedEncodingException e) {
 //TODO
 }
 catch (final java.io.IOException e) {
 //TODO
 }
 return null;
 }

 public static void main(final String[] args) {

 if (args.length != 1) {
 System.out.println("Error : you have to pass exactly one argument.");
 System.exit(0);
 }
 try {
 //This key is used while decrypting.
 final CipherEncrypter encrypter = new CipherEncrypter("aad54a5d4a5dad2ad1a2");
 final String encrypted = encrypter.encrypt(args[0]);
 System.out.println("Encrypted :" + encrypted);

 final String decrypted = encrypter.decrypt(encrypted);
 System.out.println("decrypted :" + decrypted);
 }
 catch (final Exception e) {

 e.printStackTrace();
 }

 }
}

When you have encrypted values for username and password, replace the clear ones in

https://riptutorial.com/ 17

server.xml.

Note that the encrypter should be in an obfuscated jar to keep the private key hidden (or you can
also pass the key as an argument of the programm).

Read Configuring a JNDI datasource online: https://riptutorial.com/tomcat/topic/4652/configuring-
a-jndi-datasource

https://riptutorial.com/ 18

https://riptutorial.com/tomcat/topic/4652/configuring-a-jndi-datasource
https://riptutorial.com/tomcat/topic/4652/configuring-a-jndi-datasource

Chapter 5: Embedding into an application

Examples

Embed tomcat using maven

 <plugin>
 <groupId>org.apache.tomcat.maven</groupId>
 <artifactId>tomcat7-maven-plugin</artifactId>
 <version>2.1</version>
 <executions>
 <execution>
 <id>tomcat-run</id>
 <goals>
 <goal>exec-war-only</goal>
 </goals>
<!--This phase is for creating jar file.You can customize configuration -->
 <phase>package</phase>
 <configuration>
 <path>/WebAppName</path>
 <enableNaming>false</enableNaming>
 <finalName>WebAppName.jar</finalName>
 </configuration>
 </execution>
 </executions>
<!--This configuration is for running application in your ide-->
 <configuration>
 <port>8020</port>
 <path>/webappName</path>
 <!--These properties are optional-->
 <systemProperties>
 <CATALINA_OPTS>-Djava.awt.headless=true -Dfile.encoding=UTF-8
 -server -Xms1536m -Xmx1536m
 -XX:NewSize=256m -XX:MaxNewSize=256m -XX:PermSize=256m
 -XX:MaxPermSize=512m -XX:+DisableExplicitGC
 -XX:+UseConcMarkSweepGC
 -XX:+CMSIncrementalMode
 -XX:+CMSIncrementalPacing
 -XX:CMSIncrementalDutyCycleMin=0
 -XX:-TraceClassUnloading
 </CATALINA_OPTS>
 </systemProperties>
 </configuration>
 </plugin>

You can run the above tomcat in your ide using goal tomcat:run. If you run package goal it will
create a jar file in your target folder which can create tomcat instance itself and run.

Using </CATALINA_OPTS> you can specify properties like permgen max and min size, Garbage
Collection mechanism etc.which are completely optional.

Read Embedding into an application online: https://riptutorial.com/tomcat/topic/3876/embedding-
into-an-application

https://riptutorial.com/ 19

https://riptutorial.com/tomcat/topic/3876/embedding-into-an-application
https://riptutorial.com/tomcat/topic/3876/embedding-into-an-application

Chapter 6: Https configuration

Examples

SSL/TLS Configuration

HTTPS

HTTPS (also called HTTP over TLS,[1][2] HTTP over SSL,[3] and HTTP Secure[4][5]) is a protocol
for secure communication over a computer network which is widely used on the Internet. HTTPS
consists of communication over Hypertext Transfer Protocol (HTTP) within a connection encrypted
by Transport Layer Security or its predecessor, Secure Sockets Layer. The main motivation for
HTTPS is authentication of the visited website and protection of the privacy and integrity of the
exchanged data.

SSL

Image result for what is ssl SSL (Secure Sockets Layer) is the standard security technology for
establishing an encrypted link between a web server and a browser. This link ensures that all data
passed between the web server and browsers remain private and integral. SSL is a security
protocol. Protocols describe how algorithms should be used.

TLS

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), both of which
are frequently referred to as 'SSL', are cryptographic protocols designed to provide
communications security over a computer network.

SSL Certificate

All browsers have the capability to interact with secured web servers using the SSL protocol.
However, the browser and the server need what is called an SSL Certificate to be able to establish
a secure connection.

SSL Certificates have a key pair: a public and a private key. These keys work together to establish
an encrypted connection. The certificate also contains what is called the “subject,” which is the
identity of the certificate/website owner.

How Does the SSL Certificate Create a Secure Connection

When a browser attempts to access a website that is secured by SSL, the browser and the
web server establish an SSL connection using a process called an “SSL Handshake”

1.

Essentially, three keys are used to set up the SSL connection: the public, private, and
session keys.

2.

Steps to Establish a Secure Connection

https://riptutorial.com/ 20

Browser connects to a web server (website) secured with SSL (https). Browser requests that
the server identify itself.

1.

Server sends a copy of its SSL Certificate, including the server’s public key.2.

Browser checks the certificate root against a list of trusted CAs and that the certificate is
unexpired, unrevoked, and that its common name is valid for the website that it is connecting
to. If the browser trusts the certificate, it creates, encrypts, and sends back a symmetric
session key using the server’s public key.

3.

Server decrypts the symmetric session key using its private key and sends back an
acknowledgement encrypted with the session key to start the encrypted session.

4.

Server and Browser now encrypt all transmitted data with the session key.5.

SSL/TLS and Tomcat

It is important to note that configuring Tomcat to take advantage of secure sockets is usually only
necessary when running it as a stand-alone web server.

And if running Tomcat primarily as a Servlet/JSP container behind another web server, such as
Apache or Microsoft IIS, it is usually necessary to configure the primary web server to handle the
SSL connections from users.

Certificates

In order to implement SSL, a web server must have an associated Certificate for each external
interface (IP address) that accepts secure connections.Certificate as a "digital driver's license".

This "driver's license" is cryptographically signed by its owner, and is therefore extremely
difficult for anyone else to forge

1.

Certificate is typically purchased from a well-known Certificate Authority (CA) such as
VeriSign or Thawte

2.

In many cases, however, authentication is not really a concern. An administrator may simply want
to ensure that the data being transmitted and received by the server is private and cannot be
snooped by anyone who may be eavesdropping on the connection. Fortunately, Java provides a
relatively simple command-line tool, called keytool, which can easily create a "self-signed"
Certificate. Self-signed Certificates are simply user generated Certificates which have not been
officially registered with any well-known CA, and are therefore not really guaranteed to be
authentic at all

Prepare the Certificate Keystore

Tomcat currently operates only on JKS, PKCS11 or PKCS12 format keystores.

JKS:

The JKS format is Java's standard "Java KeyStore" format, and is the format created by the

https://riptutorial.com/ 21

keytool command-line utility. This tool is included in the JDK

PKCS11/ PKCS12

The PKCS12 format is an internet standard, and can be manipulated via (among other things)
OpenSSL and Microsoft's Key-Manager.

To create a new JKS keystore from scratch, containing a single self-signed Certificate, execute the
following from a terminal command line:

$ keytool -genkey -alias tomcat -keyalg RSA

This command will create a new file, in the home directory of the user under which you run it,
named ".keystore".

To specify a different location or filename, add the -keystore parameter, followed by the complete
pathname to your keystore file as .

$ Keytool -genkey -alias tomcat -keyalg RSA -keystore \path\to\my\dir\<keystore-file-name>

After executing this command, you will first be prompted for

keystore password1.
and for general information about this Certificate, such as company, contact name, and so
on.

2.

Finally, you will be prompted for the key password, which is the password specifically for this
Certificate (as opposed to any other Certificates stored in the same keystore file).

If everything was successful, you now have a keystore file with a Certificate that can be used by
your server.

Edit the Tomcat Configuration File

Tomcat can use two different implementations of SSL:

JSSE implementation provided as part of the Java runtime (since 1.4)

The Java Secure Socket Extension (JSSE) enables secure Internet communications. It
provides a framework and an implementation for a Java version of the SSL and TLS
protocols and includes functionality for data encryption, server authentication, message
integrity, and optional client authentication

The JSSE API was designed to allow other SSL/TLS protocol and Public Key Infrastructure
(PKI) implementations to be plugged in seamlessly. Developers can also provide alternative
logic to determine if remote hosts should be trusted or what authentication key material
should be sent to a remote host.

1.

APR implementation, which uses the OpenSSL engine by default.2.

https://riptutorial.com/ 22

The exact configuration details of Connector depend on which implementation is being used.

<!-- Default in configuration file ..-->

<Connector protocol="HTTP/1.1" port="8080" .../>

To define a Java (JSSE) connector, regardless of whether the APR library is loaded or not, use
one of the following:

<!-- Define a HTTP/1.1 Connector on port 8443, JSSE NIO implementation -->

<Connector protocol="org.apache.coyote.http11.Http11NioProtocol"
 port="8443" .../>

Alternatively, to specify an APR connector (the APR library must be available) use:

<!-- Define a HTTP/1.1 Connector on port 8443, APR implementation -->
<Connector protocol="org.apache.coyote.http11.Http11AprProtocol"
 port="8443" .../>

to configure the Connector in the $CATALINA_BASE/conf/server.xml file

<!-- Define a SSL Coyote HTTP/1.1 Connector on port 8443 -->
<Connector
 protocol="org.apache.coyote.http11.Http11NioProtocol"
 port="8443" maxThreads="200"
 scheme="https" secure="true" SSLEnabled="true"
 keystoreFile="${user.home}/.keystore" keystorePass="changeit"
 clientAuth="false" sslProtocol="TLS"/>

If you change the port number here, you should also change the value specified for the
redirectPort attribute on the non-SSL connector. This allows Tomcat to automatically redirect
users who attempt to access a page with a security constraint specifying that SSL is required, as
required by the Servlet Specification.

Configure in web.xml for particular project

<security-constraint>
 <web-resource-collection>
 <web-resource-name>SUCTR</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

Installing a Certificate from a Certificate Authority

Create a local Certificate Signing Request (CSR)1.

Create a local self-signed Certificate as described above2.

https://riptutorial.com/ 23

The CSR is then created with3.

 $ keytool -certreq -keyalg RSA -alias tomcat -file certreq.csr
 -keystore <your_keystore_filename>

Now you have a file called certreq.csr that you can submit to the Certificate Authority

Importing the Certificate

Now that you have your Certificate and you can import it into you local keystore. First of all you
have to import a Chain Certificate or Root Certificate into your keystore. After that you can
proceed with importing your Certificate.

Download a Chain Certificate from the Certificate Authority you obtained the Certificate from1.

Import the Chain Certificate into your keystore2.

 $ keytool -import -alias root -keystore <your_keystore_filename>
 -trustcacerts -file <filename_of_the_chain_certificate>

And finally import your new Certificate3.

 keytool -import -alias tomcat -keystore <your_keystore_filename>
 -file <your_certificate_filename>

Reference : Here

Read Https configuration online: https://riptutorial.com/tomcat/topic/6026/https-configuration

https://riptutorial.com/ 24

https://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html#Prepare_the_Certificate_Keystore
https://riptutorial.com/tomcat/topic/6026/https-configuration

Chapter 7: Tomcat Virtual Hosts

Remarks

Host Manager is a web application inside of Tomcat that creates/removes Virtual Hosts within
Tomcat.

A Virtual Host allows you to define multiple hostnames on a single server, so you can use the
same server to handles requests to, for example, ren.myserver.com and stimpy.myserver.com.

Unfortunately documentation on the GUI side of the Host Manager doesn't appear to exist, but
documentation on configuring the virtual hosts manually in context.xml is here:

http://tomcat.apache.org/tomcat-7.0-doc/virtual-hosting-howto.html.

The full explanation of the Host parameters you can find here:

http://tomcat.apache.org/tomcat-7.0-doc/config/host.html.

Adapted from my answer: http://stackoverflow.com/a/26248511/6340

Examples

Tomcat Host Manager Web Application

Tomcat's Host Manager application by default is located at http://localhost:8080/host-manager, but
is not accessible until a user is given permission in the conf/tomcat-users.xml file. The file needs to
have:

A manager-gui role1.
A user with this role2.

For example:

<tomcat-users>
 ...
 <role rolename="manager-gui"/>

 <user username="host-admin" password="secretPassword" roles="manager-gui"/>
</tomcat-users>

Adding a Virtual Host via the Tomcat Host Manager Web Application

Once you have access to the host-manager, the GUI will let you add a virtual host.

Note: In Tomcat 7 and 8, adding a virtual host via the GUI does not write the vhost
to config files. You will need to manually edit the server.xml file to have the vhost
available after a restart. See http://tomcat.apache.org/tomcat-7.0-doc/virtual-hosting-

https://riptutorial.com/ 25

http://tomcat.apache.org/tomcat-7.0-doc/virtual-hosting-howto.html
http://tomcat.apache.org/tomcat-7.0-doc/config/host.html
http://stackoverflow.com/users/6340/brass-kazoo
http://stackoverflow.com/a/26248511/6340
http://localhost:8080/host-manager
http://tomcat.apache.org/tomcat-7.0-doc/virtual-hosting-howto.html

howto.html for further info on the <Host> tag in server.xml

At a minimum you need the Name and App Base fields defined. Tomcat will then create the following
directories:

{CATALINA_HOME}\conf\Catalina\{Name}
{CATALINA_HOME}\{App Base}

App Base will be where web applications will be deployed to the virtual host. Can be relative or
absolute.

•

Name is usually the fully-qualified domain name (e.g. ren.myserver.com)•
Alias can be used to extend the Name also where two addresses should resolve to the same
host (e.g. www.ren.myserver.com). Note that this needs to be reflected in DNS records.

•

The checkboxes are as follows:

Auto Deploy: Automatically redeploy applications placed into App Base. Dangerous for
Production environments!

•

Deploy On Startup: Automatically boot up applications under App Base when Tomcat starts•
Deploy XML: Determines whether to parse the application's /META-INF/context.xml•
Unpack WARs: Unpack WAR files placed or uploaded to the App Base, as opposed to running
them directly from the WAR.

•

Tomcat 8 Copy XML: Copy an application's META-INF/context.xml to the App Base/XML Base
on deployment, and use that exclusively, regardless of whether the application is updated.
Irrelevant if Deploy XML is false.

•

Manager App: Add the manager application to the Virtual Host (Useful for controlling the
applications you might have underneath ren.myserver.com)

•

Adapted from my answer: http://stackoverflow.com/a/26248511/6340

Adding a Virtual Host to server.xml

Once a virtual host has been added via the web application, directories will exist at:

{CATALINA_HOME}\conf\Catalina\{Name}
{CATALINA_HOME}\{App Base}

https://riptutorial.com/ 26

http://tomcat.apache.org/tomcat-7.0-doc/virtual-hosting-howto.html
http://i.stack.imgur.com/lYTrH.png
http://stackoverflow.com/users/6340/brass-kazoo
http://stackoverflow.com/a/26248511/6340

To persist the virtual host after a restart, the server.xml file must be updated with the configuration.
A Host element needs to be added inside the Engine element, similar to this:

<Engine name="Catalina" ...>
 ...
 <Host name="my-virtual-app" appBase="virtualApp" autoDeploy="true" unpackWARs="true" ... />
</Engine>

The attributes in the Host element should reflect the selections made in the host manager GUI (see
the Host documentation for details), but can be changed. Note that the Manager App option in the
GUI does not correspond to any Host attribute.

Read Tomcat Virtual Hosts online: https://riptutorial.com/tomcat/topic/6235/tomcat-virtual-hosts

https://riptutorial.com/ 27

http://tomcat.apache.org/tomcat-7.0-doc/config/host.html
https://riptutorial.com/tomcat/topic/6235/tomcat-virtual-hosts

Chapter 8: Tomcat(x) Directories Structures

Examples

Directory Structure in Ubuntu (Linux)

After installing Tomcat with apt-get on Ubuntu xx.xx, Tomcat creates and uses these directories:

$cd /etc/tomcat6/

├── Catalina
│ └── localhost
│ ├── ROOT.xml
│ └── solr.xml -> ../../../solr/solr-tomcat.xml
├── catalina.properties
├── context.xml
├── logging.properties
├── policy.d
│ ├── 01system.policy
│ ├── 02debian.policy
│ ├── 03catalina.policy
│ ├── 04webapps.policy
│ ├── 05solr.policy -> /etc/solr/tomcat.policy
│ └── 50local.policy
├── server.xml
├── tomcat-users.xml
└── web.xml

$cd /usr/share/tomcat6

├── bin
│ ├── bootstrap.jar
│ ├── catalina.sh
│ ├── catalina-tasks.xml
│ ├── digest.sh
│ ├── setclasspath.sh
│ ├── shutdown.sh
│ ├── startup.sh
│ ├── tomcat-juli.jar -> ../../java/tomcat-juli.jar
│ ├── tool-wrapper.sh
│ └── version.sh
├── defaults.md5sum
├── defaults.template
└── lib
 ├── annotations-api.jar -> ../../java/annotations-api-6.0.35.jar
 ├── catalina-ant.jar -> ../../java/catalina-ant-6.0.35.jar
 ├── catalina-ha.jar -> ../../java/catalina-ha-6.0.35.jar
 ├── catalina.jar -> ../../java/catalina-6.0.35.jar
 ├── catalina-tribes.jar -> ../../java/catalina-tribes-6.0.35.jar
 ├── commons-dbcp.jar -> ../../java/commons-dbcp.jar
 ├── commons-pool.jar -> ../../java/commons-pool.jar
 ├── el-api.jar -> ../../java/el-api-2.1.jar
 ├── jasper-el.jar -> ../../java/jasper-el-6.0.35.jar
 ├── jasper.jar -> ../../java/jasper-6.0.35.jar
 ├── jasper-jdt.jar -> ../../java/ecj.jar

https://riptutorial.com/ 28

 ├── jsp-api.jar -> ../../java/jsp-api-2.1.jar
 ├── servlet-api.jar -> ../../java/servlet-api-2.5.jar
 ├── tomcat-coyote.jar -> ../../java/tomcat-coyote-6.0.35.jar
 ├── tomcat-i18n-es.jar -> ../../java/tomcat-i18n-es-6.0.35.jar
 ├── tomcat-i18n-fr.jar -> ../../java/tomcat-i18n-fr-6.0.35.jar
 └── tomcat-i18n-ja.jar -> ../../java/tomcat-i18n-ja-6.0.35.jar

$cd /usr/share/tomcat6-root/

└── default_root
 ├── index.html
 └── META-INF
 └── context.xml

$cd /usr/share/doc/tomcat6

├── changelog.Debian.gz -> ../libtomcat6-java/changelog.Debian.gz
├── copyright
└── README.Debian.gz -> ../tomcat6-common/README.Debian.gz

$cd /var/cache/tomcat6

├── Catalina
│ └── localhost
│ ├── _
│ └── solr
│ └── org
│ └── apache
│ └── jsp
│ ├── admin
│ │ ├── form_jsp.class
│ │ ├── form_jsp.java
│ │ ├── get_002dproperties_jsp.class
│ │ ├── get_002dproperties_jsp.java
│ │ ├── index_jsp.class
│ │ ├── index_jsp.java
│ │ ├── schema_jsp.class
│ │ ├── schema_jsp.java
│ │ ├── stats_jsp.class
│ │ ├── stats_jsp.java
│ │ ├── threaddump_jsp.class
│ │ └── threaddump_jsp.java
│ ├── index_jsp.class
│ └── index_jsp.java
└── catalina.policy

$cd /var/lib/tomcat6

├── common
│ └── classes
├── conf -> /etc/tomcat6
├── logs -> ../../log/tomcat6
├── server
│ └── classes
├── shared
│ └── classes

https://riptutorial.com/ 29

├── webapps
│ └── ROOT
│ ├── index.html
│ └── META-INF
│ └── context.xml
└── work -> ../../cache/tomcat6

$cd /var/log/tomcat6

├── catalina.2013-06-28.log
├── catalina.2013-06-30.log
├── catalina.out
├── catalina.out.1.gz
└── localhost.2013-06-28.log

$cd /etc/default

├── tomcat7

Read Tomcat(x) Directories Structures online: https://riptutorial.com/tomcat/topic/5964/tomcat-x--
directories-structures

https://riptutorial.com/ 30

https://riptutorial.com/tomcat/topic/5964/tomcat-x--directories-structures
https://riptutorial.com/tomcat/topic/5964/tomcat-x--directories-structures

Credits

S.
No

Chapters Contributors

1
Getting started with
tomcat

CodeWarrior, Community, Stefan

2

CAC enabling
Tomcat for
Development
Purposes

David Harris

3
Configuring a JDBC
Datasource

Shawn S.

4
Configuring a JNDI
datasource

alain.janinm, kaliatech

5
Embedding into an
application

udaybhaskar

6 Https configuration Girish Kumar

7 Tomcat Virtual Hosts brasskazoo

8
Tomcat(x)
Directories
Structures

Girish Kumar

https://riptutorial.com/ 31

https://riptutorial.com/contributor/1658480/codewarrior
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1264321/stefan
https://riptutorial.com/contributor/475191/david-harris
https://riptutorial.com/contributor/7106420/shawn-s-
https://riptutorial.com/contributor/1140748/alain-janinm
https://riptutorial.com/contributor/123378/kaliatech
https://riptutorial.com/contributor/4238176/udaybhaskar
https://riptutorial.com/contributor/4626262/girish-kumar
https://riptutorial.com/contributor/6340/brasskazoo
https://riptutorial.com/contributor/4626262/girish-kumar

	About
	Chapter 1: Getting started with tomcat
	Remarks
	Versions
	Examples
	Installation or Setup
	Installing Tomcat as a service on Ubuntu

	1. Install the Java Runtime Environment (JRE)
	2. Install Tomcat:
	3. Making Tomcat boot at startup
	Changing classpath or other Tomcat related environment variables:

	Chapter 2: CAC enabling Tomcat for Development Purposes
	Examples
	Creating the Keystores and configuring Tomcat

	Chapter 3: Configuring a JDBC Datasource
	Introduction
	Remarks
	Examples
	Configuring a server-wide JNDI reference
	Using a JNDI reference as a JDBC Resource in Context

	Chapter 4: Configuring a JNDI datasource
	Parameters
	Remarks
	Attributes
	DBCP vs Tomcat JDBC Connection Pool
	Reference Documentation
	Examples
	JNDI Datasource for PostgreSQL & MySQL
	JNDI Encrypted credentials

	Chapter 5: Embedding into an application
	Examples
	Embed tomcat using maven

	Chapter 6: Https configuration
	Examples
	SSL/TLS Configuration

	Chapter 7: Tomcat Virtual Hosts
	Remarks
	Examples
	Tomcat Host Manager Web Application
	Adding a Virtual Host via the Tomcat Host Manager Web Application
	Adding a Virtual Host to server.xml

	Chapter 8: Tomcat(x) Directories Structures
	Examples
	Directory Structure in Ubuntu (Linux)

	Credits

