
umbraco

#umbraco

Table of Contents

About 1

Chapter 1: Getting started with umbraco 2

Remarks 2

Versions 2

Examples 2

Install Umbraco with NuGet 2

Chapter 2: Installation of Umbraco CMS 5

Examples 5

Hosting enviroment 5

Manual installation of Umbraco 5

Install Umbraco with NuGet 5

Use Umbraco as a cloud service 5

Chapter 3: Make a SurfaceController to allow members to log in 6

Remarks 6

Examples 6

Add ViewModel 6

Add a view 6

Add controller 7

Show me the login form! 8

Credits 9

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: umbraco

It is an unofficial and free umbraco ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official umbraco.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/umbraco
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with umbraco

Remarks

Umbraco is an open source, MIT-Licensed .NET content management system. Initially created by
Danish developer Niels Hartvig in 2000 as a hobby project, Umbraco was released as open
source in 2004 and has since been developed and maintained continuously by a core team made
up of paid Umbraco employees and community members.

Developers using Umbraco can benefit from it's mature codebase, high degree of customisability,
and large, friendly community. Contrary to other CMS systems, Umbraco does not constrain a
developer to a "theme" or "plugin" based workflow. Umbraco instead provides a rich API on top of
ASP.NET MVC, making existing .NET web developers feel at home when writing custom Umbraco
solutions.

Editors using Umbraco can benefit from the intuitive "backoffice", a mobile-responsive AngularJS
app which makes content-writing and admin tasks easy, and from the large amount of editor-
focused documentation available including umbraco.tv.

Versions

Version Comments
Release
date

4.11.10
Version 4 was initially released in 2010. Is still in use, however not
actively developed.

2013-06-
27

5
Version 5 was released in 2011, but had major performance and code
complexity problems, and this version was dropped.

2011-09-
05

6.2.6 Version 6 was released in 2013, and focused on MVC 4 and API
2016-03-
31

7.5.3
Version 7 was released late in 2013. It is updated concurrently with
version 6, and the major new features are a redesign of the back-
office user interface

2016-09-
05

7.6.2
Template experience update, added new colors, script and template
editors

2017-05-
30

Examples

Install Umbraco with NuGet

https://riptutorial.com/ 2

http://umbraco.com/
https://github.com/umbraco/Umbraco-CMS
http://umbraco.tv/

NuGet version

Before you start: make sure your NuGet version is up to date.

In Visual Studio, go to Tools > Extensions and Updates, then Updates > Visual Studio Gallery.
Check if there is a NuGet Update available and install it. Or, you can uninstall the existing nuget
and reinstall it. It will install the latest version of nuget.

.Net Version

If you're installing Umbraco 7+ then you need to choose .NET Framework 4.5 or 4.5.1 here. For
Umbraco 6 you can still choose .NET Framework 4, but 4.5 and 4.5.1 also work.

You can select the version from the create new project window of visualstudio.

Project:

https://riptutorial.com/ 3

http://i.stack.imgur.com/vo7Ov.png

Create an empty asp.net web application. Then, right-click on the new project you just made and
choose Manage NuGet Packages.

Find the "UmbracoCms" package, and click install. NuGet will then download dependencies and
will install all of Umbraco's files in your new solution.

It will ask you to overwrite your web.config file. Confirm with yes. Build and Run solution (CTRL-
SHIFT-B).

After the build a web browser will open, and you can continue installation in the web interface. You
have to configure the database and select a template (if you want any template to start with).

Above information are from umbraco official site.for more details go to this link

Read Getting started with umbraco online: https://riptutorial.com/umbraco/topic/1768/getting-
started-with-umbraco

https://riptutorial.com/ 4

http://i.stack.imgur.com/BbOFb.png
https://our.umbraco.org/documentation/getting-started/setup/install/install-umbraco-with-nuget
https://riptutorial.com/umbraco/topic/1768/getting-started-with-umbraco
https://riptutorial.com/umbraco/topic/1768/getting-started-with-umbraco

Chapter 2: Installation of Umbraco CMS

Examples

Hosting enviroment

For Umbraco 7 the requirements are

IIS 7 or higher•
Database, one of the following: SQL CE, SQL Server 2008 or higher or MySQL with support
for case insensitive queries)

•

ASP.NET 4.5 or 4.5.1. Full-Trust•
Ability to set file/folder permissions for the user that "owns" the Application Pool•

Manual installation of Umbraco

Download the files from our.umbraco.org/download and unzip them in a folder.1.
Set up web server hosting the folder you chose. Although IIS is a requirement for production
sites, it runs fine for development in IIS Express.

2.

Set up file permissions for the folder. For development server it is okey to have full
read/write/modify permissions for the process serving the web page (AppPool or Network
service)

3.

If you want to set up Umbraco on Sql Server or Mysql, download and install it. Make a new
database for Umbraco, and remember Connectionstring details, inccluding database name,
user and password

4.

Open your site at localhost, and follow the wizard to set up your site with the database.5.

Install Umbraco with NuGet

Check for updates to the Nuget package manager. In Visual Studio: Tools > Extensions and
Updates > Updates > Visual Studio Gallery. Install if availalbe

1.

Create a new web application with template "ASP.NET Web Application with an Empty
template" on .NET Framework 4.5.1

2.

Open the package manager console and run Install-Package UmbracoCms3.
Press F5 to build and run your new website.4.
Complete the wizard to choose database provider and set up your site.5.

Use Umbraco as a cloud service

Either you just want to test out Umbraco CMS, or host your site in a cloud service, you could sign
up for a free trial at umbraco.com/cloud. The site you develop in the cloud service could be
downloaded for local development or your own hosting later.

Read Installation of Umbraco CMS online: https://riptutorial.com/umbraco/topic/7325/installation-
of-umbraco-cms

https://riptutorial.com/ 5

http://our.umbraco.org/download
https://umbraco.com/cloud
https://riptutorial.com/umbraco/topic/7325/installation-of-umbraco-cms
https://riptutorial.com/umbraco/topic/7325/installation-of-umbraco-cms

Chapter 3: Make a SurfaceController to allow
members to log in

Remarks

The code was written and tested on Umbraco 7.5.3.

Examples

Add ViewModel

First we need to make a ViewModel. Make a new folder /Models/Account, and add the file
MemberLoginViewModel.cs to the folder.

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Linq;
using System.Web;

namespace MyCMS.Models.Account
{
 public class MemberLoginViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email")]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 [Display(Name = "Password")]
 public string Password { get; set; }

 [Display(Name = "Remember me?")]
 public bool RememberMe { get; set; }
 }
}

Add a view

Then make a view in the folder /Views/MacroPartials/Account

@model MyCMS.Models.Account.MemberLoginViewModel
@using MyCMS.Controllers.Account

@if (User.Identity.IsAuthenticated)
{
 <p>Logged in as: @User.Identity.Name</p>
 using (Html.BeginUmbracoForm<MemberLoginSurfaceController>("MemberLogout",

https://riptutorial.com/ 6

FormMethod.Post, new { id = "logoutForm" }))
 {
 @Html.AntiForgeryToken()
 <button type="submit" class="btn btn-outline-secondary">Log out</button>
 }

}
else
{
 using (Html.BeginUmbracoForm<MemberLoginSurfaceController>("MemberLoginPost",
"MemberLoginSurface", new { @class = "form-inline" }))
 {
 <div class="form-group">
 <label for="email">Email</label>
 <input name="Email" type="email" class="form-control" id="loginform_email"
placeholder="name@email.no">
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input name="Password" type="password" class="form-control"
id="loginform_password" placeholder="*****">
 </div>
 <div class="form-check">
 <label class="form-check-label">
 <input name="RememberMe" class="form-check-input" type="checkbox">Husk
meg
 </label>
 </div>
 <button type="submit" class="btn btn-outline-secondary">Log in</button>

 }
 <p>@TempData["Status"]</p>
}

Add controller

Make a new controller in the folder /Controllers/Account. Name the file
MemberLoginSurfaceController.cs

using MyCMS.Models.Account;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Security;

namespace MyCMS.Controllers.Account
{
 public class MemberLoginSurfaceController : Umbraco.Web.Mvc.SurfaceController
 {
 // Inspired by: http://24days.in/umbraco/2012/creating-a-login-form-with-umbraco-mvc-
surfacecontroller/

 // GET: MemberLoginSurface
 [HttpGet]
 [ActionName("MemberLoginForm")]
 [ChildActionOnly]
 public ActionResult MemberLoginForm()

https://riptutorial.com/ 7

 {
 return PartialView("Components/MemberLogin", new MemberLoginViewModel());
 }

 // The MemberLogout Action signs out the user and redirects to the site home page:
 [HttpPost]
 [ValidateAntiForgeryToken]
 public ActionResult MemberLogout()
 {
 TempData["Message"] = "You have logged out!";
 Session.Clear();
 FormsAuthentication.SignOut();
 return RedirectToCurrentUmbracoPage();
 }

 // The MemberLoginPost Action checks the entered credentials using the standard Asp
Net membership provider and redirects the user to the same page. Either as logged in, or with
a message set in the TempData dictionary:

 [HttpPost]
 [ActionName("MemberLoginPost")]
 public ActionResult MemberLoginPost(MemberLoginViewModel model)
 {

 if (Membership.ValidateUser(model.Email, model.Password))
 {
 FormsAuthentication.SetAuthCookie(model.Email, model.RememberMe);
 return RedirectToCurrentUmbracoPage();
 }
 else
 {
 TempData["Status"] = "Invalid username or password";
 return RedirectToCurrentUmbracoPage();
 }
 }
 }
}

Show me the login form!

To render your new component in a view, you cust call:

@Html.Action("MemberLoginForm", "MemberLoginSurface")

Read Make a SurfaceController to allow members to log in online:
https://riptutorial.com/umbraco/topic/7318/make-a-surfacecontroller-to-allow-members-to-log-in

https://riptutorial.com/ 8

https://riptutorial.com/umbraco/topic/7318/make-a-surfacecontroller-to-allow-members-to-log-in

Credits

S.
No

Chapters Contributors

1
Getting started with
umbraco

Community, Cynthia Tiwana, glcheetham, MCollard, Ole
Kristian Losvik, Sadid Khan

2
Installation of
Umbraco CMS

Ole Kristian Losvik

3

Make a
SurfaceController to
allow members to log
in

Ole Kristian Losvik

https://riptutorial.com/ 9

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3965653/cynthia-tiwana
https://riptutorial.com/contributor/3628241/glcheetham
https://riptutorial.com/contributor/3239917/mcollard
https://riptutorial.com/contributor/4413516/ole-kristian-losvik
https://riptutorial.com/contributor/4413516/ole-kristian-losvik
https://riptutorial.com/contributor/1999720/sadid-khan
https://riptutorial.com/contributor/4413516/ole-kristian-losvik
https://riptutorial.com/contributor/4413516/ole-kristian-losvik

	About
	Chapter 1: Getting started with umbraco
	Remarks
	Versions
	Examples
	Install Umbraco with NuGet

	Chapter 2: Installation of Umbraco CMS
	Examples
	Hosting enviroment
	Manual installation of Umbraco
	Install Umbraco with NuGet
	Use Umbraco as a cloud service

	Chapter 3: Make a SurfaceController to allow members to log in
	Remarks
	Examples
	Add ViewModel
	Add a view
	Add controller
	Show me the login form!

	Credits

