
twitch

#twitch

Table of Contents

About 1

Chapter 1: Getting started with twitch 2

Versions 2

Examples 2

Requesting a token 2

Get the OAuth token from the URL fragment 3

Chapter 2: Calling Twitch APIs 4

Remarks 4

Examples 4

PHP 4

JavaScript 4

jQuery 5

Chapter 3: Getting an OAuth token using the Authorization Code Flow 6

Examples 6

Send the user to the authorize endpoint to get the authorization code 6

Get the authorization code from the query string 6

Exchange the code for the OAuth token 7

Chapter 4: Interactive Embed Video Player 8

Examples 8

LIVE Streaming Video Player 8

Recorded (not live) Video Player 8

Start with a Muted Player 9

Chapter 5: Lists of Streamers by Game 10

Examples 10

Getting the First Page in Ruby 10

Chapter 6: Twitch Chat (IRC) Bot 11

Remarks 11

Connection, Handshake 11

Twitch-specific Capabilities 11

Examples 12

Python 12

Credits 14

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: twitch

It is an unofficial and free twitch ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official twitch.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/twitch
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with twitch

Versions

Version Release Date

1.0.0 2016-04-14

Examples

Requesting a token

The Implicit Grant flow is best suited for Web applications. It's easily integrated into a website
using JavaScript and doesn't require a server to store the authorization code to retrieve a token.

You'll first send the user to the Twitch authorization endpoint. This URL is made up of a the base
authorization URL (https://api.twitch.tv/kraken/oauth2/authorize) and query string parameters
that define what you're requesting. The required parameters are response_type, client_id,
redirect_uri, and scope.

For the Implicit Grant flow, the response_type parameter is always set to token. This signifies that
you're requesting an OAuth token directly.

The redirect_uri is where the user will be redirected after they approve the scopes your
application requested. This must match what you registered on your Twitch account Connections
page.

The client_id is a unique identifier for your application. You can find your client ID on the
Connections page, too.

The scope parameter defines what you have access to on behalf of the user. You should only
request the minimum that you need for your application to function. You can find the list of scopes
on the Twitch API GitHub.

The state parameter is also supported to help protect against cross-site scripting attacks. When
the user is redirected after authorization, this value will be included on the redirect_uri.

Redirect the user to this URL:

https://api.twitch.tv/kraken/oauth2/authorize
 ?response_type=token
 &client_id=[your client ID]
 &redirect_uri=[your registered redirect URI]
 &scope=[space separated list of scopes]
 &state=[your provided unique token]

https://riptutorial.com/ 2

https://www.twitch.tv/settings/connections
https://www.twitch.tv/settings/connections
https://github.com/justintv/Twitch-API/blob/master/authentication.md#scopes

Get the OAuth token from the URL fragment

If the user authorizes your application, they will be redirected to the following URL:

https://[your registered redirect URI]/#access_token=[an access token]
 &scope=[authorized scopes]

Note that the access token is in the URL fragment and not the query string. This means the value
will not show up in HTTP requests to your server. URL fragments can be accessed from
JavaScript with document.location.hash.

Read Getting started with twitch online: https://riptutorial.com/twitch/topic/464/getting-started-with-
twitch

https://riptutorial.com/ 3

https://riptutorial.com/twitch/topic/464/getting-started-with-twitch
https://riptutorial.com/twitch/topic/464/getting-started-with-twitch

Chapter 2: Calling Twitch APIs

Remarks

This topic is meant to show a general way to call the Twitch API without OAuth. You can call any
APIs found in the Twitch REST API documentation using this pattern. You would simply change
the URL to the correct endpoint.

A Client-ID is required for all calls to the Twitch API. In these examples, the Client-ID is added as
a header to each call. You can also add it with the client_id query string parameter. If you use an
OAuth token, the Twitch API will automatically resolve the Client-ID for you.

You can register a developer application at the new client page on Twitch.

Examples

PHP

The following will retrieve a channel object for the twitch channel and echo the response.

 $channelsApi = 'https://api.twitch.tv/kraken/channels/';
 $channelName = 'twitch';
 $clientId = '...';
 $ch = curl_init();

 curl_setopt_array($ch, array(
 CURLOPT_HTTPHEADER=> array(
 'Client-ID: ' . $clientId
),
 CURLOPT_RETURNTRANSFER=> true,
 CURLOPT_URL => $channelsApi . $channelName
));

 $response = curl_exec($ch);
 curl_close($ch);
 echo $response;

JavaScript

The following will log the JSON response from the API to the console if the request was
successful, otherwise it will log the error.

var xhr = new XMLHttpRequest();

xhr.open('GET', 'https://api.twitch.tv/kraken', true);

xhr.setRequestHeader('Client-ID', '...');

xhr.onload = function(data){
 console.log(data);

https://riptutorial.com/ 4

https://github.com/justintv/Twitch-API/tree/master/v3_resources
https://www.twitch.tv/kraken/oauth2/clients/new

};

xhr.onerror = function(error){
 console.log(error.target.status);
};

xhr.send();

jQuery

The following will retrieve a channel object for the twitch channel. If the request was successful the
channel object will be logged to the console.

$.ajax({
 type: 'GET',
 url: 'https://api.twitch.tv/kraken/channels/twitch',
 headers: {
 'Client-ID': '...'
 },
 success: function(data) {
 console.log(data);
 }
});

Read Calling Twitch APIs online: https://riptutorial.com/twitch/topic/760/calling-twitch-apis

https://riptutorial.com/ 5

https://riptutorial.com/twitch/topic/760/calling-twitch-apis

Chapter 3: Getting an OAuth token using the
Authorization Code Flow

Examples

Send the user to the authorize endpoint to get the authorization code

You'll first send the user to the Twitch authorization endpoint. This URL is made up of a the base
authorization URL (https://api.twitch.tv/kraken/oauth2/authorize) and query string parameters
that define what you're requesting. The required parameters are response_type, client_id,
redirect_uri, and scope.

For the Authorization Code flow, the response_type parameter is always set to code. This signifies
that you're requesting an authorization code from the Twitch API.

The redirect_uri is where the user will be redirected after they approve the scopes your
application requested. This must match what you registered on your Twitch account Connections
page.

The client_id is a unique identifier for your application. You can find your client ID on the
Connections page, too.

The scope defines what you have access to on behalf of the user. You should only request the
minimum that you need for your application to function. You can find the list of scopes on the
Twitch API GitHub.

The state parameter is also supported to help protect against cross-site scripting attacks. The
state parameter will be included on the redirect_uri when the user authorizes your application.

 https://api.twitch.tv/kraken/oauth2/authorize
 ?response_type=code
 &client_id=[your client ID]
 &redirect_uri=[your registered redirect URI]
 &scope=[space separated list of scopes]
 &state=[your provided unique token]

Get the authorization code from the query string

When the user goes to the authorization endpoint, they will be asked to give your application
permission to the scopes that you've requested. They can decline this, so you must make sure to
take that into consideration in your code. After they've allowed your application access, the user
will be redirected to the URL you specified in redirect_uri. The query string will now have a code
parameter, which is the authorization code that you can exchange for an OAuth token.

<?php
 $authCode = $_GET['code'];

https://riptutorial.com/ 6

https://www.twitch.tv/settings/connections
https://www.twitch.tv/settings/connections
https://github.com/justintv/Twitch-API/blob/master/authentication.md#scopes

?>

Exchange the code for the OAuth token

Now that you have an authorization code, you can make a POST to the token endpoint (
https://api.twitch.tv/kraken/oauth2/token) to get an OAuth token. You will receive a JSON-
encoded access token, refresh token, and a list of the scopes approved by the user. You can now
use that token to make authenticated requests on behalf of the user.

<?php
 $authCode = $_GET['code'];

 $parameterValues = array(
 'client_id' => '...',
 'client_secret' => '...',
 'grant_type' => 'authorization_code',
 'redirect_uri' => 'http://localhost/',
 'code' => $authCode
);

 $postValues = http_build_query($parameterValues, '', '&');

 $ch = curl_init();

 curl_setopt_array($ch, array(
 CURLOPT_RETURNTRANSFER => true,
 CURLOPT_URL => 'https://api.twitch.tv/kraken/oauth2/token',
 CURLOPT_POST => 1,
 CURLOPT_POSTFIELDS => $postValues
));

 $response = curl_exec($ch);
 curl_close($ch);

 echo $response;
?>

Read Getting an OAuth token using the Authorization Code Flow online:
https://riptutorial.com/twitch/topic/6624/getting-an-oauth-token-using-the-authorization-code-flow

https://riptutorial.com/ 7

https://riptutorial.com/twitch/topic/6624/getting-an-oauth-token-using-the-authorization-code-flow

Chapter 4: Interactive Embed Video Player

Examples

LIVE Streaming Video Player

Basic implementation:

<script src= "http://player.twitch.tv/js/embed/v1.js"></script>
<div id="PLAYER_DIV_ID"></div>
<script type="text/javascript">
 var options = {
 width: 854,
 height: 480,
 channel: "monstercat",
 };
 var player = new Twitch.Player("PLAYER_DIV_ID", options);
 player.setVolume(0.5);
</script>

With controls hidden:

<script src= "http://player.twitch.tv/js/embed/v1.js"></script>
<div id="PLAYER_DIV_ID"></div>
<script type="text/javascript">
 var options = {
 width: 854,
 height: 480,
 channel: "monstercat",
 controls: false,
 };
 var player = new Twitch.Player("PLAYER_DIV_ID", options);
 player.setVolume(0.5);
</script>

Recorded (not live) Video Player

<script src= "http://player.twitch.tv/js/embed/v1.js"></script>
<div id="PLAYER_DIV_ID"></div>
<script type="text/javascript">
 var options = {
 width: 854,
 height: 480,
 video: "v53336925",
 };
 var player = new Twitch.Player("PLAYER_DIV_ID", options);
 player.setVolume(0.5);
</script>

The above snippet will play the following video: twitch.tv/general_mittenz/v/53336925

https://riptutorial.com/ 8

https://www.twitch.tv/general_mittenz/v/53336925
https://www.twitch.tv/general_mittenz/v/53336925

Start with a Muted Player

<script src= "http://player.twitch.tv/js/embed/v1.js"></script>
<div id="{PLAYER_DIV_ID}"></div>
<script type="text/javascript">
 var options = {
 width: 854,
 height: 480,
 channel: "{CHANNEL}"
 };
 var player = new Twitch.Player("{PLAYER_DIV_ID}", options);
 player.setMuted(true);
</script>

Read Interactive Embed Video Player online: https://riptutorial.com/twitch/topic/470/interactive-
embed-video-player

https://riptutorial.com/ 9

https://riptutorial.com/twitch/topic/470/interactive-embed-video-player
https://riptutorial.com/twitch/topic/470/interactive-embed-video-player

Chapter 5: Lists of Streamers by Game

Examples

Getting the First Page in Ruby

This Ruby example uses Mechanize, a library to automate web interactions.

client_id is an OAuth client_id.

game is the game directory to list.

require 'mechanize'
master_agent = Mechanize.new

client_id = "123"
game = "Minecraft"

url = "https://api.twitch.tv/kraken/streams?game=#{game}&client_id=#{client_id}"
final_list = []
master_agent.get(url) do |page|
 master_list = JSON.parse(page.body)
 master_list["streams"].each do |stream|
 final_list << stream["channel"]["name"]
 end
end

Read Lists of Streamers by Game online: https://riptutorial.com/twitch/topic/552/lists-of-streamers-
by-game

https://riptutorial.com/ 10

https://github.com/sparklemotion/mechanize
https://riptutorial.com/twitch/topic/552/lists-of-streamers-by-game
https://riptutorial.com/twitch/topic/552/lists-of-streamers-by-game

Chapter 6: Twitch Chat (IRC) Bot

Remarks

Twitch Chat is a simple IRC chat. For any serious development, there are multiple documents for
it, including the most comprehensive and general ressource: http://ircdocs.horse/

Connection, Handshake

IRC is a basic, plaintext based TCP protocol. Connecting to Twitch works just like any regular IRC
service with a difference in authenticating:

Connection Initiation > Handshake > Usage

The handshake is regularly the hardest part to get right:

After building up the connection to the server, you are required to provide PASS and then a NICK,
where PASS is an OAuth-Token (which you can generate here) and USER being the username to this
OAuth token.

The handshake is then as following (< being sent from client to server, > being sent from server to
client):

< PASS oauth:your_oauth_token
< NICK your_username
> :tmi.twitch.tv 001 your_username :connected to TMI
> :tmi.twitch.tv 002 your_username :your host is TMI
> :tmi.twitch.tv 003 your_username :this server is pretty new
> :tmi.twitch.tv 004 your_username tmi.twitch.tv 0.0.1 w n
> :tmi.twitch.tv 375 your_username :- tmi.twitch.tv Message of the day -
> :tmi.twitch.tv 372 your_username :- not much to say here
> :tmi.twitch.tv 376 your_username :End of /MOTD command

Once you received either any of these MODE, 376 or 422, you're good to go and can send the twitch
server any commands, like:

> JOIN :#gamesdonequick
> PRIVMSG #gamesdonequick :Hello world!

A more throughout guide to client-server commands can be found here.

Twitch-specific Capabilities

While Twitch uses a standard IRC service, there are some events seen on the IRC service which
correlate to activity in a channel on the Twitch website. Examples here are slowmode being
enabled or disabled, subscriber-only mode being enabled/disabled on a streamer's chat, hosting

https://riptutorial.com/ 11

http://ircdocs.horse/
https://www.twitch.tv/kraken/oauth2/clients/new
http://defs.ircdocs.horse/defs/numerics.html#err-nomotd-422
http://defs.ircdocs.horse/defs/numerics.html#rpl-endofmotd-376
https://en.wikipedia.org/wiki/List_of_Internet_Relay_Chat_commands

activity, and bits/cheer activity, among others.

Details on these Twitch-specific capabilities are listed in the GitHub documentation for Twitch IRC,
which can be found here.

Examples

Python

Here is a simple Python command-line program which will connect to a Twitch channel as a bot
and respond to a few simple commands.

Dependencies:

irc Python lib (pip install irc or easy_install irc)•

Source: https://gist.github.com/jessewebb/65b554b5be784dd7c8d1

import logging
import sys

from irc.bot import SingleServerIRCBot

config
HOST = 'irc.twitch.tv'
PORT = 6667
USERNAME = 'nickname'
PASSWORD = 'oauth:twitch_token' # http://www.twitchapps.com/tmi/
CHANNEL = '#channel'

def _get_logger():
 logger_name = 'vbot'
 logger_level = logging.DEBUG
 log_line_format = '%(asctime)s | %(name)s - %(levelname)s : %(message)s'
 log_line_date_format = '%Y-%m-%dT%H:%M:%SZ'
 logger_ = logging.getLogger(logger_name)
 logger_.setLevel(logger_level)
 logging_handler = logging.StreamHandler(stream=sys.stdout)
 logging_handler.setLevel(logger_level)
 logging_formatter = logging.Formatter(log_line_format, datefmt=log_line_date_format)
 logging_handler.setFormatter(logging_formatter)
 logger_.addHandler(logging_handler)
 return logger_

logger = _get_logger()

class VBot(SingleServerIRCBot):
 VERSION = '1.0.0'

 def __init__(self, host, port, nickname, password, channel):
 logger.debug('VBot.__init__ (VERSION = %r)', self.VERSION)
 SingleServerIRCBot.__init__(self, [(host, port, password)], nickname, nickname)
 self.channel = channel

https://riptutorial.com/ 12

https://github.com/justintv/Twitch-API/blob/master/IRC.md#twitch-capabilities
https://pypi.python.org/pypi/irc
https://pypi.python.org/pypi/irc
https://gist.github.com/jessewebb/65b554b5be784dd7c8d1

 self.viewers = []

 def on_welcome(self, connection, event):
 logger.debug('VBot.on_welcome')
 connection.join(self.channel)
 connection.privmsg(event.target, 'Hello world!')

 def on_join(self, connection, event):
 logger.debug('VBot.on_join')
 nickname = self._parse_nickname_from_twitch_user_id(event.source)
 self.viewers.append(nickname)

 if nickname.lower() == connection.get_nickname().lower():
 connection.privmsg(event.target, 'Hello world!')

 def on_part(self, connection, event):
 logger.debug('VBot.on_part')
 nickname = self._parse_nickname_from_twitch_user_id(event.source)
 self.viewers.remove(nickname)

 def on_pubmsg(self, connection, event):
 logger.debug('VBot.on_pubmsg')
 message = event.arguments[0]
 logger.debug('message = %r', message)
 # Respond to messages starting with !
 if message.startswith("!"):
 self.do_command(event, message[1:])

 def do_command(self, event, message):
 message_parts = message.split()
 command = message_parts[0]

 logger.debug('VBot.do_command (command = %r)', command)

 if command == "version":
 version_message = 'Version: %s' % self.VERSION
 self.connection.privmsg(event.target, version_message)
 if command == "count_viewers":
 num_viewers = len(self.viewers)
 num_viewers_message = 'Viewer count: %d' % num_viewers
 self.connection.privmsg(event.target, num_viewers_message)
 elif command == 'exit':
 self.die(msg="")
 else:
 logger.error('Unrecognized command: %r', command)

 @staticmethod
 def _parse_nickname_from_twitch_user_id(user_id):
 # nickname!username@nickname.tmi.twitch.tv
 return user_id.split('!', 1)[0]

def main():
 my_bot = VBot(HOST, PORT, USERNAME, PASSWORD, CHANNEL)
 my_bot.start()

if __name__ == '__main__':
 main()

Read Twitch Chat (IRC) Bot online: https://riptutorial.com/twitch/topic/1847/twitch-chat--irc--bot

https://riptutorial.com/ 13

https://riptutorial.com/twitch/topic/1847/twitch-chat--irc--bot

Credits

S.
No

Chapters Contributors

1
Getting started with
twitch

Community, DallasNChains

2 Calling Twitch APIs DallasNChains, KnottytOmo

3

Getting an OAuth
token using the
Authorization Code
Flow

DallasNChains

4
Interactive Embed
Video Player

Community, Tim Penner

5
Lists of Streamers by
Game

Christopher Muller, Community, DallasNChains, Josh

6
Twitch Chat (IRC)
Bot

awkwardpaws, Jesse Webb, Josh, Mio Bambino, Old Badman
Grey

https://riptutorial.com/ 14

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6604522/dallasnchains
https://riptutorial.com/contributor/6604522/dallasnchains
https://riptutorial.com/contributor/2440747/knottytomo
https://riptutorial.com/contributor/6604522/dallasnchains
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5971390/tim-penner
https://riptutorial.com/contributor/5406802/christopher-muller
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6604522/dallasnchains
https://riptutorial.com/contributor/5951320/josh
https://riptutorial.com/contributor/6656309/awkwardpaws
https://riptutorial.com/contributor/346561/jesse-webb
https://riptutorial.com/contributor/5951320/josh
https://riptutorial.com/contributor/3603637/mio-bambino
https://riptutorial.com/contributor/1993919/old-badman-grey
https://riptutorial.com/contributor/1993919/old-badman-grey

	About
	Chapter 1: Getting started with twitch
	Versions
	Examples
	Requesting a token
	Get the OAuth token from the URL fragment

	Chapter 2: Calling Twitch APIs
	Remarks
	Examples
	PHP
	JavaScript
	jQuery

	Chapter 3: Getting an OAuth token using the Authorization Code Flow
	Examples
	Send the user to the authorize endpoint to get the authorization code
	Get the authorization code from the query string
	Exchange the code for the OAuth token

	Chapter 4: Interactive Embed Video Player
	Examples
	LIVE Streaming Video Player
	Recorded (not live) Video Player
	Start with a Muted Player

	Chapter 5: Lists of Streamers by Game
	Examples
	Getting the First Page in Ruby

	Chapter 6: Twitch Chat (IRC) Bot
	Remarks

	Connection, Handshake
	Twitch-specific Capabilities
	Examples
	Python

	Credits

