
unity3d

#unity3d

Table of Contents

About 1

Chapter 1: Getting started with unity3d 2

Remarks 2

Versions 2

Examples 5

Installation or Setup 5

Overview 5

Installing 6

Installing Multiple Versions of Unity 6

Basic editor and code 6

Layout 6

Linux Layout 7

Basic Usage 7

Basic Scripting 8

Editor Layouts 8

Customizing Your Workspace 10

Chapter 2: Ads integration 13

Introduction 13

Remarks 13

Examples 13

Unity Ads Basics in C# 13

Unity Ads Basics in JavaScript 14

Chapter 3: Android Plugins 101 - An Introduction 15

Introduction 15

Remarks 15

Beginning with Android plugins 15

Outline to creating a plugin and terminology 15

Choosing between the plugin creation methods 16

Examples 16

UnityAndroidPlugin.cs 16

UnityAndroidNative.java 16

UnityAndroidPluginGUI.cs 16

Chapter 4: Asset Store 18

Examples 18

Accessing the Asset Store 18

Purchasing Assets 18

Importing Assets 19

Publishing Assets 19

Confirm the invoice number of one purchase 19

Chapter 5: Attributes 21

Syntax 21

Remarks 21

SerializeField 21

Examples 22

Common inspector attributes 22

Component attributes 24

Runtime attributes 25

Menu attributes 26

Editor attributes 28

Chapter 6: Audio System 32

Introduction 32

Examples 32

Audio class - Play audio 32

Chapter 7: Collision 33

Examples 33

Colliders 33

Box Collider 33

Properties 33

Example 34

Sphere Collider 34

Properties 34

Example 35

Capsule Collider 35

Properties 36

Example 36

Wheel Collider 36

Properties 36

Suspension Spring 37

Example 37

Mesh Collider 37

Properties 38

Example 39

Wheel Collider 39

Trigger Colliders 41

Methods 41

Trigger Collider Scripting 41

Example 41

Chapter 8: Communication with server 43

Examples 43

Get 43

Simple Post (Post Fields) 43

Post (Upload A File) 44

Upload A Zip File To Server 44

Sending a request to the server 44

Chapter 9: Coroutines 47

Syntax 47

Remarks 47

Performance considerations 47

Reduce garbage by caching YieldInstructions 47

Examples 47

Coroutines 47

Example 49

Ending a coroutine 49

MonoBehaviour methods that can be Coroutines 50

Chaining coroutines 51

Ways to yield 53

Chapter 10: CullingGroup API 55

Remarks 55

Examples 55

Culling object distances 55

Culling object visibility 57

Bounding distances 58

Visualising bounding distances 58

Chapter 11: Design Patterns 60

Examples 60

Model View Controller (MVC) Design Pattern 60

Chapter 12: Extending the Editor 64

Syntax 64

Parameters 64

Examples 64

Custom Inspector 64

Custom Property Drawer 66

Menu Items 69

Gizmos 73

Example One 74

Example two 75

Result 76

Not selected 76

Selected 77

Editor Window 78

Why an Editor Window? 78

Create a basic EditorWindow 78

Simple Example 78

Going deeper 79

Advanced topics 82

Drawing in the SceneView 82

Chapter 13: Finding and collecting GameObjects 86

Syntax 86

Remarks 86

Which method to use 86

Going deeper 86

Examples 86

Searching by GameObject's name 87

Searching by GameObject's tags 87

Inserted to scripts in Edit Mode 87

Finding GameObjects by MonoBehaviour scripts 87

Find GameObjects by name from child objects 88

Chapter 14: How to use asset packages 89

Examples 89

Asset packages 89

Importing a .unitypackage 89

Chapter 15: Immediate Mode Graphical User Interface System (IMGUI) 90

Syntax 90

Examples 90

GUILayout 90

Chapter 16: Importers and (Post)Processors 91

Syntax 91

Remarks 91

Examples 91

Texture postprocessor 91

A Basic Importer 92

Chapter 17: Input System 96

Examples 96

Reading Key Press and difference between GetKey, GetKeyDown and GetKeyUp 96

Read Accelerometer Sensor (Basic) 97

Read Accelerometer Sensor (Advance) 98

Read Accelerometer Sensor(Precision) 98

Read Mouse Button (Left, Middle, Right) Clicks 99

Chapter 18: Layers 102

Examples 102

Layer usage 102

LayerMask Structure 102

Chapter 19: Mobile platforms 104

Syntax 104

Examples 104

Detecting Touch 104

TouchPhase 104

Chapter 20: MonoBehaviour class implementation 106

Examples 106

No overridden methods 106

Chapter 21: Multiplatform development 107

Examples 107

Compiler Definitions 107

Organizing platform specific methods to partial classes 107

Chapter 22: Networking 109

Remarks 109

Headless mode in Unity 109

Examples 110

Creating a server, a client, and sending a message. 110

The Class we are using to serialize 110

Creating a Server 110

The Client 112

Chapter 23: Object Pooling 114

Examples 114

Object Pool 114

Simple object pool 116

Another simple object pool 118

Chapter 24: Optimization 120

Remarks 120

Examples 120

Fast and Efficient Checks 120

Distance/Range Checks 120

Bounds Checks 120

Caveats 120

Coroutine Power 120

Usage 120

Splitting Long-running Routines Over Multiple Frames 121

Performing Expensive Actions Less Frequently 121

Common Pitfalls 122

Strings 122

String operations build garbage 122

Cache your string operations 122

Most string operations are Debug messages 123

String comparison 124

Cache references 124

Avoid calling methods using strings 125

Avoid empty unity methods 126

Chapter 25: Physics 127

Examples 127

Rigidbodies 127

Overview 127

Adding a Rigidbody component 127

Moving a Rigidbody object 127

Mass 127

Drag 127

isKinematic 128

Constraints 128

Collisions 128

Gravity in Rigid Body 129

Chapter 26: Prefabs 131

Syntax 131

Examples 131

Introduction 131

Creating prefabs 131

Prefab inspector 132

Instantiating prefabs 133

Design time instantiation 133

Runtime instantiation 134

Nested prefabs 134

Chapter 27: Quaternions 138

Syntax 138

Examples 138

Intro to Quaternion vs Euler 138

Quaternion Look Rotation 138

Chapter 28: Raycast 140

Parameters 140

Examples 140

Physics Raycast 140

Physics2D Raycast2D 140

Encapsulating Raycast calls 141

Further reading 142

Chapter 29: Resources 143

Examples 143

Introduction 143

Resources 101 143

Introduction 143

Putting it all together 144

Final Notes 144

Chapter 30: ScriptableObject 146

Remarks 146

ScriptableObjects with AssetBundles 146

Examples 146

Introduction 146

Creating ScriptableObject assets 146

Create ScriptableObject instances through code 147

ScriptableObjects are serialized in editor even in PlayMode 147

Find existing ScriptableObjects during runtime 148

Chapter 31: Singletons in Unity 149

Remarks 149

Further reading 149

Examples 149

Implementation using RuntimeInitializeOnLoadMethodAttribute 150

A simple Singleton MonoBehaviour in Unity C# 150

Advanced Unity Singleton 151

Singleton Implementation through base class 153

Singleton Pattern utilizing Unitys Entity-Component system 155

MonoBehaviour & ScriptableObject based Singleton Class 156

Chapter 32: Tags 160

Introduction 160

Examples 160

Creating and Applying Tags 160

Setting Tags in the Editor 160

Setting Tags via Script 160

Creating Custom Tags 161

Finding GameObjects by Tag: 162

Finding a Single GameObject 162

Finding an Array of GameObject instances 163

Comparing Tags 163

Chapter 33: Transforms 165

Syntax 165

Examples 165

Overview 165

Parenting and Children 166

Chapter 34: Unity Animation 168

Examples 168

Basic Animation for Running 168

Creating and Using Animation Clips 169

2D Sprite Animation 171

Animation Curves 173

Chapter 35: Unity Lighting 176

Examples 176

Types of Light 176

Area Light 176

Directional Light 176

Point Light 177

Spot Light 178

Note about Shadows 179

Emission 180

Chapter 36: Unity Profiler 182

Remarks 182

Using Profiler on different Device 182

Android 182

iOS 183

Examples 183

Profiler Markup 183

Using the Profiler Class 183

Chapter 37: User Interface System (UI) 185

Examples 185

Subscribing to event in code 185

Adding mouse listeners 185

Chapter 38: Using Git source control with Unity 187

Examples 187

Using Git Large File Storage (LFS) with Unity 187

Foreword 187

Installing Git & Git-LFS 187

Option 1: Use a Git GUI Application 187

Option 2: Install Git & Git-LFS 187

Configuring Git Large File Storage on your project 187

Setting up a Git repository for Unity 188

Unity Ignore Folders 188

Unity Project Settings 189

Additional Configuration 189

Scenes and Prefabs merging 189

Chapter 39: Vector3 191

Introduction 191

Syntax 191

Examples 191

Static Values 191

Vector3.zero and Vector3.one 191

Static Directions 192

Index 194

Creating a Vector3 194

Constructors 194

Converting from a Vector2 or Vector4 195

Applying Movement 195

Lerp and LerpUnclamped 195

MoveTowards 197

SmoothDamp 198

Chapter 40: Virtual Reality (VR) 201

Examples 201

VR Platforms 201

SDKs: 201

Documentation: 201

Enabling VR support 201

Hardware 202

Credits 204

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: unity3d

It is an unofficial and free unity3d ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official unity3d.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/unity3d
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with unity3d

Remarks

Unity provides a cross platform game development environment for developers. Developers can
use C# language and/or JavaScript syntax based UnityScript for programming the game. Target
deployment platforms can be switched easily in the editor. All core game code stays same except
some platform dependent features. A list of all the versions and corresponding downloads and
release notes can be found here: https://unity3d.com/get-unity/download/archive.

Versions

Version Release Date

Unity 2017.1.0 2017-07-10

5.6.2 2017-06-21

5.6.1 2017-05-11

5.6.0 2017-03-31

5.5.3 2017-03-31

5.5.2 2017-02-24

5.5.1 2017-01-24

5.5 2016-11-30

5.4.3 2016-11-17

5.4.2 2016-10-21

5.4.1 2016-09-08

5.4.0 2016-07-28

5.3.6 2016-07-20

5.3.5 2016-05-20

5.3.4 2016-03-15

5.3.3 2016-02-23

5.3.2 2016-01-28

https://riptutorial.com/ 2

https://unity3d.com/get-unity/download/archive
https://unity3d.com/unity/whats-new/unity-2017.1.0
https://unity3d.com/unity/whats-new/unity-5.6.2
https://unity3d.com/unity/whats-new/unity-5.6.1
https://unity3d.com/unity/whats-new/unity-5.6.0
https://unity3d.com/unity/whats-new/unity-5.5.3
https://unity3d.com/unity/whats-new/unity-5.5.2
https://unity3d.com/unity/whats-new/unity-5.5.1
https://unity3d.com/unity/whats-new/unity-5.5.0
https://unity3d.com/unity/whats-new/unity-5.4.3
https://unity3d.com/unity/whats-new/unity-5.4.2
https://unity3d.com/unity/whats-new/unity-5.4.1
https://unity3d.com/unity/whats-new/unity-5.4.0
https://unity3d.com/unity/whats-new/unity-5.3.6
https://unity3d.com/unity/whats-new/unity-5.3.5
https://unity3d.com/unity/whats-new/unity-5.3.4
https://unity3d.com/unity/whats-new/unity-5.3.3
https://unity3d.com/unity/whats-new/unity-5.3.2

Version Release Date

5.3.1 2015-12-18

5.3.0 2015-12-08

5.2.5 2016-06-01

5.2.4 2015-12-16

5.2.3 2015-11-19

5.2.2 2015-10-21

5.2.1 2015-09-22

5.2.0 2015-09-08

5.1.5 2015-06-07

5.1.4 2015-10-06

5.1.3 2015-08-24

5.1.2 2015-07-16

5.1.1 2015-06-18

5.1.0 2015-06-09

5.0.4 2015-07-06

5.0.3 2015-06-09

5.0.2 2015-05-13

5.0.1 2015-04-01

5.0.0 2015-03-03

4.7.2 2016-05-31

4.7.1 2016-02-25

4.7.0 2015-12-17

4.6.9 2015-10-15

4.6.8 2015-08-26

4.6.7 2015-07-01

https://riptutorial.com/ 3

https://unity3d.com/unity/whats-new/unity-5.3.1
https://unity3d.com/unity/whats-new/unity-5.3
https://unity3d.com/unity/whats-new/unity-5.2.5
https://unity3d.com/unity/whats-new/unity-5.2.4
https://unity3d.com/unity/whats-new/unity-5.2.3
https://unity3d.com/unity/whats-new/unity-5.2.2
https://unity3d.com/unity/whats-new/unity-5.2.1
https://unity3d.com/unity/whats-new/unity-5.2
https://unity3d.com/unity/whats-new/unity-5.1.5
https://unity3d.com/unity/whats-new/unity-5.1.4
https://unity3d.com/unity/whats-new/unity-5.1.3
https://unity3d.com/unity/whats-new/unity-5.1.2
https://unity3d.com/unity/whats-new/unity-5.1.1
https://unity3d.com/unity/whats-new/unity-5.1
https://unity3d.com/unity/whats-new/unity-5.0.4
https://unity3d.com/unity/whats-new/unity-5.0.3
https://unity3d.com/unity/whats-new/unity-5.0.2
https://unity3d.com/unity/whats-new/unity-5.0.1
https://unity3d.com/unity/whats-new/unity-5.0
https://unity3d.com/unity/whats-new/unity-4.7.2
https://unity3d.com/unity/whats-new/unity-4.7.1
https://unity3d.com/unity/whats-new/unity-4.7.0
https://unity3d.com/unity/whats-new/unity-4.6.9
https://unity3d.com/unity/whats-new/unity-4.6.8
https://unity3d.com/unity/whats-new/unity-4.6.7

Version Release Date

4.6.6 2015-06-08

4.6.5 2015-04-30

4.6.4 2015-03-26

4.6.3 2015-02-19

4.6.2 2015-01-29

4.6.1 2014-12-09

4.6.0 2014-11-25

4.5.5 2014-10-13

4.5.4 2014-09-11

4.5.3 2014-08-12

4.5.2 2014-07-10

4.5.1 2014-06-12

4.5.0 2014-05-27

4.3.4 2014-01-29

4.3.3 2014-01-13

4.3.2 2013-12-18

4.3.1 2013-11-28

4.3.0 2013-11-12

4.2.2 2013-10-10

4.2.1 2013-09-05

4.2.0 2013-07-22

4.1.5 2013-06-08

4.1.4 2013-06-06

4.1.3 2013-05-23

4.1.2 2013-03-26

https://riptutorial.com/ 4

https://unity3d.com/unity/whats-new/unity-4.6.6
https://unity3d.com/unity/whats-new/unity-4.6.5
https://unity3d.com/unity/whats-new/unity-4.6.4
https://unity3d.com/unity/whats-new/unity-4.6.3
https://unity3d.com/unity/whats-new/unity-4.6.2
https://unity3d.com/unity/whats-new/unity-4.6.1
https://unity3d.com/unity/whats-new/unity-4.6
https://unity3d.com/unity/whats-new/unity-4.5.5
https://unity3d.com/unity/whats-new/unity-4.5.4
https://unity3d.com/unity/whats-new/unity-4.5.3
https://unity3d.com/unity/whats-new/unity-4.5.2
https://unity3d.com/unity/whats-new/unity-4.5.1
https://unity3d.com/unity/whats-new/unity-4.5
https://unity3d.com/unity/whats-new/unity-4.3.4
https://unity3d.com/unity/whats-new/unity-4.3.3
https://unity3d.com/unity/whats-new/unity-4.3.2
https://unity3d.com/unity/whats-new/unity-4.3.1
https://unity3d.com/unity/whats-new/unity-4.3
https://unity3d.com/unity/whats-new/unity-4.2.2
https://unity3d.com/unity/whats-new/unity-4.2.1
https://unity3d.com/unity/whats-new/unity-4.2
https://unity3d.com/unity/whats-new/unity-4.1.5
https://unity3d.com/unity/whats-new/unity-4.1.4
https://unity3d.com/unity/whats-new/unity-4.1.3
https://unity3d.com/unity/whats-new/unity-4.1.2

Version Release Date

4.1.0 2013-03-13

4.0.1 2013-01-12

4.0.0 2012-11-13

3.5.7 2012-12-14

3.5.6 2012-09-27

3.5.5 2012-08-08

3.5.4 2012-07-20

3.5.3 2012-06-30

3.5.2 2012-05-15

3.5.1 2012-04-12

3.5.0 2012-02-14

3.4.2 2011-10-26

3.4.1 2011-09-20

3.4.0 2011-07-26

Examples

Installation or Setup

Overview

Unity runs on Windows and Mac. There is also a Linux alpha version available.

There are 4 different payment plans for Unity:

Personal - Free (see below)1.
Plus - $35 USD per month per seat (see below)2.
Pro - $125 USD per month per seat - After subscribing to the Pro plan for 24 consecutive
months, you have the option to stop subscribing and keep the version you have.

3.

Enterprise - Contact Unity for more information4.

According to EULA: Companies or incorporated entities that had a turnover in excess of
US$100,000 in their last fiscal year must use Unity Plus (or a higher license); in excess of

https://riptutorial.com/ 5

https://unity3d.com/unity/whats-new/unity-4.1
https://unity3d.com/unity/whats-new/unity-4.0.1
https://unity3d.com/unity/whats-new/unity-4.0
https://unity3d.com/unity/whats-new/unity-3.5.7
https://unity3d.com/unity/whats-new/unity-3.5.6
https://unity3d.com/unity/whats-new/unity-3.5.5
https://unity3d.com/unity/whats-new/unity-3.5.4
https://unity3d.com/unity/whats-new/unity-3.5.3
https://unity3d.com/unity/whats-new/unity-3.5.2
https://unity3d.com/unity/whats-new/unity-3.5.1
https://unity3d.com/unity/whats-new/unity-3.5
https://unity3d.com/unity/whats-new/unity-3.4.2
https://unity3d.com/unity/whats-new/unity-3.4.1
https://unity3d.com/unity/whats-new/unity-3.4
http://forum.unity3d.com/forums/linux-editor.93/
https://store.unity.com/contact?type=sales

US$200,000 they must use Unity Pro (or Enterprise).

Installing

Download the Unity download assistant.1.

Run the assistant and choose the modules you want to download and install, such as Unity
editor, MonoDevelop IDE, documentation, and desired platform build modules.

2.

If you have an older version, you can update to the latest stable version.

If you want to install Unity without Unity download assistant, you can get the component
installers from Unity 5.5.1 release notes.

Installing Multiple Versions of Unity

It is often necessary to install multiple versions of Unity at the same time. To do so:

On Windows, change the default install directory to an empty folder that you have previously
created such as Unity 5.3.1f1.

•

On Mac, the installer will always install to /Applications/Unity. Rename this folder for your
existing install (e.g. to /Applications/Unity5.3.1f1) before running the installer for the different
version.

•

You can hold Alt when launching Unity to force it to let you choose a project to open.
Otherwise the last project loaded will attempt to load (if available) and it may prompt you to
update a project you do not want updated.

•

Basic editor and code

Layout

Unity basic editor will look like below. Basic functionalities of some default windows/tabs are
described in the image.

https://riptutorial.com/ 6

https://unity3d.com/get-unity/download
https://store.unity.com/download?ref=update
https://unity3d.com/unity/whats-new/unity-5.5.1

Linux Layout

There is a little difference in menu layout of linux version, like the screenshot below,

Basic Usage

Create an empty GameObject by right clicking in the Hierarchy window and select Create Empty.
Create a new script by right clicking in the Project window and select Create > C# Script. Rename it
as needed.

When the empty GameObject is selected in the Hierarchy window, drag and drop the newly created

https://riptutorial.com/ 7

http://i.stack.imgur.com/HDm82.png
http://i.stack.imgur.com/He5k7.png

script in the Inspector window. Now the script is attached to the object in the Hierarchy window.
Open the script with the default MonoDevelop IDE or your preference.

Basic Scripting

Basic code will look like below except the line Debug.Log("hello world!!");.

using UnityEngine;
using System.Collections;

public class BasicCode : MonoBehaviour {

 // Use this for initialization
 void Start () {
 Debug.Log("hello world!!");
 }

 // Update is called once per frame
 void Update () {

 }
}

Add the line Debug.Log("hello world!!"); in the void Start() method. Save the script and go back
to editor. Run it by pressing Play at the top of the editor.

Result should be like below in the Console window:

Editor Layouts

You can save the layout of your tabs and windows to standardize your work environment.

The layouts menu can be found in the upper right corner of Unity Editor:

https://riptutorial.com/ 8

http://i.stack.imgur.com/A6TWZ.png

Unity ships with 5 default layouts (2 by 3, 4 Split, Default, Tall, Wide) (marked with 1). In the
picture above, aside from default layouts, there is also a custom layout at the top.

You can add your own layouts by clicking "Save Layout..." button in the menu (marked with 2):

You can also delete any layout by clicking "Delete Layout..." button in the menu (marked with 2):

https://riptutorial.com/ 9

https://i.stack.imgur.com/k4UO6.png
https://i.stack.imgur.com/PyJWn.png

The "Revert Factory Settings..." button removes all custom layouts and restores default layouts
(marked with 2).

Customizing Your Workspace

You can customize your Layout of Views by click-dragging the Tab of any View to one of several
locations. Dropping a Tab in the Tab Area of an existing window will add the Tab beside any
existing Tabs. Alternatively, dropping a Tab in any Dock Zone will add the View in a new window.

Tabs can also be detached from the Main Editor Window and arranged into their own floating
Editor Windows. Floating Windows can contain arrangements of Views and Tabs just like the Main
Editor Window.

https://riptutorial.com/ 10

https://i.stack.imgur.com/BxrhM.png
http://i.stack.imgur.com/EyW7l.gif

When you’ve created an editor layout, you can save the layout and restore it any time. Refer to
this example for editor layouts.

https://riptutorial.com/ 11

http://i.stack.imgur.com/oImrn.png
http://www.riptutorial.com/unity3d/example/14748/editor-layouts
http://www.riptutorial.com/unity3d/example/14748/editor-layouts

At any time, you can right-click the tab of any view to view additional options like Maximize or add
a new tab to the same window.

Read Getting started with unity3d online: https://riptutorial.com/unity3d/topic/846/getting-started-
with-unity3d

https://riptutorial.com/ 12

http://i.stack.imgur.com/IBpG7.png
http://i.stack.imgur.com/sbveP.png
https://riptutorial.com/unity3d/topic/846/getting-started-with-unity3d
https://riptutorial.com/unity3d/topic/846/getting-started-with-unity3d

Chapter 2: Ads integration

Introduction

This topic is about the integration of third-party advertisement services, such as Unity Ads or
Google AdMob, into a Unity project.

Remarks

This applies to Unity Ads.

Make sure that Test Mode for Unity Ads is enabled during development

You, as the developer, are not allowed to generate impressions or installs by clicking on
ads in your own game. Doing so violates the Unity Ads Terms of Service agreement, and
you will be banned from the Unity Ads network for attempted fraud.

For more information, read the Unity Ads Terms of Service agreement.

Examples

Unity Ads Basics in C#

using UnityEngine;
using UnityEngine.Advertisements;

public class Example : MonoBehaviour
{
 #if !UNITY_ADS // If the Ads service is not enabled
 public string gameId; // Set this value from the inspector
 public bool enableTestMode = true; // Enable this during development
 #endif

 void InitializeAds () // Example of how to initialize the Unity Ads service
 {
 #if !UNITY_ADS // If the Ads service is not enabled
 if (Advertisement.isSupported) { // If runtime platform is supported
 Advertisement.Initialize(gameId, enableTestMode); // Initialize
 }
 #endif
 }

 void ShowAd () // Example of how to show an ad
 {
 if (Advertisement.isInitialized || Advertisement.IsReady()) { // If the ads are ready
to be shown
 Advertisement.Show(); // Show the default ad placement
 }
 }
}

https://riptutorial.com/ 13

https://ads.unity3d.com
https://unity3d.com/legal/ads-publishers-terms-of-service
https://unity3d.com/legal/ads-publishers-terms-of-service

Unity Ads Basics in JavaScript

#pragma strict
import UnityEngine.Advertisements;

#if !UNITY_ADS // If the Ads service is not enabled
public var gameId : String; // Set this value from the inspector
public var enableTestMode : boolean = true; // Enable this during development
#endif

function InitializeAds () // Example of how to initialize the Unity Ads service
{
 #if !UNITY_ADS // If the Ads service is not enabled
 if (Advertisement.isSupported) { // If runtime platform is supported
 Advertisement.Initialize(gameId, enableTestMode); // Initialize
 }
 #endif
}

function ShowAd () // Example of how to show an ad
{
 if (Advertisement.isInitialized && Advertisement.IsReady()) { // If the ads are ready to
be shown
 Advertisement.Show(); // Show the default ad placement
 }
}

Read Ads integration online: https://riptutorial.com/unity3d/topic/9796/ads-integration

https://riptutorial.com/ 14

https://riptutorial.com/unity3d/topic/9796/ads-integration

Chapter 3: Android Plugins 101 - An
Introduction

Introduction

This topic is the first part of a series on how to create Android Plugins for Unity. Start here if you
have little to no experience creating plugins, and/or the Android OS.

Remarks

Through this series, I extensively use external links that I encourage you to read. While
paraphrased versions of the relevant content will be included here, there may be times when the
additional reading will help.

Beginning with Android plugins

Currently, Unity provides two ways to call native Android code.

Write native Android code in Java, and call these Java functions using C#1.
Write C# code to directly call functions that are part of the Android OS2.

To interact with native code, Unity provides some classes and functions.

AndroidJavaObject - This is the base class that Unity provides to interact with native code.
Almost any object returned from native code can be stored as and AndroidJavaObject

•

AndroidJavaClass - Inherits from AndroidJavaObject. This is used to reference classes in
your native code

•

Get / Set values of an instance of a native object, and the static GetStatic / SetStatic
versions

•

Call / CallStatic to call native non-static & static functions•

Outline to creating a plugin and terminology

Write native Java code in Android Studio1.
Export the code in a JAR / AAR file (Steps here for JAR files and AAR files)2.
Copy the JAR / AAR file into your Unity project at Assets/Plugins/Android3.
Write code in Unity (C# has always been the way to go here) to call functions in the plugin4.

Note that the first three steps apply ONLY if you wish to have a native plugin!

From here on out, I'll refer to the JAR / AAR file as the native plugin, and the C# script as the C#

https://riptutorial.com/ 15

https://docs.unity3d.com/ScriptReference/AndroidJavaObject.html
https://docs.unity3d.com/ScriptReference/AndroidJavaClass.html
https://docs.unity3d.com/ScriptReference/AndroidJavaObject.Get.html
https://docs.unity3d.com/ScriptReference/AndroidJavaObject.Set.html
https://docs.unity3d.com/ScriptReference/AndroidJavaObject.GetStatic.html
https://docs.unity3d.com/ScriptReference/AndroidJavaObject.SetStatic.html
https://docs.unity3d.com/ScriptReference/AndroidJavaObject.Call.html
https://docs.unity3d.com/ScriptReference/AndroidJavaObject.CallStatic.html
https://developer.android.com/studio/index.html
https://stackoverflow.com/questions/21712714/how-to-make-a-jar-out-from-an-android-studio-project
https://stackoverflow.com/questions/24309950/create-aar-file-in-android-studio

wrapper

Choosing between the plugin creation methods

It's immediately obvious that the first way of creating plugins is long drawn, so choosing your route
seems moot. However, method 1 is the ONLY way to call custom code. So, how does one
choose?

Simply put, does your plugin

Involve custom code - Choose method 11.
Only invoke native Android functions? - Choose method 22.

Please do NOT try to "mix" (i.e. a part of the plugin using method 1, and the other using method 2)
the two methods! While entirely possible, it's often impractical and painful to manage.

Examples

UnityAndroidPlugin.cs

Create a new C# script in Unity and replace it's contents with the following

using UnityEngine;
using System.Collections;

public static class UnityAndroidPlugin {

}

UnityAndroidNative.java

Create a new Java class in Android Studio and replace it's contents with the following

package com.axs.unityandroidplugin;
import android.util.Log;
import android.widget.Toast;
import android.app.ActivityManager;
import android.content.Context;

public class UnityAndroidNative {

}

UnityAndroidPluginGUI.cs

https://riptutorial.com/ 16

Create a new C# script in Unity and paste these contents

using UnityEngine;
using System.Collections;

public class UnityAndroidPluginGUI : MonoBehaviour {

 void OnGUI () {

 }

}

Read Android Plugins 101 - An Introduction online:
https://riptutorial.com/unity3d/topic/10032/android-plugins-101---an-introduction

https://riptutorial.com/ 17

https://riptutorial.com/unity3d/topic/10032/android-plugins-101---an-introduction

Chapter 4: Asset Store

Examples

Accessing the Asset Store

There are three ways you can access the Unity Asset Store:

Open the Asset Store window by selecting Window→Asset Store from the main menu within
Unity.

•

Use the Shortcut key (Ctrl+9 on Windows / 9 on Mac OS)•
Browse the web interface: https://www.assetstore.unity3d.com/•

You may be prompted to create a free user account or sign-in if it is your first time accessing the
Unity Asset Store.

Purchasing Assets

After accessing the Asset Store and viewing the asset you'd like to download, simply click the
Download button. The button text may also be Buy Now if the asset has an associated cost.

If you are viewing the Unity Asset Store through the web interface, the Download button text may
instead display as Open in Unity. Selecting this button will launch an instance of Unity and display
the asset within the Asset Store window.

You may be prompted to create a free user account or sign-in if it is your first time purchasing from
the Unity Asset Store.

https://riptutorial.com/ 18

https://www.assetstore.unity3d.com/
http://i.stack.imgur.com/cXVJo.png

Unity will then proceed with accepting your payment, if applicable.

Importing Assets

After the asset has been downloaded in Unity, the Download or Buy Now button will change to
Import.

Selecting this option will prompt the user with a Import Unity Package window, where the user may
select the asset files of which they'd like to import within their project.

Select Import to confirm the process, placing the selected asset files inside the Assets folder
shown in the Project View window.

Publishing Assets

make a publisher account1.
add an asset in the publisher account2.
download the asset store tools (from the asset store)3.
go to "Asset Store Tools" > "Package Upload"4.
select the correct package and project folder in the asset store tools window5.
click upload6.
submit your asset online7.

TODO - add pictures, more details

Confirm the invoice number of one purchase

https://riptutorial.com/ 19

http://i.stack.imgur.com/H80X5.png

The invoice number is used to verify the sale for publishers. Many publishers of paid asset or
plugin ask for the invoice number upon request of support. The invoice number is also used as a
license key to activate some asset or plugin.

The invoice number can be found in two place:

After you bought the asset, you will be sent an email whose subject is "Unity Asset Store
purchase confirmation...". The invoice number is in the PDF attachment of this email.

1.

Open https://www.assetstore.unity3d.com/#!/account/transactions, then you can find the
invoice number in the Description column.

2.

Read Asset Store online: https://riptutorial.com/unity3d/topic/5705/asset-store

https://riptutorial.com/ 20

http://i.stack.imgur.com/wE3jo.png
https://www.assetstore.unity3d.com/#!/account/transactions
http://i.stack.imgur.com/BoJb0.png
https://riptutorial.com/unity3d/topic/5705/asset-store

Chapter 5: Attributes

Syntax

[AddComponentMenu(string menuName)]•
[AddComponentMenu(string menuName, int order)]•
[CanEditMultipleObjects]•
[ContextMenuItem(string name, string function)]•
[ContextMenu(string name)]•
[CustomEditor(Type inspectedType)]•
[CustomEditor(Type inspectedType, bool editorForChildClasses)]•
[CustomPropertyDrawer(Type type)]•
[CustomPropertyDrawer(Type type, bool useForChildren)]•
[DisallowMultipleComponent]•
[DrawGizmo(GizmoType gizmo)]•
[DrawGizmo(GizmoType gizmo, Type drawnGizmoType)]•
[ExecuteInEditMode]•
[Header(string header)]•
[HideInInspector]•
[InitializeOnLoad]•
[InitializeOnLoadMethod]•
[MenuItem(string itemName)]•
[MenuItem(string itemName, bool isValidateFunction)]•
[MenuItem(string itemName, bool isValidateFunction, int priority)]•
[Multiline(int lines)]•
[PreferenceItem(string name)]•
[Range(float min, float max)]•
[RequireComponent(Type type)]•
[RuntimeInitializeOnLoadMethod]•
[RuntimeInitializeOnLoadMethod(RuntimeInitializeLoadType loadType)]•
[SerializeField]•
[Space(float height)]•
[TextArea(int minLines, int maxLines)]•
[Tooltip(string tooltip)]•

Remarks

SerializeField

Unity's serialization system can be used to do the following:

Can serialize public nonstatic fields (of serializable types)•
Can serialize nonpublic nonstatic fields marked with the [SerializeField] attribute•

https://riptutorial.com/ 21

Cannot serialize static fields•
Cannot serialize static properties•

Your field, even if marked with the SerializeField attribute, will only be attributed if it is of a type
that Unity can serialize, which are:

All classes inheriting from UnityEngine.Object (e.g. GameObject, Component,
MonoBehaviour, Texture2D)

•

All basic data types like int, string, float, bool•
Some built-in types like Vector2/3/4, Quaternion, Matrix4x4, Color, Rect, LayerMask•
Arrays of a serializable type•
List of a serializable type•
Enums•
Structs•

Examples

Common inspector attributes

[Header("My variables")]
public string MyString;

[HideInInspector]
public string MyHiddenString;

[Multiline(5)]
public string MyMultilineString;

[TextArea(2, 8)]
public string MyTextArea;

[Space(15)]
public int MyInt;

[Range(2.5f, 12.5f)]
public float MyFloat;

[Tooltip("This is a tip for MyDouble")]
public double MyDouble;

[SerializeField]
private double myHiddenDouble;

https://riptutorial.com/ 22

When hovering over the label of a field:

[Header("My variables")]
public string MyString;

Header places a bold label containing the text above the attributed field. This is often used for
labeling groups to make them stand out against other labels.

[HideInInspector]
public string MyHiddenString;

https://riptutorial.com/ 23

http://i.stack.imgur.com/H4ilz.png
http://i.stack.imgur.com/PNAeT.png

HideInInspector prevents public fieldsfrom being shown in the inspector. This is useful for
accessing fields from other parts of code where they aren't otherwise visible or mutable.

[Multiline(5)]
public string MyMultilineString;

Multiline creates a textbox with a specified number of lines. Exceeding this amount will neither
expand the box nor wrap the text.

[TextArea(2, 8)]
public string MyTextArea;

TextArea allows multiline-style text with automatic word-wrapping and scroll bars if the text
exceeds the allotted area.

[Space(15)]
public int MyInt;

Space forces the inspector to add extra space between previous and current items -useful in
distinguishing and separating groups.

[Range(2.5f, 12.5f)]
public float MyFloat;

Range forces a numerical value between a minimum and a maximum. This attribute also works on
integers and doubles, even though min and max are specified as floats.

[Tooltip("This is a tip for MyDouble")]
public double MyDouble;

Tooltip shows an additional description whenever the field's label is hovered over.

[SerializeField]
private double myHiddenDouble;

SerializeField forces Unity to serialize the field - useful for private fields.

Component attributes

[DisallowMultipleComponent]
[RequireComponent(typeof(Rigidbody))]
public class AttributesExample : MonoBehaviour
{
 [...]
}

[DisallowMultipleComponent]

https://riptutorial.com/ 24

The DisallowMultipleComponent attribute prevents users adding multiple instances of this
component to one GameObject.

[RequireComponent(typeof(Rigidbody))]

The RequireComponent attribute allows you to specify another component (or more) as
requirements for when this component is added to a GameObject. When you add this component
to a GameObject, the required components will be automatically added (if not already present)
and those components cannot be removed until the one that requires them is removed.

Runtime attributes

[ExecuteInEditMode]
public class AttributesExample : MonoBehaviour
{

 [RuntimeInitializeOnLoadMethod]
 private static void FooBar()
 {
 [...]
 }

 [RuntimeInitializeOnLoadMethod(RuntimeInitializeLoadType.BeforeSceneLoad)]
 private static void Foo()
 {
 [...]
 }

 [RuntimeInitializeOnLoadMethod(RuntimeInitializeLoadType.AfterSceneLoad)]
 private static void Bar()
 {
 [...]
 }

 void Update()
 {
 if (Application.isEditor)
 {
 [...]
 }
 else
 {
 [...]
 }
 }
}

[ExecuteInEditMode]
public class AttributesExample : MonoBehaviour

The ExecuteInEditMode attribute forces Unity to execute this script's magic methods even while
the game is not playing.

The functions are not constantly called like in play mode

https://riptutorial.com/ 25

Update is only called when something in the scene changed.•
OnGUI is called when the Game View receives an Event.•
OnRenderObject and the other rendering callback functions are called on every
repaint of the Scene View or Game View.

•

[RuntimeInitializeOnLoadMethod]
private static void FooBar()

[RuntimeInitializeOnLoadMethod(RuntimeInitializeLoadType.BeforeSceneLoad)]
private static void Foo()

[RuntimeInitializeOnLoadMethod(RuntimeInitializeLoadType.AfterSceneLoad)]
private static void Bar()

The RuntimeInitializeOnLoadMethod attribute allows a runtime class method to be called when the
game loads the runtime, without any interaction from the user.

You can specify if you want the method to be invoked before or after scene load (after is default).
The order of execution is not guaranteed for methods using this attribute.

Menu attributes

[AddComponentMenu("Examples/Attribute Example")]
public class AttributesExample : MonoBehaviour
{
 [ContextMenuItem("My Field Action", "MyFieldContextAction")]
 public string MyString;

 private void MyFieldContextAction()
 {
 [...]
 }

 [ContextMenu("My Action")]
 private void MyContextMenuAction()
 {
 [...]
 }
}

The result of the [AddComponentMenu] attribute

https://riptutorial.com/ 26

The result of the [ContextMenuItem] attribute

The result of the [ContextMenu] attribute

[AddComponentMenu("Examples/Attribute Example")]
public class AttributesExample : MonoBehaviour

The AddComponentMenu attribute allows you to place your component anywhere in the
Component menu instead of the Component->Scripts menu.

[ContextMenuItem("My Field Action", "MyFieldContextAction")]
public string MyString;

https://riptutorial.com/ 27

http://i.stack.imgur.com/LpxJ2.png
http://i.stack.imgur.com/shInS.png
http://i.stack.imgur.com/5DyzB.png

private void MyFieldContextAction()
{
 [...]
}

The ContextMenuItem attribute allows you to define functions that can be added to the context
menu of a field. These functions will be executed upon selection.

[ContextMenu("My Action")]
private void MyContextMenuAction()
{
 [...]
}

The ContextMenu attribute allows you to define functions that can be added to the context menu
of the component.

Editor attributes

[InitializeOnLoad]
public class AttributesExample : MonoBehaviour
{

 static AttributesExample()
 {
 [...]
 }

 [InitializeOnLoadMethod]
 private static void Foo()
 {
 [...]
 }
}

[InitializeOnLoad]
public class AttributesExample : MonoBehaviour
{

 static AttributesExample()
 {
 [...]
 }

The InitializeOnLoad attribute allows the user to initialize a class without any interaction from the
user. This happens whenever the editor launches or on a recompile. The static constructor
guarantees that this will be called before any other static functions.

[InitializeOnLoadMethod]
private static void Foo()
{
 [...]

https://riptutorial.com/ 28

}

The InitializeOnLoad attribute allows the user to initialize a class without any interaction from the
user. This happens whenever the editor launches or on a recompile. The order of execution is not
guaranteed for methods using this attribute.

[CanEditMultipleObjects]
public class AttributesExample : MonoBehaviour
{

 public int MyInt;

 private static string prefsText = "";

 [PreferenceItem("My Prefs")]
 public static void PreferencesGUI()
 {
 prefsText = EditorGUILayout.TextField("Prefs Text", prefsText);
 }

 [MenuItem("Attributes/Foo")]
 private static void Foo()
 {
 [...]
 }

 [MenuItem("Attributes/Foo", true)]
 private static bool FooValidate()
 {
 return false;
 }
}

The result of the [PreferenceItem] attribute

https://riptutorial.com/ 29

The result of the [MenuItem] attribute

[CanEditMultipleObjects]
public class AttributesExample : MonoBehaviour

The CanEditMultipleObjects attribute allows you to edit values from your component over multiple
GameObjects. Without this component you won't see your component appear like normal when
selecting multiple GameObjects but instead you will see the message "Multi-object editing not
supported"

This attribute is for custom editors to support multi editing. Non-custom editors
automatically support multi editing.

[PreferenceItem("My Prefs")]
public static void PreferencesGUI()

The PreferenceItem attribute allows to you create an extra item in Unity's preferences menu. The
receiving method needs to be static for it to be used.

[MenuItem("Attributes/Foo")]
private static void Foo()
{
 [...]

https://riptutorial.com/ 30

http://i.stack.imgur.com/QHJAC.png
http://i.stack.imgur.com/aOY7Z.png

}

[MenuItem("Attributes/Foo", true)]
private static bool FooValidate()
{
 return false;
}

The MenuItem attribute allows you to create custom menu items to execute functions. This
example uses a validator function as well (which always returns false) to prevent execution of the
function.

[CustomEditor(typeof(MyComponent))]
public class AttributesExample : Editor
{
 [...]
}

The CustomEditor attribute allows you to create custom editors for your components. These
editors will be used for drawing your component in the inspector and need to derive from the
Editor class.

[CustomPropertyDrawer(typeof(MyClass))]
public class AttributesExample : PropertyDrawer
{
 [...]
}

The CustomPropertyDrawer attribute allows you to create a custom property drawer for in the
inspector. You can use these drawers for your custom data types so that they can be seen used in
the inspector.

[DrawGizmo(GizmoType.Selected)]
private static void DoGizmo(AttributesExample obj, GizmoType type)
{
 [...]
}

The DrawGizmo attribute allows you to draw custom gizmos for your components. These gizmos
will be drawn in the Scene View. You can decide when to draw the gizmo by using the GizmoType
parameter in the DrawGizmo attribute.

The receiving method requires two parameters, the first is the component to draw the
gizmo for and the second is the state that the object who needs the gizmo drawn is in.

Read Attributes online: https://riptutorial.com/unity3d/topic/5535/attributes

https://riptutorial.com/ 31

https://riptutorial.com/unity3d/topic/5535/attributes

Chapter 6: Audio System

Introduction

This is a documentation about playing audio in Unity3D.

Examples

Audio class - Play audio

using UnityEngine;

public class Audio : MonoBehaviour {
 AudioSource audioSource;
 AudioClip audioClip;

 void Start() {
 audioClip = (AudioClip)Resources.Load("Audio/Soundtrack");
 audioSource.clip = audioClip;
 if (!audioSource.isPlaying) audioSource.Play();
 }

Read Audio System online: https://riptutorial.com/unity3d/topic/8064/audio-system

https://riptutorial.com/ 32

https://riptutorial.com/unity3d/topic/8064/audio-system

Chapter 7: Collision

Examples

Colliders

Box Collider

A primitive Collider shaped like a cuboid.

Properties

Is Trigger - If ticked, the Box Collider will ignore physics and become a Trigger Collider•

Material - A reference, if specified, to the physics material of the Box Collider•

Center - The Box Collider's central position in local space•

Size - The size of the Box Collider measured in local space•

https://riptutorial.com/ 33

http://i.stack.imgur.com/dxAci.png

Example

// Add a Box Collider to the current GameObject.
BoxCollider myBC = BoxCollider)myGameObject.gameObject.AddComponent(typeof(BoxCollider));

// Make the Box Collider into a Trigger Collider.
myBC.isTrigger= true;

// Set the center of the Box Collider to the center of the GameObject.
myBC.center = Vector3.zero;

// Make the Box Collider twice as large.
myBC.size = 2;

Sphere Collider

A primitive Collider shaped like a sphere.

Properties

Is Trigger - If ticked, the Sphere Collider will ignore physics and become a Trigger Collider•

Material - A reference, if specified, to the physics material of the Sphere Collider•

Center - The Sphere Collider's central position in local space•

Radius - The radius of the Collider•

https://riptutorial.com/ 34

http://i.stack.imgur.com/QTSkO.png

Example

// Add a Sphere Collider to the current GameObject.
SphereCollider mySC =
SphereCollider)myGameObject.gameObject.AddComponent(typeof(SphereCollider));

// Make the Sphere Collider into a Trigger Collider.
mySC.isTrigger= true;

// Set the center of the Sphere Collider to the center of the GameObject.
mySC.center = Vector3.zero;

// Make the Sphere Collider twice as large.
mySC.radius = 2;

Capsule Collider

Two half spheres joined by a cylinder.

https://riptutorial.com/ 35

http://i.stack.imgur.com/YvXfd.png

Properties

Is Trigger - If ticked, the Capsule Collider will ignore physics and become a Trigger Collider•

Material - A reference, if specified, to the physics material of the Capsule Collider•

Center - The Capsule Collider's central position in local space•

Radius - The radius in local space•

Height - Total height of the Collider•

Direction - The axis of orientation in local space•

Example

// Add a Capsule Collider to the current GameObject.
CapsuleCollider myCC =
CapsuleCollider)myGameObject.gameObject.AddComponent(typeof(CapsuleCollider));

// Make the Capsule Collider into a Trigger Collider.
myCC.isTrigger= true;

// Set the center of the Capsule Collider to the center of the GameObject.
myCC.center = Vector3.zero;

// Make the Sphere Collider twice as tall.
myCC.height= 2;

// Make the Sphere Collider twice as wide.
myCC.radius= 2;

// Set the axis of lengthwise orientation to the X axis.
myCC.direction = 0;

// Set the axis of lengthwise orientation to the Y axis.
myCC.direction = 1;

// Set the axis of lengthwise orientation to the Y axis.
myCC.direction = 2;

Wheel Collider

Properties

Mass - The mass of the Wheel Collider•

Radius - The radius in local space•

Wheel damping rate - Damping value for the Wheel Collider•

https://riptutorial.com/ 36

Suspension distance - Maximum extension along the Y axis in local space•

Force app point distance - The point where forces will be applied,•

Center - Center of the Wheel Collider in local space•

Suspension Spring

Spring - the rate at which the Wheel tries to return to the Target Position•

Damper - A larger value dampens the velocity more and the suspension moves slower•

Target position - the default is 0.5, at 0 the suspension is bottomed out, at 1 it is at full
extension

•

Forward/Sideways friction - how the tire behaves when rolling forwards or sideways•

Example

Mesh Collider

A Collider based on a Mesh Asset.

https://riptutorial.com/ 37

Properties

Is Trigger - If ticked, the Box Collider will ignore physics and become a Trigger Collider•

Material - A reference, if specified, to the physics material of the Box Collider•

https://riptutorial.com/ 38

http://i.stack.imgur.com/FVWD8.png

Mesh - A reference to the mesh the Collider is based on•

Convex - Convex Mesh colliders are limited to 255 polygons - if enabled, this Collider can
collide with other mesh colliders

•

Example

If you apply more than one Collider to a GameObject, we call it a Compound Collider.

Wheel Collider

The wheel collider inside unity is built upon Nvidia's PhysX wheel collider, and therefore shares
many similar properties. Technically unity is a "unitless" program, but to make everything make
sense, some standard units are required.

Basic Properties

https://riptutorial.com/ 39

http://i.stack.imgur.com/DG6zh.png

Mass - the weight of the wheel in Kilograms, this is used for wheel momentum and the
moment of interia when spinning.

•

Radius - in meters, the radius of the collider.•
Wheel Damping Rate - Adjusts how "responsive" the wheels are to applied torque.•
Suspension Distance - Total travel distance in meters that the wheel can travel•
Force App Point Distance - where is the force from the suspension applied to the parent
rigidbody

•

Center - The center position of the wheel•

Suspension Settings

Spring - This is the spring constant, K , in Newtons/meter in the equation:•

Force = Spring Constant * Distance

A good starting point for this value should be the total mass of your vehicle, divided by the number
of wheels, multiplied by a number between 50 to 100. E.g. if you have a 2,000kg car with 4
wheels, then each wheel would need to support 500kg. Multiply this by 75, and your spring
constant should be 37,500 Newtons/meter.

Damper - the equivalent of a shock absorber in a car. Higher rates make the suspense
"stiffer" and lower rates make it "softer" and more likely to oscillate.
I do not know the units or equation for this, I think it it has to do with a frequency equation in
physics though.

•

Sideways Friction Settings

The friction curve in unity has a slip value determined by how much the wheel is slipping (in m/s)
from the desired position vs. the actual position.

Extremum Slip - This is the maximum amount (in m/s) a wheel can slip before it should lose
traction

•

Extremum Value - This is the maximum amount of friction that should be applied to a wheel.•

The values for Exrtremum Slip should be between .2 and 2m/s for most realistic cars. 2m/s is
about 6 feet per second or 5mph, which is a lot of slip. If you feel that your vehicle needs to have a
value higher than 2m/s for slip, you should consider increasing max friction (Extremum Value).

Max Fraction(Extremum Value) is the friction coefficient in the equation:

Force of Friction(in newtons) = Coefficient of Friction * Downward Force(in newtons)

This means with a coefficient of 1, you are applying the entire force of the car+suspension
opposite of the slip direction. In real world applications, values higher than 1 are rare, but not
impossible. For a tire on dry asphalt, values between .7 and .9 are realistic, so the default of 1.0 is
preferable.

This value should not realistically not exceed 2.5, as strange behavior will begin to occur. E.g. you
start to turn right, but because this value is so high, a large force is applied opposite of your

https://riptutorial.com/ 40

direction, and you begin to slide into the turn instead of away.

If you have maxed both values, you should then begin to raise the asymptote slip and value.
Asymptote Slip should be between .5 and 2 m/s, and defines the coefficient of friction for any slip
value past the Asymptote slip. If you find your vehicles behaves well until it break traction, at which
point it acts like it is on ice, you should raise the Asymptote value. If you find that your vehicle is
unable to drift, you should lower the value.

Forward Friction

Forward friction is identical to sideways friction, with the exception that this defines how much
traction the wheel has in the direction of motion. If the values are too low, you vehicles will do
burnouts and just spin the tires before moving forward, slowly. If it is too high, your vehicle may
have a tendency to try and do a wheely, or worse, flip.

Additional Notes

Do not expect to be able to create a GTA clone, or other racing clone by simply adjusting these
values. In most driving games, these values are constantly being changed in script for different
speeds, terrains, and turning values. Additionally, if you are just applying a constant torque to the
wheel colliders when a key is being pressed, your game will not behave realistically. In the real
world, cars have torque curves and transmissions to change the torque applied to the wheels.

For best results, you should tune these values until you get a car the responds reasonably well,
and then make changes to wheel torque, max turning angle, and friction values in script.

More information about wheel colliders can be found in Nvidia's documenation:
http://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/Vehicles.html

Trigger Colliders

Methods

OnTriggerEnter()•
OnTriggerStay()•
OnTriggerExit()•

You can make a Collider into a Trigger in order to use the OnTriggerEnter(), OnTriggerStay() and
OnTriggerExit() methods. A Trigger Collider will not physically react to collisions, other
GameObjects simply pass through it. They are useful for detecting when another GameObject is in
a certain area or not, for example, when collecting an item, we may want to be able to just run
through it but detect when this happens.

Trigger Collider Scripting

Example

https://riptutorial.com/ 41

http://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/Vehicles.html

The method below is an example of a trigger listener that detects when another collider enters the
collider of a GameObject (such as a player). Trigger methods can be added to any script that is
assigned to a GameObject.

void OnTriggerEnter(Collider other)
{
 //Check collider for specific properties (Such as tag=item or has component=item)
}

Read Collision online: https://riptutorial.com/unity3d/topic/4405/collision

https://riptutorial.com/ 42

https://riptutorial.com/unity3d/topic/4405/collision

Chapter 8: Communication with server

Examples

Get

Get is getting data from web server. and new WWW("https://urlexample.com"); with a url but without
a second parameter is doing a Get.

i.e.

using UnityEngine;
using System.Collections;

public class ExampleClass : MonoBehaviour
{
 public string url = "http://google.com";

 IEnumerator Start()
 {
 WWW www = new WWW(url); // One get.
 yield return www;
 Debug.Log(www.text); // The data of the url.
 }
}

Simple Post (Post Fields)

Every instance of WWW with a second parameter is a post.

Here is an example to post user id and password to server.

void Login(string id, string pwd)
{
 WWWForm dataParameters = new WWWForm(); // Create a new form.
 dataParameters.AddField("username", id);
 dataParameters.AddField("password", pwd); // Add fields.
 WWW www = new WWW(url+"/account/login",dataParameters);
 StartCoroutine("PostdataEnumerator", www);
}

IEnumerator PostdataEnumerator(WWW www)
{
 yield return www;
 if (!string.IsNullOrEmpty(www.error))
 {
 Debug.Log(www.error);
 }
 else
 {
 Debug.Log("Data Submitted");
 }
}

https://riptutorial.com/ 43

Post (Upload A File)

Upload a file to server is also a post. You can easily upload a file through WWW, like the below:

Upload A Zip File To Server

string mainUrl = "http://server/upload/";
string saveLocation;

void Start()
{
 saveLocation = "ftp:///home/xxx/x.zip"; // The file path.
 StartCoroutine(PrepareFile());
}

// Prepare The File.
IEnumerator PrepareFile()
{
 Debug.Log("saveLoacation = " + saveLocation);

 // Read the zip file.
 WWW loadTheZip = new WWW(saveLocation);

 yield return loadTheZip;

 PrepareStepTwo(loadTheZip);
}

void PrepareStepTwo(WWW post)
{
 StartCoroutine(UploadTheZip(post));
}

// Upload.
IEnumerator UploadTheZip(WWW post)
{
 // Create a form.
 WWWForm form = new WWWForm();

 // Add the file.
 form.AddBinaryData("myTestFile.zip",post.bytes,"myFile.zip","application/zip");

 // Send POST request.
 string url = mainUrl;
 WWW POSTZIP = new WWW(url,form);

 Debug.Log("Sending zip...");
 yield return POSTZIP;
 Debug.Log("Zip sent!");
}

In this example, it use the coroutine to prepare and upload the file, if you want to know more
about Unity coroutines, please visit Coroutines.

Sending a request to the server

https://riptutorial.com/ 44

http://www.riptutorial.com/unity3d/topic/3415/coroutines

There are many ways to communicate with servers using Unity as the client (some methodologies
are better than others depending on your purpose). First, one must determine the need of the
server to be able to effectively send operations to and from the server. For this example, we will
send a few pieces of data to our server to be validated.

Most likely, the programmer will have setup some sort of handler on their server to receive events
and respond back to the client accordingly - however that is out of the scope of this example.

C#:

using System.Net;
using System.Text;

public class TestCommunicationWithServer
{
 public string SendDataToServer(string url, string username, string password)
 {
 WebClient client = new WebClient();

 // This specialized key-value pair will store the form data we're sending to the
server
 var loginData = new System.Collections.Specialized.NameValueCollection();
 loginData.Add("Username", username);
 loginData.Add("Password", password);

 // Upload client data and receive a response
 byte[] opBytes = client.UploadValues(ServerIpAddress, "POST", loginData);

 // Encode the response bytes into a proper string
 string opResponse = Encoding.UTF8.GetString(opBytes);

 return opResponse;
 }

First thing one must do is toss in their using statements which allow us to use the WebClient and
NameValueCollection classes.

For this example the SendDataToServer function takes in 3 (optional) string parameters:

Url of the server we're communicating with1.
First piece of data2.
Second piece of data we're sending to the server3.

The username and password is the optional data I am sending to the server. For this example
we're using it to be then further validated from a database or any other external storage.

Now that we've setup our structure, we will instantiate a new WebClient to be used to actually
send our data. Now we need to load our data into our NameValueCollection and upload the data
to the server.

The UploadValues function takes in 3 necessary parameters as well:

IP address of server1.
HTTP method2.

https://riptutorial.com/ 45

Data you're sending (the username and password in our case)3.

This function returns a byte array of the response from the server. We need to encode the
returned byte array it into a proper string to actual be able to manipulate and dissect the response.

One could do something like this:

if(opResponse.Equals(ReturnMessage.Success))
{
 Debug.Log("Unity client has successfully sent and validated data on server.");
}

Now you might still be confused so I guess I will give a brief explanation of how to handle a
response server sided.

For this example I will be using PHP to handle the response from the client. I'd recommend using
PHP as your back-end scripting language because it's super versatile, easy to use and most of all
fast. There definitely are other ways to handle a response on a server but in my opinion PHP is by
far the simplest and easiest implementation into Unity.

PHP:

// Check to see if the unity client send the form data
if(!isset($_REQUEST['Username']) || !isset($_REQUEST['Password']))
{
 echo "Empty";
}
else
{
 // Unity sent us the data - its here so do whatever you want

 echo "Success";

}

So this is the most important part - the 'echo'. When our client uploads the data to server, the
client saves the response (or resource) into that byte array. Once the client has the response, you
know the data has been validated and you can move on in the client once that event has
happened. You also need to think about what type of data you're sending (to an extent), and how
to minimize the amount you're actually sending.

So this is only one way of sending/receiving data from Unity - there are some other ways that may
be more effective for you depending on your project.

Read Communication with server online: https://riptutorial.com/unity3d/topic/5578/communication-
with-server

https://riptutorial.com/ 46

https://riptutorial.com/unity3d/topic/5578/communication-with-server
https://riptutorial.com/unity3d/topic/5578/communication-with-server

Chapter 9: Coroutines

Syntax

public Coroutine StartCoroutine(IEnumerator routine);•
public Coroutine StartCoroutine(string methodName, object value = null);•
public void StopCoroutine(string methodName);•
public void StopCoroutine(IEnumerator routine);•
public void StopAllCoroutines();•

Remarks

Performance considerations

It's best to use coroutines in moderation as the flexibility comes with a performance cost.

Coroutines in great numbers demands more from the CPU than standard Update methods.•
There is an issue in some versions of Unity where coroutines produce garbage each update
cycle due to Unity boxing the MoveNext return value. This was last observed in 5.4.0b13. (Bug
report)

•

Reduce garbage by caching YieldInstructions

A common trick to reduce the garbage generated in coroutines is to cache the YieldInstruction.

IEnumerator TickEverySecond()
{
 var wait = new WaitForSeconds(1f); // Cache
 while(true)
 {
 yield return wait; // Reuse
 }
}

Yielding null produces no extra garbage.

Examples

Coroutines

First it's essential to understand that, game engines (such as Unity) work on a "frame based"
paradigm.

Code is executed during every frame.

https://riptutorial.com/ 47

https://issuetracker.unity3d.com/issues/coroutines-generate-garbage-in-movenext
https://issuetracker.unity3d.com/issues/coroutines-generate-garbage-in-movenext

That includes Unity's own code, and your code.

When thinking about frames, it's important to understand that there is absolutely no guarantee of
when frames happen. They do not happen on a regular beat. The gaps between frames could be,
for example, 0.02632 then 0.021167 then 0.029778, and so on. In the example they are all "about"
1/50th of a second, but they are all different. And at any time, you may get a frame that takes
much longer, or shorter; and your code may be executed at any time at all within the frame.

Bearing that in mind, you may ask: how do you access these frames in your code, in Unity?

Quite simply, you use either the Update() call, or, you use a coroutine. (Indeed - they are exactly
the same thing: they allow code to be run every frame.)

The purpose of a coroutine is that:

you can run some code, and then, "stop and wait" until some future frame.

You can wait until the next frame, you can wait for a number of frames, or you can wait for some
approximate time in seconds in the future.

For example, you can wait for "about one second", meaning it will wait for about one second, and
then put your code in some frame roughly one second from now. (And indeed, within that frame,
the code could be run at any time, whatsoever.) To repeat: it will not be exactly one second.
Accurate timing is meaningless in a game engine.

Inside a coroutine:

To wait one frame:

// do something
yield return null; // wait until next frame
// do something

To wait three frames:

// do something
yield return null; // wait until three frames from now
yield return null;
yield return null;
// do something

To wait approximately half a second:

// do something
yield return new WaitForSeconds (0.5f); // wait for a frame in about .5 seconds
// do something

Do something every single frame:

while (true)
{

https://riptutorial.com/ 48

 // do something
 yield return null; // wait until the next frame
}

That example is literally identical to simply putting something inside Unity's "Update" call: the code
at "do something" is run every frame.

Example

Attach Ticker to a GameObject. While that game object is active, the tick will run. Note that the script
carefully stops the coroutine, when the game object becomes inactive; this is usually an important
aspect of correctly engineering coroutine usage.

using UnityEngine;
using System.Collections;

public class Ticker:MonoBehaviour {

 void OnEnable()
 {
 StartCoroutine(TickEverySecond());
 }

 void OnDisable()
 {
 StopAllCoroutines();
 }

 IEnumerator TickEverySecond()
 {
 var wait = new WaitForSeconds(1f); // REMEMBER: IT IS ONLY APPROXIMATE
 while(true)
 {
 Debug.Log("Tick");
 yield return wait; // wait for a frame, about 1 second from now
 }
 }
}

Ending a coroutine

Often you design coroutines to naturally end when certain goals are met.

IEnumerator TickFiveSeconds()
{
 var wait = new WaitForSeconds(1f);
 int counter = 1;
 while(counter < 5)
 {
 Debug.Log("Tick");
 counter++;
 yield return wait;
 }
 Debug.Log("I am done ticking");

https://riptutorial.com/ 49

}

To stop a coroutine from "inside" the coroutine, you cannot simply "return" as you would to leave
early from an ordinary function. Instead, you use yield break.

IEnumerator ShowExplosions()
{
 ... show basic explosions
 if(player.xp < 100) yield break;
 ... show fancy explosions
}

You can also force all coroutines launched by the script to halt before finishing.

void OnDisable()
{
 // Stops all running coroutines
 StopAllCoroutines();
}

The method to stop a specific coroutine from the caller varies depending on how you started it.

If you started a coroutine by string name:

StartCoroutine("YourAnimation");

then you can stop it by calling StopCoroutine with the same string name:

StopCoroutine("YourAnimation");

Alternatively, you can keep a reference to either the IEnumerator returned by the coroutine method,
or the Coroutine object returned by StartCoroutine, and call StopCoroutine on either of those:

public class SomeComponent : MonoBehaviour
{
 Coroutine routine;

 void Start () {
 routine = StartCoroutine(YourAnimation());
 }

 void Update () {
 // later, in response to some input...
 StopCoroutine(routine);
 }

 IEnumerator YourAnimation () { /* ... */ }
}

MonoBehaviour methods that can be Coroutines

There are three MonoBehaviour methods that can be made coroutines.

https://riptutorial.com/ 50

https://docs.unity3d.com/ScriptReference/MonoBehaviour.StopCoroutine.html

Start()1.
OnBecameVisible()2.
OnLevelWasLoaded()3.

This can be used to create, for example, scripts that execute only when the object is visible to a
camera.

using UnityEngine;
using System.Collections;

public class RotateObject : MonoBehaviour
{
 IEnumerator OnBecameVisible()
 {
 var tr = GetComponent<Transform>();
 while (true)
 {
 tr.Rotate(new Vector3(0, 180f * Time.deltaTime));
 yield return null;
 }
 }

 void OnBecameInvisible()
 {
 StopAllCoroutines();
 }
}

Chaining coroutines

Coroutines can yield inside themselves, and wait for other coroutines.

So, you can chain sequences - "one after the other".

This is very easy, and is a basic, core, technique in Unity.

It's absolutely natural in games that certain things have to happen "in order". Almost every "round"
of a game starts with a certain series of events happening, over a space of time, in some order.
Here's how you might start a car race game:

IEnumerator BeginRace()
{
 yield return StartCoroutine(PrepareRace());
 yield return StartCoroutine(Countdown());
 yield return StartCoroutine(StartRace());
}

So, when you call BeginRace ...

 StartCoroutine(BeginRace());

It will run your "prepare race" routine. (Perhaps, flashing some lights and running some crowd
noise, resetting scores and so on.) When that is finished, it will run your "countdown" sequence,

https://riptutorial.com/ 51

where you would animate perhaps a countdown on the UI. When that is finished, it will run your
race-starting code, where you would perhaps run sound effects, start some AI drivers, move the
camera in a certain way, and so on.

For clarity, understand that the three calls

 yield return StartCoroutine(PrepareRace());
 yield return StartCoroutine(Countdown());
 yield return StartCoroutine(StartRace());

must themselves be in a coroutine. That is to say, they must be in a function of the type
IEnumerator. So in our example that's IEnumerator BeginRace. So, from "normal" code, you launch
that coroutine with the StartCoroutine call.

 StartCoroutine(BeginRace());

To further understand chaining, here's a function which chains coroutines. You pass in an array of
coroutines. The function runs as many coroutines as you pass, in order, one after the other.

// run various routines, one after the other
IEnumerator OneAfterTheOther(params IEnumerator[] routines)
{
 foreach (var item in routines)
 {
 while (item.MoveNext()) yield return item.Current;
 }

 yield break;
}

Here's how you would call that...let's say you have three functions. Recall they must all be
IEnumerator:

IEnumerator PrepareRace()
{
 // codesay, crowd cheering and camera pan around the stadium
 yield break;
}

IEnumerator Countdown()
{
 // codesay, animate your countdown on UI
 yield break;
}

IEnumerator StartRace()
{
 // codesay, camera moves and light changes and launch the AIs
 yield break;
}

You'd call it like this

https://riptutorial.com/ 52

StartCoroutine(MultipleRoutines(PrepareRace(), Countdown(), StartRace()));

or perhaps like this

IEnumerator[] routines = new IEnumerator[] {
 PrepareRace(),
 Countdown(),
 StartRace() };
StartCoroutine(MultipleRoutines(routines));

To repeat, one of the most basic requirements in games is that certain things happen one after the
other "in a sequence" over time. You achieve that in Unity very simply, with

 yield return StartCoroutine(PrepareRace());
 yield return StartCoroutine(Countdown());
 yield return StartCoroutine(StartRace());

Ways to yield

You can wait until the next frame.

yield return null; // wait until sometime in the next frame

You can have multiple of these calls in a row, to simply wait for as many frames as desired.

//wait for a few frames
yield return null;
yield return null;

Wait for approximately n seconds. It is extremely important to understand this is only a very
approximate time.

yield return new WaitForSeconds(n);

It is absolutely not possible to use the "WaitForSeconds" call for any form of accurate timing.

Often you want to chain actions. So, do something, and when that is finished do something else,
and when that is finished do something else. To achieve that, wait for another coroutine:

yield return StartCoroutine(coroutine);

Understand that you can only call that from within a coroutine. So:

StartCoroutine(Test());

That's how you start a coroutine from a "normal" piece of code.

Then, inside that running coroutine:

https://riptutorial.com/ 53

Debug.Log("A");
StartCoroutine(LongProcess());
Debug.Log("B");

That will print A, start the long process, and immediately print B. It will not wait for the long
process to finish. On the other hand:

Debug.Log("A");
yield return StartCoroutine(LongProcess());
Debug.Log("B");

That will print A, start the long process, wait until it is finished, and then print B.

It's always worth remembering that coroutines have absolutely no connection, in any way, to
threading. With this code:

Debug.Log("A");
StartCoroutine(LongProcess());
Debug.Log("B");

it is easy to think of it as being "like" starting the LongProcess on another thread in the
background. But that is absolutely incorrect. It is just a coroutine. Game engines are frame based,
and "coroutines" in Unity simply allow you to access the frames.

It is very easy to wait for a web request to complete.

void Start() {
 string url = "http://google.com";
 WWW www = new WWW(url);
 StartCoroutine(WaitForRequest(www));
}

IEnumerator WaitForRequest(WWW www) {
 yield return www;

 if (www.error == null) {
 //use www.data);
 }
 else {
 //use www.error);
 }
}

For completeness: In very rare cases you use fixed update in Unity; there is a WaitForFixedUpdate()
call which normally would never be used. There is a specific call (WaitForEndOfFrame() in the current
version of Unity) which is used in certain situations in relation to generating screen captures during
development. (The exact mechanism changes slightly as Unity evolves, so google for the latest
info if relevant.)

Read Coroutines online: https://riptutorial.com/unity3d/topic/3415/coroutines

https://riptutorial.com/ 54

https://riptutorial.com/unity3d/topic/3415/coroutines

Chapter 10: CullingGroup API

Remarks

Since using CullingGroups is not always very straightforward, it may be helpful to encapsulate the
bulk of the logic behind a manager class.

Below is a blueprint how such a manager might operate.

using UnityEngine;
using System;
public interface ICullingGroupManager
{
 int ReserveSphere();
 void ReleaseSphere(int sphereIndex);
 void SetPosition(int sphereIndex, Vector3 position);
 void SetRadius(int sphereIndex, float radius);
 void SetCullingEvent(int sphereIndex, Action<CullingGroupEvent> sphere);
}

The gist of it is that you reserve a culling sphere from the manager which returns the index of the
reserved sphere. You then use the given index to manipulate your reserved sphere.

Examples

Culling object distances

The following example illustrates how to use CullingGroups to get notifications according to the
distance reference point.

This script has been simplified for brevity and uses several performance heavy
methods.

using UnityEngine;
using System.Linq;

public class CullingGroupBehaviour : MonoBehaviour
{
 CullingGroup localCullingGroup;

 MeshRenderer[] meshRenderers;
 Transform[] meshTransforms;
 BoundingSphere[] cullingPoints;

 void OnEnable()
 {
 localCullingGroup = new CullingGroup();

 meshRenderers = FindObjectsOfType<MeshRenderer>()
 .Where((MeshRenderer m) => m.gameObject != this.gameObject)
 .ToArray();

https://riptutorial.com/ 55

 cullingPoints = new BoundingSphere[meshRenderers.Length];
 meshTransforms = new Transform[meshRenderers.Length];

 for (var i = 0; i < meshRenderers.Length; i++)
 {
 meshTransforms[i] = meshRenderers[i].GetComponent<Transform>();
 cullingPoints[i].position = meshTransforms[i].position;
 cullingPoints[i].radius = 4f;
 }

 localCullingGroup.onStateChanged = CullingEvent;
 localCullingGroup.SetBoundingSpheres(cullingPoints);
 localCullingGroup.SetBoundingDistances(new float[] { 0f, 5f });
 localCullingGroup.SetDistanceReferencePoint(GetComponent<Transform>().position);
 localCullingGroup.targetCamera = Camera.main;
 }

 void FixedUpdate()
 {
 localCullingGroup.SetDistanceReferencePoint(GetComponent<Transform>().position);
 for (var i = 0; i < meshTransforms.Length; i++)
 {
 cullingPoints[i].position = meshTransforms[i].position;
 }
 }

 void CullingEvent(CullingGroupEvent sphere)
 {
 Color newColor = Color.red;
 if (sphere.currentDistance == 1) newColor = Color.blue;
 if (sphere.currentDistance == 2) newColor = Color.white;
 meshRenderers[sphere.index].material.color = newColor;
 }

 void OnDisable()
 {
 localCullingGroup.Dispose();
 }
}

Add the script to a GameObject (in this case a cube) and hit Play. Every other GameObject in
scene changes color according to their distance to the reference point.

https://riptutorial.com/ 56

Culling object visibility

Following script illustrates how to receive events according to visibility to a set camera.

This script uses several performance heavy methods for brevity.

using UnityEngine;
using System.Linq;

public class CullingGroupCameraBehaviour : MonoBehaviour
{
 CullingGroup localCullingGroup;

 MeshRenderer[] meshRenderers;

 void OnEnable()
 {
 localCullingGroup = new CullingGroup();

 meshRenderers = FindObjectsOfType<MeshRenderer>()
 .Where((MeshRenderer m) => m.gameObject != this.gameObject)
 .ToArray();

 BoundingSphere[] cullingPoints = new BoundingSphere[meshRenderers.Length];
 Transform[] meshTransforms = new Transform[meshRenderers.Length];

 for (var i = 0; i < meshRenderers.Length; i++)
 {
 meshTransforms[i] = meshRenderers[i].GetComponent<Transform>();
 cullingPoints[i].position = meshTransforms[i].position;
 cullingPoints[i].radius = 4f;
 }

 localCullingGroup.onStateChanged = CullingEvent;
 localCullingGroup.SetBoundingSpheres(cullingPoints);
 localCullingGroup.targetCamera = Camera.main;
 }

https://riptutorial.com/ 57

http://i.stack.imgur.com/iRzgK.gif

 void CullingEvent(CullingGroupEvent sphere)
 {
 meshRenderers[sphere.index].material.color = sphere.isVisible ? Color.red :
Color.white;
 }

 void OnDisable()
 {
 localCullingGroup.Dispose();
 }
}

Add the script to scene and hit Play. All geometry in scene will change color based on their
visibility.

Similar effect can be achieved using the MonoBehaviour.OnBecameVisible() method if the
object has a MeshRenderer component. Use CulingGroups when you need to cull empty
GameObjects, Vector3 coordinates, or when you want a centralised method of tracking
object visibilities.

Bounding distances

You can add bounding distances on top of culling point radius. They are in a manner additional
trigger conditions outside the culling points' main radius, like "close", "far" or "very far".

cullingGroup.SetBoundingDistances(new float[] { 0f, 10f, 100f});

Bounding distances affect only when used with a distance reference point. They have
no effect during camera culling.

Visualising bounding distances

What may initially cause confusion is how bounding distances are added on top of the sphere
radiuses.

https://riptutorial.com/ 58

http://i.stack.imgur.com/T28vl.gif

First, culling group calculates the area of both the bounding sphere and the bounding distance.
The two areas are added together, and the result is the trigger area for the distance band. The
radius of this area can be used to visualise the bounding distance field of effect.

float cullingPointArea = Mathf.PI * (cullingPointRadius * cullingPointRadius);
float boundingArea = Mathf.PI * (boundingDistance * boundingDistance);
float combinedRadius = Mathf.Sqrt((cullingPointArea + boundingArea) / Mathf.PI);

Read CullingGroup API online: https://riptutorial.com/unity3d/topic/4574/cullinggroup-api

https://riptutorial.com/ 59

https://riptutorial.com/unity3d/topic/4574/cullinggroup-api

Chapter 11: Design Patterns

Examples

Model View Controller (MVC) Design Pattern

The model view controller is a very common design pattern that has been around for quite some
time. This pattern focuses on reducing spaghetti code by separating classes into functional parts.
Recently I have been experimenting with this design pattern in Unity and would like to lay out a
basic example.

A MVC design consists of three core parts: Model, View and Controller.

Model: The model is a class representing the data portion of your object. This could be a player,
inventory or an entire level. If programmed correctly, you should be able to take this script and use
it outside of Unity.

Note a few things about the Model:

It should not inherit from Monobehaviour•
It should not contain Unity specific code for portability•
Since we are avoiding Unity API calls, this can hinder things like implicit converters in the
Model class (workarounds are required)

•

Player.cs

using System;

public class Player
{
 public delegate void PositionEvent(Vector3 position);
 public event PositionEvent OnPositionChanged;

 public Vector3 position
 {
 get
 {
 return _position;
 }
 set
 {
 if (_position != value) {
 _position = value;
 if (OnPositionChanged != null) {
 OnPositionChanged(value);
 }
 }
 }
 }
 private Vector3 _position;
}

https://riptutorial.com/ 60

Vector3.cs

A custom Vector3 class to use with our data model.

using System;

public class Vector3
{
 public float x;
 public float y;
 public float z;

 public Vector3(float x, float y, float z)
 {
 this.x = x;
 this.y = y;
 this.z = z;
 }
}

View: The view is a class representing the viewing portion tied to the model. This is an appropriate
class to derive from Monobehaviour. This should contain code that interacts directly with Unity
specific APIs including OnCollisinEnter, Start, Update, etc...

Typically inherits from Monobehaviour•
Contains Unity specific code•

PlayerView.cs

using UnityEngine;

public class PlayerView : Monobehaviour
{
 public void SetPosition(Vector3 position)
 {
 transform.position = position;
 }
}

Controller: The controller is a class that binds together both the Model and View. Controllers keep
both Model and View in sync as well as drive interaction. The controller can listen for events from
either partner and update accordingly.

Binds both the Model and View by syncing state•
Can drive interaction between partners•
Controllers may or may not be portable (You might have to use Unity code here)•
If you decide to not make your controller portable, consider making it a Monobehaviour to
help with editor inspecting

•

PlayerController.cs

using System;

https://riptutorial.com/ 61

public class PlayerController
{
 public Player model { get; private set; }
 public PlayerView view { get; private set; }

 public PlayerController(Player model, PlayerView view)
 {
 this.model = model;
 this.view = view;

 this.model.OnPositionChanged += OnPositionChanged;
 }

 private void OnPositionChanged(Vector3 position)
 {
 // Sync
 Vector3 pos = this.model.position;

 // Unity call required here! (we lost portability)
 this.view.SetPosition(new UnityEngine.Vector3(pos.x, pos.y, pos.z));
 }

 // Calling this will fire the OnPositionChanged event
 private void SetPosition(Vector3 position)
 {
 this.model.position = position;
 }
}

Final Usage

Now that we have all of the main pieces, we can create a factory that will generate all three parts.

PlayerFactory.cs

using System;

public class PlayerFactory
{
 public PlayerController controller { get; private set; }
 public Player model { get; private set; }
 public PlayerView view { get; private set; }

 public void Load()
 {
 // Put the Player prefab inside the 'Resources' folder
 // Make sure it has the 'PlayerView' Component attached
 GameObject prefab = Resources.Load<GameObject>("Player");
 GameObject instance = GameObject.Instantiate<GameObject>(prefab);
 this.model = new Player();
 this.view = instance.GetComponent<PlayerView>();
 this.controller = new PlayerController(model, view);
 }
}

And finally we can call the factory from a manager...

https://riptutorial.com/ 62

Manager.cs

using UnityEngine;

public class Manager : Monobehaviour
{
 [ContextMenu("Load Player")]
 private void LoadPlayer()
 {
 new PlayerFactory().Load();
 }
}

Attach the Manager script to an empty GameObject in the scene, right click the component and
select "Load Player".

For more complex logic you can introduce inheritance with abstract base classes and interfaces
for an improved architecture.

Read Design Patterns online: https://riptutorial.com/unity3d/topic/10842/design-patterns

https://riptutorial.com/ 63

https://riptutorial.com/unity3d/topic/10842/design-patterns

Chapter 12: Extending the Editor

Syntax

[MenuItem(string itemName)]•
[MenuItem(string itemName, bool isValidateFunction)]•
[MenuItem(string itemName, bool isValidateFunction, int priority)]•
[ContextMenu(string name)]•
[ContextMenuItem(string name, string function)]•
[DrawGizmo(GizmoType gizmo)]•
[DrawGizmo(GizmoType gizmo, Type drawnGizmoType)]•

Parameters

Parameter Details

MenuCommand MenuCommand is used to extract the context for a MenuItem

MenuCommand.context The object that is the target of the menu command

MenuCommand.userData An int for passing custom information to a menu item

Examples

Custom Inspector

Using a custom inspector allows you to change the way a script is drawn in the Inspector.
Sometimes you want to add extra information in the inspector for your script that isn't possible to
do with a custom property drawer.

Below is a simple example of a custom object that with using a custom inspector can show more
useful information.

using UnityEngine;
#if UNITY_EDITOR
using UnityEditor;
#endif

public class InspectorExample : MonoBehaviour {

 public int Level;
 public float BaseDamage;

 public float DamageBonus {
 get {
 return Level / 100f * 50;
 }

https://riptutorial.com/ 64

 }

 public float ActualDamage {
 get {
 return BaseDamage + DamageBonus;
 }
 }
}

#if UNITY_EDITOR
[CustomEditor(typeof(InspectorExample))]
public class CustomInspector : Editor {

 public override void OnInspectorGUI() {
 base.OnInspectorGUI();

 var ie = (InspectorExample)target;

 EditorGUILayout.LabelField("Damage Bonus", ie.DamageBonus.ToString());
 EditorGUILayout.LabelField("Actual Damage", ie.ActualDamage.ToString());
 }
}
#endif

First we define our custom behaviour with some fields

public class InspectorExample : MonoBehaviour {
 public int Level;
 public float BaseDamage;
}

The fields shown above are automatically drawn (without custom inspector) when you are viewing
the script in the Inspector window.

public float DamageBonus {
 get {
 return Level / 100f * 50;
 }
}

public float ActualDamage {
 get {
 return BaseDamage + DamageBonus;
 }
}

These properties are not automatically drawn by Unity. To show these properties in the Inspector
view we have to use our Custom Inspector.

We first have to define our custom inspector like this

[CustomEditor(typeof(InspectorExample))]
public class CustomInspector : Editor {

The custom inspector has to derive from Editor and needs the CustomEditor attribute. The

https://riptutorial.com/ 65

parameter of the attribute is the type of the object this custom inspector should be used for.

Next up is the OnInspectorGUI method. This method gets called whenever the script is shown in
the inspector window.

public override void OnInspectorGUI() {
 base.OnInspectorGUI();
}

We make a call to base.OnInspectorGUI() to let Unity handle the other fields that are in the script.
If we would not call this we would have to do more work ourselves.

Next are our custom properties that we want to show

var ie = (InspectorExample)target;

EditorGUILayout.LabelField("Damage Bonus", ie.DamageBonus.ToString());
EditorGUILayout.LabelField("Actual Damage", ie.ActualDamage.ToString());

We have to create a temporary variable that holds target casted to our custom type (target is
available because we derive from Editor).

Next we can decide how to draw our properties, in this case two labelfields are enough since we
just want to show the values and not be able to edit them.

Result

Before

After

Custom Property Drawer

Sometimes you have custom objects that contain data but do not derive from MonoBehaviour.
Adding these objects as a field in a class that is MonoBehaviour will have no visual effect unless
you write your own custom property drawer for the object's type.

Below is a simple example of a custom object, added to MonoBehaviour, and a custom property
drawer for the custom object.

https://riptutorial.com/ 66

https://i.stack.imgur.com/RDudT.png
https://i.stack.imgur.com/sgMXb.png

public enum Gender {
 Male,
 Female,
 Other
}

// Needs the Serializable attribute otherwise the CustomPropertyDrawer wont be used
[Serializable]
public class UserInfo {
 public string Name;
 public int Age;
 public Gender Gender;
}

// The class that you can attach to a GameObject
public class PropertyDrawerExample : MonoBehaviour {
 public UserInfo UInfo;
}

[CustomPropertyDrawer(typeof(UserInfo))]
public class UserInfoDrawer : PropertyDrawer {

 public override float GetPropertyHeight(SerializedProperty property, GUIContent label) {
 // The 6 comes from extra spacing between the fields (2px each)
 return EditorGUIUtility.singleLineHeight * 4 + 6;
 }

 public override void OnGUI(Rect position, SerializedProperty property, GUIContent label)
{
 EditorGUI.BeginProperty(position, label, property);

 EditorGUI.LabelField(position, label);

 var nameRect = new Rect(position.x, position.y + 18, position.width, 16);
 var ageRect = new Rect(position.x, position.y + 36, position.width, 16);
 var genderRect = new Rect(position.x, position.y + 54, position.width, 16);

 EditorGUI.indentLevel++;

 EditorGUI.PropertyField(nameRect, property.FindPropertyRelative("Name"));
 EditorGUI.PropertyField(ageRect, property.FindPropertyRelative("Age"));
 EditorGUI.PropertyField(genderRect, property.FindPropertyRelative("Gender"));

 EditorGUI.indentLevel--;

 EditorGUI.EndProperty();
 }
}

First off we define the custom object with all it's requirements. Just a simple class describing a
user. This class is used in our PropertyDrawerExample class which we can add to a GameObject.

public enum Gender {
 Male,
 Female,
 Other
}

[Serializable]
public class UserInfo {

https://riptutorial.com/ 67

 public string Name;
 public int Age;
 public Gender Gender;
}

public class PropertyDrawerExample : MonoBehaviour {
 public UserInfo UInfo;
}

The custom class needs the Serializable attribute otherwise the
CustomPropertyDrawer will not be used

Next up is the CustomPropertyDrawer

First we have to define a class that derives from PropertyDrawer. The class definition also needs
the CustomPropertyDrawer attribute. The parameter passed is the type of the object you want this
drawer to be used for.

[CustomPropertyDrawer(typeof(UserInfo))]
public class UserInfoDrawer : PropertyDrawer {

Next we override the GetPropertyHeight function. This allows us to define a custom height for our
property. In this case we know that our property will have four parts: label, name, age, and gender.
Therefore we use EditorGUIUtility.singleLineHeight * 4, we add another 6 pixels because we want
to space each field with two pixels in between.

public override float GetPropertyHeight(SerializedProperty property, GUIContent label) {
 return EditorGUIUtility.singleLineHeight * 4 + 6;
}

Next is the actual OnGUI method. We start it off with EditorGUI.BeginProperty([...]) and end the
function with EditorGUI.EndProperty(). We do this so that if this property would be part of a prefab,
the actual prefab overriding logic would work for everything in between those two methods.

public override void OnGUI(Rect position, SerializedProperty property, GUIContent label) {
 EditorGUI.BeginProperty(position, label, property);

After that we show a label containing the name of the field and we already define the rectangles
for our fields.

EditorGUI.LabelField(position, label);

var nameRect = new Rect(position.x, position.y + 18, position.width, 16);
var ageRect = new Rect(position.x, position.y + 36, position.width, 16);
var genderRect = new Rect(position.x, position.y + 54, position.width, 16);

Every field is spaced by 16 + 2 pixels and the height is 16 (which is the same as
EditorGUIUtility.singleLineHeight)

Next we indent the UI with one tab for a bit nicer layout, display the properties, un-indent the GUI,
and end with EditorGUI.EndProperty.

https://riptutorial.com/ 68

EditorGUI.indentLevel++;

EditorGUI.PropertyField(nameRect, property.FindPropertyRelative("Name"));
EditorGUI.PropertyField(ageRect, property.FindPropertyRelative("Age"));
EditorGUI.PropertyField(genderRect, property.FindPropertyRelative("Gender"));

EditorGUI.indentLevel--;

EditorGUI.EndProperty();

We display the fields by using EditorGUI.PropertyField which requires a rectangle for the position
and a SerializedProperty for the property to show. We acquire the property by calling
FindPropertyRelative("...") on the property passed in the OnGUI function. Note that these are
case-sensitive and non-public properties cannot be found!

For this example I am not saving the properties return from
property.FindPropertyRelative("..."). You should save these in private fields in the class
to prevent unnecessary calls

Result

Before

After

Menu Items

Menu items are a great way of adding custom actions to the editor. You can add menu items to
the menu bar, have them as context-clicks on specific components, or even as context-clicks on
fields in your scripts.

Below is an example of how you can apply menu items.

public class MenuItemsExample : MonoBehaviour {

 [MenuItem("Example/DoSomething %#&d")]
 private static void DoSomething() {
 // Execute some code
 }

 [MenuItem("Example/DoAnotherThing", true)]
 private static bool DoAnotherThingValidator() {
 return Selection.gameObjects.Length > 0;

https://riptutorial.com/ 69

http://i.stack.imgur.com/oYOsI.png
http://i.stack.imgur.com/RtWT5.png

 }

 [MenuItem("Example/DoAnotherThing _PGUP", false)]
 private static void DoAnotherThing() {
 // Execute some code
 }

 [MenuItem("Example/DoOne %a", false, 1)]
 private static void DoOne() {
 // Execute some code
 }

 [MenuItem("Example/DoTwo #b", false, 2)]
 private static void DoTwo() {
 // Execute some code
 }

 [MenuItem("Example/DoFurther &c", false, 13)]
 private static void DoFurther() {
 // Execute some code
 }

 [MenuItem("CONTEXT/Camera/DoCameraThing")]
 private static void DoCameraThing(MenuCommand cmd) {
 // Execute some code
 }

 [ContextMenu("ContextSomething")]
 private void ContentSomething() {
 // Execute some code
 }

 [ContextMenuItem("Reset", "ResetDate")]
 [ContextMenuItem("Set to Now", "SetDateToNow")]
 public string Date = "";

 public void ResetDate() {
 Date = "";
 }

 public void SetDateToNow() {
 Date = DateTime.Now.ToString();
 }
}

Which looks like this

Let's go over the basic menu item. As you can see below you need to define a static function with
a MenuItem attribute, which you pass a string as the title for the menu item. You can put your

https://riptutorial.com/ 70

http://i.stack.imgur.com/zburD.png

menu item multiple levels deep by adding a / into the name.

[MenuItem("Example/DoSomething %#&d")]
private static void DoSomething() {
 // Execute some code
}

You cannot have a menu item at top-level. Your menu items need to be in a submenu!

The special characters at the end of the MenuItem's name are for shortcut keys, these are not a
requirement.

There are special characters that you can use for your shortcut keys, these are:

% - Ctrl on Windows, Cmd on OS X•
- Shift•
& - Alt•

That means that the shortcut %#&d stands for ctrl+shift+alt+D on Windows, and cmd+shift+alt+D
on OS X.

If you wish to use a shortcut without any special keys, so for instance just the 'D' key, you can
prepend the _ (underscore) character to the shortcut key that you wish to use.

There are some other special keys that are supported, which are:

LEFT, RIGHT, UP, DOWN - for the arrow keys•
F1..F12 - for the function keys•
HOME, END, PGUP, PGDN - for the navigation keys•

Shortcut keys need to be separated from any other text with a space

Next are validator menu items. Validator menu items allow menu items to be disabled (grayed-out,
non-clickable) when the condition is not met. An example for this could be that your menu item
acts on the current selection of GameObjects, which you can check for in the validator menu item.

[MenuItem("Example/DoAnotherThing", true)]
private static bool DoAnotherThingValidator() {
 return Selection.gameObjects.Length > 0;
}

[MenuItem("Example/DoAnotherThing _PGUP", false)]
private static void DoAnotherThing() {
 // Execute some code
}

For a validator menu item to work you need to create two static functions, both with the MenuItem
attribute and the same name (shortcut key doesn't matter). The difference between them is that
you're marking them as a validator function or not by passing a boolean parameter.

You can also define the order of the menu items by adding a priority. The priority is defined by an

https://riptutorial.com/ 71

integer that you pass as the third parameter. The smaller the number the higher up in the list, the
bigger the number the lower in the list. You can add a separator in between two menu items by
making sure there is at least 10 digits in between the priority of the menu items.

[MenuItem("Example/DoOne %a", false, 1)]
private static void DoOne() {
 // Execute some code
}

[MenuItem("Example/DoTwo #b", false, 2)]
private static void DoTwo() {
 // Execute some code
}

[MenuItem("Example/DoFurther &c", false, 13)]
private static void DoFurther() {
 // Execute some code
}

If you have a menu list that has a combination of prioritized and non-prioritized items,
the non-prioritized will be separated from the prioritized items.

Next is adding a menu item to the context menu of an already existing component. You have to
start the name of the MenuItem with CONTEXT (case sensitive), and have your function take in a
MenuCommand parameter.

The following snippet will add a context menu item to the Camera component.

[MenuItem("CONTEXT/Camera/DoCameraThing")]
private static void DoCameraThing(MenuCommand cmd) {
 // Execute some code
}

Which looks like this

The MenuCommand parameter gives you access to the component value and any userdata that

https://riptutorial.com/ 72

http://i.stack.imgur.com/Q8iml.png

gets send with it.

You can also add a context menu item to your own components by using the ContextMenu
attribute. This attribute only takes a name, no validation or priority, and has to be part of a non-
static method.

[ContextMenu("ContextSomething")]
private void ContentSomething() {
 // Execute some code
}

Which looks like this

You can also add context menu items to fields in your own component. These menu items will
appear when you context-click on the field that they belong to and can execute methods that you
have defined in that component. This way you can add for instance default values, or the current
date, as shown below.

[ContextMenuItem("Reset", "ResetDate")]
[ContextMenuItem("Set to Now", "SetDateToNow")]
public string Date = "";

public void ResetDate() {
 Date = "";
}

public void SetDateToNow() {
 Date = DateTime.Now.ToString();
}

Which looks like this

Gizmos

https://riptutorial.com/ 73

http://i.stack.imgur.com/EaAt4.png
http://i.stack.imgur.com/7h1RI.png

Gizmos are used for drawing shapes in the scene view. You can use these shapes to draw extra
information about your GameObjects, for instance the frustum they have or the detection range.

Below are two examples on how to do this

Example One

This example uses the OnDrawGizmos and OnDrawGizmosSelected (magic) methods.

public class GizmoExample : MonoBehaviour {

 public float GetDetectionRadius() {
 return 12.5f;
 }

 public float GetFOV() {
 return 25f;
 }

 public float GetMaxRange() {
 return 6.5f;
 }

 public float GetMinRange() {
 return 0;
 }

 public float GetAspect() {
 return 2.5f;
 }

 public void OnDrawGizmos() {
 var gizmoMatrix = Gizmos.matrix;
 var gizmoColor = Gizmos.color;

 Gizmos.matrix = Matrix4x4.TRS(transform.position, transform.rotation,
transform.lossyScale);
 Gizmos.color = Color.red;
 Gizmos.DrawFrustum(Vector3.zero, GetFOV(), GetMaxRange(), GetMinRange(), GetAspect()
);

 Gizmos.matrix = gizmoMatrix;
 Gizmos.color = gizmoColor;
 }

 public void OnDrawGizmosSelected() {
 Handles.DrawWireDisc(transform.position, Vector3.up, GetDetectionRadius());
 }
}

In this example we have two methods for drawing gizmos, one that draws when the object is
active (OnDrawGizmos) and one for when the object is selected in the hierarchy
(OnDrawGizmosSelected).

public void OnDrawGizmos() {

https://riptutorial.com/ 74

 var gizmoMatrix = Gizmos.matrix;
 var gizmoColor = Gizmos.color;

 Gizmos.matrix = Matrix4x4.TRS(transform.position, transform.rotation,
transform.lossyScale);
 Gizmos.color = Color.red;
 Gizmos.DrawFrustum(Vector3.zero, GetFOV(), GetMaxRange(), GetMinRange(), GetAspect());

 Gizmos.matrix = gizmoMatrix;
 Gizmos.color = gizmoColor;
}

First we save the gizmo matrix and color because we're going to change it and want to revert it
back when we are done to not affect any other gizmo drawing.

Next we want to draw the frustum that our object has, however, we need to change the Gizmos'
matrix so that it matches the position, rotation, and scale. We also set the Gizmos' color to red to
emphasize the frustum. When this is done we can call Gizmos.DrawFrustum to draw the frustum
in the scene view.

When we are done drawing what we want to draw, we reset the Gizmos' matrix and color.

public void OnDrawGizmosSelected() {
 Handles.DrawWireDisc(transform.position, Vector3.up, GetDetectionRadius());
}

We also want to draw a detection range when we select our GameObject. This is done through the
Handles class since the Gizmos class doesn't have any methods for discs.

Using this form of drawing gizmos results into the output shown below.

Example two

This example uses the DrawGizmo attribute.

public class GizmoDrawerExample {

 [DrawGizmo(GizmoType.Selected | GizmoType.NonSelected, typeof(GizmoExample))]
 public static void DrawGizmo(GizmoExample obj, GizmoType type) {
 var gizmoMatrix = Gizmos.matrix;
 var gizmoColor = Gizmos.color;

 Gizmos.matrix = Matrix4x4.TRS(obj.transform.position, obj.transform.rotation,
obj.transform.lossyScale);
 Gizmos.color = Color.red;
 Gizmos.DrawFrustum(Vector3.zero, obj.GetFOV(), obj.GetMaxRange(), obj.GetMinRange(),
obj.GetAspect());

 Gizmos.matrix = gizmoMatrix;
 Gizmos.color = gizmoColor;

 if ((type & GizmoType.Selected) == GizmoType.Selected) {
 Handles.DrawWireDisc(obj.transform.position, Vector3.up, obj.GetDetectionRadius()

https://riptutorial.com/ 75

);
 }
 }
}

This way allows you to separate the gizmo calls from your script. Most of this uses the same code
as the other example except for two things.

[DrawGizmo(GizmoType.Selected | GizmoType.NonSelected, typeof(GizmoExample))]
public static void DrawGizmo(GizmoExample obj, GizmoType type) {

You need to use the DrawGizmo attribute which takes the enum GizmoType as the first parameter
and a Type as the second parameter. The Type should be the type you want to use for drawing
the gizmo.

The method for drawing the gizmo needs to be static, public or non-public, and can be named
whatever you want. The first parameter is the type, which should match the type passed as the
second parameter in the attribute, and the second parameter is the enum GizmoType which
describes the current state of your object.

if ((type & GizmoType.Selected) == GizmoType.Selected) {
 Handles.DrawWireDisc(obj.transform.position, Vector3.up, obj.GetDetectionRadius());
}

The other difference is that for checking what the GizmoType of the object is, you need to do an
AND check on the parameter and the type you want.

Result

Not selected

https://riptutorial.com/ 76

Selected

https://riptutorial.com/ 77

http://i.stack.imgur.com/cOht5.png

Editor Window

Why an Editor Window?

As you may have seen, you can do a lot of things in a custom inspector (if you don't know what a
custom inspector is, check the example here :
http://www.riptutorial.com/unity3d/topic/2506/extending-the-editor. But at one point you may want
to implement a configuration panel, or a customized asset palette. In those cases you are going to
use an EditorWindow. Unity UI itself is composed of Editor Windows ; you can open them (usually
through the top bar), tab them, etc.

Create a basic EditorWindow

Simple Example

Creating an custom editor window is fairly simple. All you need to do is extend the EditorWindow
class and use the Init() and OnGUI() methods. Here is a simple example :

using UnityEngine;
using UnityEditor;

https://riptutorial.com/ 78

http://i.stack.imgur.com/ThAqu.png
http://www.riptutorial.com/unity3d/topic/2506/extending-the-editor
https://docs.unity3d.com/ScriptReference/EditorWindow.html

public class CustomWindow : EditorWindow
{
 // Add menu named "Custom Window" to the Window menu
 [MenuItem("Window/Custom Window")]
 static void Init()
 {
 // Get existing open window or if none, make a new one:
 CustomWindow window = (CustomWindow) EditorWindow.GetWindow(typeof(CustomWindow));
 window.Show();
 }

 void OnGUI()
 {
 GUILayout.Label("This is a custom Editor Window", EditorStyles.boldLabel);
 }
}

The 3 important points are :

Don't forget to extend EditorWindow1.
Use the Init() as provided in the example. EditorWindow.GetWindow is checking if a
CustomWindow is already created. If not, it will create a new instance. Using this you ensure
that you don't have several instances of your window at the same time

2.

Use OnGUI() like usual to display information in your window3.

The final result will look like this :

Going deeper

Of course you will probably want to manage or modify some assets using this EditorWindow. Here
is an example using the Selection class (to get the active Selection) and modifying the selected
asset properties via SerializedObject and SerializedProperty.

https://riptutorial.com/ 79

https://docs.unity3d.com/ScriptReference/EditorWindow.GetWindow.html
http://i.imgur.com/9O0TpTW.png
http://docs.unity3d.com/ScriptReference/Selection.html
http://docs.unity3d.com/ScriptReference/SerializedObject.html
http://docs.unity3d.com/ScriptReference/SerializedProperty.html

 using System.Linq;
 using UnityEngine;
 using UnityEditor;

 public class CustomWindow : EditorWindow
 {
 private AnimationClip _animationClip;
 private SerializedObject _serializedClip;
 private SerializedProperty _events;

 private string _text = "Hello World";

 // Add menu named "Custom Window" to the Window menu
 [MenuItem("Window/Custom Window")]
 static void Init()
 {
 // Get existing open window or if none, make a new one:
 CustomWindow window = (CustomWindow) EditorWindow.GetWindow(typeof(CustomWindow));
 window.Show();
 }

 void OnGUI()
 {
 GUILayout.Label("This is a custom Editor Window", EditorStyles.boldLabel);

 // You can use EditorGUI, EditorGUILayout and GUILayout classes to display
anything you want
 // A TextField example
 _text = EditorGUILayout.TextField("Text Field", _text);

 // Note that you can modify an asset or a gameobject using an EditorWindow. Here
is a quick example with an AnimationClip asset
 // The _animationClip, _serializedClip and _events are set in OnSelectionChange()

 if (_animationClip == null || _serializedClip == null || _events == null) return;

 // We can modify our serializedClip like we would do in a Custom Inspector. For
example we can grab its events and display their information

 GUILayout.Label(_animationClip.name, EditorStyles.boldLabel);

 for (var i = 0; i < _events.arraySize; i++)
 {
 EditorGUILayout.BeginVertical();

 EditorGUILayout.LabelField(
 "Event : " +
_events.GetArrayElementAtIndex(i).FindPropertyRelative("functionName").stringValue,
 EditorStyles.boldLabel);

EditorGUILayout.PropertyField(_events.GetArrayElementAtIndex(i).FindPropertyRelative("time"),
true,
 GUILayout.ExpandWidth(true));

EditorGUILayout.PropertyField(_events.GetArrayElementAtIndex(i).FindPropertyRelative("functionName"),

 true, GUILayout.ExpandWidth(true));

EditorGUILayout.PropertyField(_events.GetArrayElementAtIndex(i).FindPropertyRelative("floatParameter"),

 true, GUILayout.ExpandWidth(true));

https://riptutorial.com/ 80

 EditorGUILayout.PropertyField(_events.GetArrayElementAtIndex(i).FindPropertyRe
lative("intParameter"),
 true, GUILayout.ExpandWidth(true));
 EditorGUILayout.PropertyField(

_events.GetArrayElementAtIndex(i).FindPropertyRelative("objectReferenceParameter"), true,
 GUILayout.ExpandWidth(true));

 EditorGUILayout.Separator();
 EditorGUILayout.EndVertical();
 }

 // Of course we need to Apply the modified properties. We don't our changes won't
be saved
 _serializedClip.ApplyModifiedProperties();
 }

 /// This Message is triggered when the user selection in the editor changes. That's
when we should tell our Window to Repaint() if the user selected another AnimationClip
 private void OnSelectionChange()
 {
 _animationClip =
 Selection.GetFiltered(typeof(AnimationClip),
SelectionMode.Assets).FirstOrDefault() as AnimationClip;
 if (_animationClip == null) return;

 _serializedClip = new SerializedObject(_animationClip);
 _events = _serializedClip.FindProperty("m_Events");
 Repaint();
 }
 }

Here is the result :

https://riptutorial.com/ 81

Advanced topics

You can do some really advanced things in the editor, and the EditorWindow class is perfect for
displaying large amount of information. Most advanced assets on the Unity Asset Store (such as
NodeCanvas or PlayMaker) use EditorWindow for displaying for custom views.

Drawing in the SceneView

One interesting thing to do with an EditorWindow is to display information directly in your
SceneView. This way you can create a fully customized map/world editor, for example, using your
custom EditorWindow as an asset palette and listening to clicks in the SceneView to instantiate
new objects. Here is an example :

using UnityEngine;
using System;

https://riptutorial.com/ 82

http://i.stack.imgur.com/zCoMU.png

using UnityEditor;

public class CustomWindow : EditorWindow {

 private enum Mode {
 View = 0,
 Paint = 1,
 Erase = 2
 }

 private Mode CurrentMode = Mode.View;

 [MenuItem ("Window/Custom Window")]
 static void Init () {
 // Get existing open window or if none, make a new one:
 CustomWindow window = (CustomWindow)EditorWindow.GetWindow (typeof (CustomWindow));
 window.Show();
 }

 void OnGUI () {
 GUILayout.Label ("This is a custom Editor Window", EditorStyles.boldLabel);
 }

 void OnEnable() {
 SceneView.onSceneGUIDelegate = SceneViewGUI;
 if (SceneView.lastActiveSceneView) SceneView.lastActiveSceneView.Repaint();
 }

 void SceneViewGUI(SceneView sceneView) {
 Handles.BeginGUI();
 // We define the toolbars' rects here
 var ToolBarRect = new Rect((SceneView.lastActiveSceneView.camera.pixelRect.width / 6),
10, (SceneView.lastActiveSceneView.camera.pixelRect.width * 4 / 6) ,
SceneView.lastActiveSceneView.camera.pixelRect.height / 5);
 GUILayout.BeginArea(ToolBarRect);
 GUILayout.BeginHorizontal();
 GUILayout.FlexibleSpace();
 CurrentMode = (Mode) GUILayout.Toolbar(
 (int) CurrentMode,
 Enum.GetNames(typeof(Mode)),
 GUILayout.Height(ToolBarRect.height));
 GUILayout.FlexibleSpace();
 GUILayout.EndHorizontal();
 GUILayout.EndArea();
 Handles.EndGUI();
 }
}

This will display the a toolbar directly in your SceneView

https://riptutorial.com/ 83

Here is a quick glimpse of how far you can go :

https://riptutorial.com/ 84

http://i.stack.imgur.com/CQu1p.png

Read Extending the Editor online: https://riptutorial.com/unity3d/topic/2506/extending-the-editor

https://riptutorial.com/ 85

http://i.stack.imgur.com/0uty1.gif
https://riptutorial.com/unity3d/topic/2506/extending-the-editor

Chapter 13: Finding and collecting
GameObjects

Syntax

public static GameObject Find(string name);•
public static GameObject FindGameObjectWithTag(string tag);•
public static GameObject[] FindGameObjectsWithTag(string tag);•
public static Object FindObjectOfType(Type type);•
public static Object[] FindObjectsOfType(Type type);•

Remarks

Which method to use

Be careful while looking for GameObjects at runtime, as this can be resource consuming.
Especially : don't run FindObjectOfType or Find in Update, FixedUpdate or more generally in a
method called one or more time per frame.

Call runtime methods FindObjectOfType and Find only when necessary•
FindGameObjectWithTag has very good performance compared to other string based methods.
Unity keeps separate tabs on tagged objects and queries those instead of the entire scene.

•

For "static" GameObjects (such as UI elements and prefabs) created in the editor use
serializable GameObject reference in the editor

•

Keep your lists of GameObjects in List or Arrays that you manage yourself•
In general, if you instantiate a lot of GameObjects of the same type take a look at Object
Pooling

•

Cache your search results to avoid running the expensive search methods again and again.•

Going deeper

Besides the methods that come with Unity, it's relatively easy to design your own search and
collection methods.

In case of FindObjectsOfType(), you could have your scripts keep a list of themselves in a
static collection. It is far faster to iterate a ready list of objects than to search and inspect
objects from the scene.

•

Or make a script that stores their instances in a string based Dictionary, and you have a
simple tagging system you can expand upon.

•

Examples

https://riptutorial.com/ 86

http://www.riptutorial.com/unity3d/example/13109/inserted-to-scripts-in-edit-mode
http://www.riptutorial.com/unity3d/example/7471/object-pool
http://www.riptutorial.com/unity3d/example/7471/object-pool

Searching by GameObject's name

var go = GameObject.Find("NameOfTheObject");

Pros Cons

Easy to use Performance degrades along the number of gameobjects in scene

Strings are weak references and suspect to user errors

Searching by GameObject's tags

var go = GameObject.FindGameObjectWithTag("Player");

Pros Cons

Possible to search both single objects and
entire groups

Strings are weak references and suspect to
user errors.

Relatively fast and efficient
Code is not portable as tags are hard coded
in scripts.

Inserted to scripts in Edit Mode

[SerializeField]
GameObject[] gameObjects;

Pros Cons

Great performance Object collection is static

Portable code Can only refer to GameObjects from the same scene

Finding GameObjects by MonoBehaviour scripts

ExampleScript script = GameObject.FindObjectOfType<ExampleScript>();
GameObject go = script.gameObject;

FindObjectOfType() returns null if none is found.

Pros Cons

Strongly typed
Performance degrades along the number of
gameobjects needed to evaluate

Possible to search both single objects

https://riptutorial.com/ 87

Pros Cons

and entire groups

Find GameObjects by name from child objects

Transform tr = GetComponent<Transform>().Find("NameOfTheObject");
GameObject go = tr.gameObject;

Find returns null if none is found

Pros Cons

Limited, well defined search scope Strings are weak references

Read Finding and collecting GameObjects online: https://riptutorial.com/unity3d/topic/3793/finding-
and-collecting-gameobjects

https://riptutorial.com/ 88

https://riptutorial.com/unity3d/topic/3793/finding-and-collecting-gameobjects
https://riptutorial.com/unity3d/topic/3793/finding-and-collecting-gameobjects

Chapter 14: How to use asset packages

Examples

Asset packages

Asset Packages (with the file format of .unitypackage) are a commonly used way of distributing
Unity projects to other users. When working with peripherals that have their own SDKs (eg. Oculus
), you may be asked to download and import one of these packages.

Importing a .unitypackage

To import a package, go to the Unity menu bar and click on Assets > Import Package > Custom
Package..., then navigate to the .unitypackage file in the File Browser that appears.

Read How to use asset packages online: https://riptutorial.com/unity3d/topic/4491/how-to-use-
asset-packages

https://riptutorial.com/ 89

https://docs.unity3d.com/Manual/AssetPackages.html
https://developer.oculus.com/downloads/
http://i.stack.imgur.com/CAVyi.png
https://riptutorial.com/unity3d/topic/4491/how-to-use-asset-packages
https://riptutorial.com/unity3d/topic/4491/how-to-use-asset-packages

Chapter 15: Immediate Mode Graphical User
Interface System (IMGUI)

Syntax

public static void GUILayout.Label(string text, params GUILayoutOption[] options)•
public static bool GUILayout.Button(string text, params GUILayoutOption[] options)•
public static string GUILayout.TextArea(string text, params GUILayoutOption[] options)•

Examples

GUILayout

Old UI system tool, now used for fast and simple prototyping or debugging in game.

void OnGUI ()
{
 GUILayout.Label ("I'm a simple label text displayed in game.");

 if (GUILayout.Button("CLICK ME"))
 {
 GUILayout.TextArea ("This is a \n
 multiline comment.")
 }
}

GUILayout function works inside the OnGUI function.

Read Immediate Mode Graphical User Interface System (IMGUI) online:
https://riptutorial.com/unity3d/topic/6947/immediate-mode-graphical-user-interface-system--imgui-

https://riptutorial.com/ 90

https://riptutorial.com/unity3d/topic/6947/immediate-mode-graphical-user-interface-system--imgui-

Chapter 16: Importers and (Post)Processors

Syntax

AssetPostprocessor.OnPreprocessTexture()•

Remarks

Use String.Contains() to process only assets that have a given string in their asset paths.

if (assetPath.Contains("ProcessThisFolder"))
{
 // Process asset
}

Examples

Texture postprocessor

Create TexturePostProcessor.cs file anywhere in Assets folder:

using UnityEngine;
using UnityEditor;

public class TexturePostProcessor : AssetPostprocessor
{
 void OnPostprocessTexture(Texture2D texture)
 {
 TextureImporter importer = assetImporter as TextureImporter;
 importer.anisoLevel = 1;
 importer.filterMode = FilterMode.Bilinear;
 importer.mipmapEnabled = true;
 importer.npotScale = TextureImporterNPOTScale.ToLarger;
 importer.textureType = TextureImporterType.Advanced;
 }
}

Now, every time Unity imports a texture it will have the following parameters:

https://riptutorial.com/ 91

If you use postprocessor, you can not change texture parameters by manipulating
Import Settings in editor.
When you hit Apply button the texture will be reimported and postprocessor code will
run again.

A Basic Importer

Assume you have a custom file you want to create an importer for. It could be an .xls file or
whatever. In this case we're going to use a JSON file because it's easy but we're going to pick a
custom extension to make it easy to tell which files are ours?

Let's assume the format of the JSON file is

{
 "someValue": 123,
 "someOtherValue": 456.297,
 "someBoolValue": true,
 "someStringValue": "this is a string",
}

Let's save that as Example.test somewhere outside of assets for now.

Next make a MonoBehaviour with a custom class just for the data. The custom class is solely to
make it easy to deserialize the JSON. You do NOT have to use a custom class but it makes this
example shorter. We'll save this in TestData.cs

using UnityEngine;
using System.Collections;

public class TestData : MonoBehaviour {

https://riptutorial.com/ 92

http://i.stack.imgur.com/gkhQK.png

 [System.Serializable]
 public class Data {
 public int someValue = 0;
 public float someOtherValue = 0.0f;
 public bool someBoolValue = false;
 public string someStringValue = "";
 }

 public Data data = new Data();
}

If you were to manually add that script to a GameObject you'd see something like

Next make an Editor folder somewhere under Assets. I can be at any level. Inside the Editor folder
make a TestDataAssetPostprocessor.cs file and put this in it.

using UnityEditor;
using UnityEngine;
using System.Collections;

public class TestDataAssetPostprocessor : AssetPostprocessor
{
 const string s_extension = ".test";

 // NOTE: Paths start with "Assets/"
 static bool IsFileWeCareAbout(string path)
 {
 return System.IO.Path.GetExtension(path).Equals(
 s_extension,
 System.StringComparison.Ordinal);
 }

 static void HandleAddedOrChangedFile(string path)
 {
 string text = System.IO.File.ReadAllText(path);
 // should we check for error if the file can't be parsed?
 TestData.Data newData = JsonUtility.FromJson<TestData.Data>(text);

 string prefabPath = path + ".prefab";
 // Get the existing prefab
 GameObject existingPrefab =
 AssetDatabase.LoadAssetAtPath(prefabPath, typeof(Object)) as GameObject;
 if (!existingPrefab)
 {
 // If no prefab exists make one
 GameObject newGameObject = new GameObject();
 newGameObject.AddComponent<TestData>();
 PrefabUtility.CreatePrefab(prefabPath,
 newGameObject,
 ReplacePrefabOptions.Default);

https://riptutorial.com/ 93

http://i.stack.imgur.com/Kvqee.png

 GameObject.DestroyImmediate(newGameObject);
 existingPrefab =
 AssetDatabase.LoadAssetAtPath(prefabPath, typeof(Object)) as GameObject;
 }

 TestData testData = existingPrefab.GetComponent<TestData>();
 if (testData != null)
 {
 testData.data = newData;
 EditorUtility.SetDirty(existingPrefab);
 }
 }

 static void HandleRemovedFile(string path)
 {
 // Decide what you want to do here. If the source file is removed
 // do you want to delete the prefab? Maybe ask if you'd like to
 // remove the prefab?
 // NOTE: Because you might get many calls (like you deleted a
 // subfolder full of .test files you might want to get all the
 // filenames and ask all at once ("delete all these prefabs?").
 }

 static void OnPostprocessAllAssets (string[] importedAssets, string[] deletedAssets,
string[] movedAssets, string[] movedFromAssetPaths)
 {
 foreach (var path in importedAssets)
 {
 if (IsFileWeCareAbout(path))
 {
 HandleAddedOrChangedFile(path);
 }
 }

 foreach (var path in deletedAssets)
 {
 if (IsFileWeCareAbout(path))
 {
 HandleRemovedFile(path);
 }
 }

 for (var ii = 0; ii < movedAssets.Length; ++ii)
 {
 string srcStr = movedFromAssetPaths[ii];
 string dstStr = movedAssets[ii];

 // the source was moved, let's move the corresponding prefab
 // NOTE: We don't handle the case if there already being
 // a prefab of the same name at the destination
 string srcPrefabPath = srcStr + ".prefab";
 string dstPrefabPath = dstStr + ".prefab";

 AssetDatabase.MoveAsset(srcPrefabPath, dstPrefabPath);
 }
 }
}

With that saved you should be able to drag and drop the Example.test file we created above into
your Unity Assets folder and you should see the corresponding prefab created. If you edit

https://riptutorial.com/ 94

Example.test you'll see the data in the prefab is updated immediately. If you drag the prefab into
the scene hierarchy you'll see it update as well as Example.test changes. If you move Example.test
to another folder the corresponding prefab will move with it. If you change a field on an instance
then change the Example.test file you'll see only the fields you didn't modify on the instance get
updated.

Improvements: In the example above, after you drag Example.test into your Assets folder you'll see
there's both an Example.test and an Example.test.prefab. It would be great to know to make it work
more like the model importers work we're you'd magically only see Example.test and it's an
AssetBundle or some such thing. If you know how please provide that example

Read Importers and (Post)Processors online: https://riptutorial.com/unity3d/topic/5279/importers-
and--post-processors

https://riptutorial.com/ 95

https://riptutorial.com/unity3d/topic/5279/importers-and--post-processors
https://riptutorial.com/unity3d/topic/5279/importers-and--post-processors

Chapter 17: Input System

Examples

Reading Key Press and difference between GetKey, GetKeyDown and
GetKeyUp

Input must must read from the Update function.

Reference for all the available Keycode enum.

1. Reading key press with Input.GetKey:

Input.GetKey will repeatedly return true while the user holds down the specified key. This can be
used to repeatedly fire a weapon while holding the specified key down. Below is an example of
bullet auto-fire when the Space key is held down. The player doesn't have to press and release
the key over and over again.

public GameObject bulletPrefab;
public float shootForce = 50f;

void Update()
{
 if (Input.GetKey(KeyCode.Space))
 {
 Debug.Log("Shooting a bullet while SpaceBar is held down");

 //Instantiate bullet
 GameObject bullet = Instantiate(bulletPrefab, transform.position, transform.rotation)
as GameObject;

 //Get the Rigidbody from the bullet then add a force to the bullet
 bullet.GetComponent<Rigidbody>().AddForce(bullet.transform.forward * shootForce);
 }
}

2.Reading key press with Input.GetKeyDown:

Input.GetKeyDown will true only once when the specified key is pressed. This is the key difference
between Input.GetKey and Input.GetKeyDown. One example use of its use is to toggle a UI or
flashlight or an item on/off.

public Light flashLight;
bool enableFlashLight = false;

void Update()
{
 if (Input.GetKeyDown(KeyCode.Space))
 {
 //Toggle Light
 enableFlashLight = !enableFlashLight;

https://riptutorial.com/ 96

https://docs.unity3d.com/ScriptReference/KeyCode.html

 if (enableFlashLight)
 {
 flashLight.enabled = true;
 Debug.Log("Light Enabled!");
 }
 else
 {
 flashLight.enabled = false;
 Debug.Log("Light Disabled!");
 }
 }
}

3.Reading key press with Input.GetKeyUp:

This is the exact opposite of Input.GetKeyDown. It is used to detect when key-press is
released/lifted. Just like Input.GetKeyDown, it returns true only once. For example, you can enable
light when key is held down with Input.GetKeyDown then disable the light when key is released with
Input.GetKeyUp.

public Light flashLight;
void Update()
{
 //Disable Light when Space Key is pressed
 if (Input.GetKeyDown(KeyCode.Space))
 {
 flashLight.enabled = true;
 Debug.Log("Light Enabled!");
 }

 //Disable Light when Space Key is released
 if (Input.GetKeyUp(KeyCode.Space))
 {
 flashLight.enabled = false;
 Debug.Log("Light Disabled!");
 }
}

Read Accelerometer Sensor (Basic)

Input.acceleration is used to read the accelerometer sensor. It returns Vector3 as a result which
contains x,y and z axis values in 3D space.

void Update()
{
 Vector3 acclerometerValue = rawAccelValue();
 Debug.Log("X: " + acclerometerValue.x + " Y: " + acclerometerValue.y + " Z: " +
acclerometerValue.z);
}

Vector3 rawAccelValue()
{
 return Input.acceleration;
}

https://riptutorial.com/ 97

Read Accelerometer Sensor (Advance)

Using raw values directly from the accelerometer sensor to move or rotate a GameObject can
cause problems such as jerky movements or vibrations. It is recommended to smooth out the
values before using them. In fact, values from the accelerometer sensor should always be
smoothed out before use. This can be accomplished with a low pass filter and this is where
Vector3.Lerp comes into place.

//The lower this value, the less smooth the value is and faster Accel is updated. 30 seems
fine for this
const float updateSpeed = 30.0f;

float AccelerometerUpdateInterval = 1.0f / updateSpeed;
float LowPassKernelWidthInSeconds = 1.0f;
float LowPassFilterFactor = 0;
Vector3 lowPassValue = Vector3.zero;

void Start()
{
 //Filter Accelerometer
 LowPassFilterFactor = AccelerometerUpdateInterval / LowPassKernelWidthInSeconds;
 lowPassValue = Input.acceleration;
}

void Update()
{

 //Get Raw Accelerometer values (pass in false to get raw Accelerometer values)
 Vector3 rawAccelValue = filterAccelValue(false);
 Debug.Log("RAW X: " + rawAccelValue.x + " Y: " + rawAccelValue.y + " Z: " +
rawAccelValue.z);

 //Get smoothed Accelerometer values (pass in true to get Filtered Accelerometer values)
 Vector3 filteredAccelValue = filterAccelValue(true);
 Debug.Log("FILTERED X: " + filteredAccelValue.x + " Y: " + filteredAccelValue.y + " Z: "
+ filteredAccelValue.z);
}

//Filter Accelerometer
Vector3 filterAccelValue(bool smooth)
{
 if (smooth)
 lowPassValue = Vector3.Lerp(lowPassValue, Input.acceleration, LowPassFilterFactor);
 else
 lowPassValue = Input.acceleration;

 return lowPassValue;
}

Read Accelerometer Sensor(Precision)

Read the accelerometer Sensor with precision.

This example allocates memory:

void Update()

https://riptutorial.com/ 98

{
 //Get Precise Accelerometer values
 Vector3 accelValue = preciseAccelValue();
 Debug.Log("PRECISE X: " + accelValue.x + " Y: " + accelValue.y + " Z: " + accelValue.z);

}

Vector3 preciseAccelValue()
{
 Vector3 accelResult = Vector3.zero;
 foreach (AccelerationEvent tempAccelEvent in Input.accelerationEvents)
 {
 accelResult = accelResult + (tempAccelEvent.acceleration * tempAccelEvent.deltaTime);
 }
 return accelResult;
}

This example does not allocates memory:

void Update()
{
 //Get Precise Accelerometer values
 Vector3 accelValue = preciseAccelValue();
 Debug.Log("PRECISE X: " + accelValue.x + " Y: " + accelValue.y + " Z: " + accelValue.z);

}

Vector3 preciseAccelValue()
{
 Vector3 accelResult = Vector3.zero;
 for (int i = 0; i < Input.accelerationEventCount; ++i)
 {
 AccelerationEvent tempAccelEvent = Input.GetAccelerationEvent(i);
 accelResult = accelResult + (tempAccelEvent.acceleration * tempAccelEvent.deltaTime);
 }
 return accelResult;
}

Note that this is not filtered. Please look here for how to smooth accelerometer values to remove
noise.

Read Mouse Button (Left, Middle, Right) Clicks

These functions are used to check Mouse Button Clicks.

Input.GetMouseButton(int button);•
Input.GetMouseButtonDown(int button);•
Input.GetMouseButtonUp(int button);•

They all take the-same parameter.

0 = Left Mouse Click.•
1 = Right Mouse Click.•
2 = Middle Mouse Click.•

GetMouseButton is used to detect when mouse button is continuously held down. It returns true

https://riptutorial.com/ 99

http://www.riptutorial.com/unity3d/example/12177/read-accelerometer-sensor--advance-

while the specified mouse button is being held down.

void Update()
{
 if (Input.GetMouseButton(0))
 {
 Debug.Log("Left Mouse Button Down");
 }

 if (Input.GetMouseButton(1))
 {
 Debug.Log("Right Mouse Button Down");
 }

 if (Input.GetMouseButton(2))
 {
 Debug.Log("Middle Mouse Button Down");
 }
}

GetMouseButtonDown is used to detect when there is mouse click. It returns true if it is pressed once.
It won't return true again until the mouse button is released and pressed again.

void Update()
{
 if (Input.GetMouseButtonDown(0))
 {
 Debug.Log("Left Mouse Button Clicked");
 }

 if (Input.GetMouseButtonDown(1))
 {
 Debug.Log("Right Mouse Button Clicked");
 }

 if (Input.GetMouseButtonDown(2))
 {
 Debug.Log("Middle Mouse Button Clicked");
 }
}

GetMouseButtonUp is used to detect when the specififed mouse button is released. This is will only
return true once the specified mouse button is released. To return true again, it has to be pressed
and released again.

void Update()
{
 if (Input.GetMouseButtonUp(0))
 {
 Debug.Log("Left Mouse Button Released");
 }

 if (Input.GetMouseButtonUp(1))
 {
 Debug.Log("Right Mouse Button Released");
 }

https://riptutorial.com/ 100

 if (Input.GetMouseButtonUp(2))
 {
 Debug.Log("Middle Mouse Button Released");
 }
}

Read Input System online: https://riptutorial.com/unity3d/topic/3413/input-system

https://riptutorial.com/ 101

https://riptutorial.com/unity3d/topic/3413/input-system

Chapter 18: Layers

Examples

Layer usage

Unity layers are similar to tags as in that they can be used to define objects that should be
interacted with or should behave in a certain manner, however, layers are mainly used with
functions in the Physics class: Unity Documentation - Physics

Layers are represented by an integer and can be passed to the functions in this manner:

using UnityEngine;
class LayerExample {

 public int layer;

 void Start()
 {
 Collider[] colliders = Physics.OverlapSphere(transform.position, 5f, layer);
 }
}

Using a layer in this manner will include only Colliders whose GameObjects have the layer
specified in the calculations done. This makes further logic simpler as well as improving
performance.

LayerMask Structure

The LayerMask structure is an interface that functions almost exactly like passing an integer to the
function in question. However, its biggest benefit is allowing the user to select the layer in question
from a drop-down menu in the inspector.

using UnityEngine;
class LayerMaskExample{

 public LayerMask mask;
 public Vector3 direction;

 void Start()
 {
 if(Physics.Raycast(transform.position, direction, 35f, mask))
 {
 Debug.Log("Raycast hit");
 }
 {
}

It also has multiple static functions that allow for converting layer names to indices or indices to
layer names.

https://riptutorial.com/ 102

https://docs.unity3d.com/ScriptReference/Physics.html

using UnityEngine;
class NameToLayerExample{

 void Start()
 {
 int layerindex = LayerMask.NameToLayer("Obstacle");
 {
}

In order to make Layer checking easy define the following extension method.

public static bool IsInLayerMask(this GameObject @object, LayerMask layerMask)
{
 bool result = (1 << @object.layer & layerMask) == 0;

 return result;
}

This method will allow you to check whether a gameobject is in a layermask (selected in the
editor) or not.

Read Layers online: https://riptutorial.com/unity3d/topic/4762/layers

https://riptutorial.com/ 103

https://riptutorial.com/unity3d/topic/4762/layers

Chapter 19: Mobile platforms

Syntax

public static int Input.touchCount•
public static Touch Input.GetTouch(int index)•

Examples

Detecting Touch

To detect a touch in Unity it's quite simple we just have to use Input.GetTouch() and pass it an
index.

using UnityEngine;
using System.Collections;

public class TouchExample : MonoBehaviour {
 void Update() {
 if (Input.touchCount > 0 && Input.GetTouch(0).phase == TouchPhase.Began)
 {
 //Do Stuff
 }
 }
}

or

using UnityEngine;
using System.Collections;

public class TouchExample : MonoBehaviour {
 void Update() {
 for(int i = 0; i < Input.touchCount; i++)
 {
 if (Input.GetTouch(i).phase == TouchPhase.Began)
 {
 //Do Stuff
 }
 }
 }
}

These examples gets the touch of the last game frame.

TouchPhase

Inside of the TouchPhase enum there are 5 different kind of TouchPhase's

https://riptutorial.com/ 104

Began - a finger touched the screen•
Moved - a finger moved on the screen•
Stationary - a finger is on the screen but is not moving•
Ended - a finger was lifted from the screen•
Canceled - the system cancelled tracking for the touch•

For example to move the object this script is attached to across the screen based on touch.

public class TouchMoveExample : MonoBehaviour
{
 public float speed = 0.1f;

 void Update () {
 if(Input.touchCount > 0 && Input.GetTouch(0).phase == TouchPhase.Moved)
 {
 Vector2 touchDeltaPosition = Input.GetTouch(0).deltaPosition;
 transform.Translate(-touchDeltaPosition.x * speed, -touchDeltaPosition.y * speed,
0);
 }
 }
}

Read Mobile platforms online: https://riptutorial.com/unity3d/topic/6285/mobile-platforms

https://riptutorial.com/ 105

https://riptutorial.com/unity3d/topic/6285/mobile-platforms

Chapter 20: MonoBehaviour class
implementation

Examples

No overridden methods

The reason you do not have to override Awake, Start, Update and other method is because they are
not virtual methods defined in a base class.

The first time your script gets accessed, the scripting runtime looks through the script to see if
some methods are defined. If they are, that information is cached and the methods are added to
their respective list. These lists are then simply looped through at different times.

The reason these methods are not virtual is because of performance. If all the scripts would have
Awake, Start, OnEnable, OnDisable, Update, LateUpdate, and FixedUpdate, then these would all be added
to their lists what would mean that all these methods get executed. Normally this wouldn't be a big
problem, however, all these method calls are from the native side (C++) to the managed side (C#)
which comes with a performance cost.

Now imagine this, all these methods are in their lists and some/most of them might not even have
an actual method body. This would mean that there is a huge amount of performance wasted on
calling methods that do not even do anything. To prevent this, Unity opted out of using virtual
methods and made a messaging system that makes sure that these methods only get called when
they are actually defined, saving unnecessary method calls.

You can read more on the matter on an Unity blog over here: 10000 Update() Calls and more on
IL2CPP over here: An Introduction to IL2CPP Internals

Read MonoBehaviour class implementation online:
https://riptutorial.com/unity3d/topic/2304/monobehaviour-class-implementation

https://riptutorial.com/ 106

http://blogs.unity3d.com/2015/12/23/1k-update-calls/
http://blogs.unity3d.com/2015/05/06/an-introduction-to-ilcpp-internals/
https://riptutorial.com/unity3d/topic/2304/monobehaviour-class-implementation

Chapter 21: Multiplatform development

Examples

Compiler Definitions

Compiler definitions run platform specific code. Using them you can make small differences
between various platforms.

Trigger Game Center achievements on apple devices and google play achievements on
Android devices.

•

Change the icons in menus (windows logo in windows, Linux penguin in Linux).•
Possibly have platform specific mechanics depending on the platform.•
And much more...•

void Update(){

#if UNITY_IPHONE
 //code here is only called when running on iPhone
#endif

#if UNITY_STANDALONE_WIN && !UNITY_EDITOR
 //code here is only ran in a unity game running on windows outside of the editor
#endif

//other code that will be ran regardless of platform

}

A complete list of Unity compiler definitions can be found here

Organizing platform specific methods to partial classes

Partial classes provide a clean way to separate core logic of your scripts from platform specific
methods.

Partial classes and methods are marked with the keyword partial. This signals the compiler to
leave the class "open" and look in other files for the rest of the implementation.

// ExampleClass.cs
using UnityEngine;

public partial class ExampleClass : MonoBehaviour
{
 partial void PlatformSpecificMethod();

 void OnEnable()
 {
 PlatformSpecificMethod();
 }
}

https://riptutorial.com/ 107

https://docs.unity3d.com/Manual/PlatformDependentCompilation.html
http://www.riptutorial.com/csharp/topic/3674/partial-class-and-methods

Now we can create files for our platform specific scripts that implement the partial method. Partial
methods can have parameters (also ref) but must return void.

// ExampleClass.Iphone.cs

#if UNITY_IPHONE
using UnityEngine;

public partial class ExampleClass
{
 partial void PlatformSpecificMethod()
 {
 Debug.Log("I am an iPhone");
 }
}
#endif

// ExampleClass.Android.cs

#if UNITY_ANDROID
using UnityEngine;

public partial class ExampleClass
{
 partial void PlatformSpecificMethod()
 {
 Debug.Log("I am an Android");
 }
}
#endif

If a partial method is not implemented, the compiler will omit the call.

Tip: This pattern is useful when creating Editor specific methods as well.

Read Multiplatform development online: https://riptutorial.com/unity3d/topic/4816/multiplatform-
development

https://riptutorial.com/ 108

https://riptutorial.com/unity3d/topic/4816/multiplatform-development
https://riptutorial.com/unity3d/topic/4816/multiplatform-development

Chapter 22: Networking

Remarks

Headless mode in Unity

If you are building a Server to deploy in Linux, the Build settings have a "Headless mode" option.
An application build with this option doesn't display anything and doesn't read user input, which is
usually what we want for a Server.

https://riptutorial.com/ 109

https://i.stack.imgur.com/iDxCm.png

Examples

Creating a server, a client, and sending a message.

Unity networking provides the High Level API (HLA) to handle network communications
abstracting from low level implementations.

In this example we will see how to create a Server that can communicate with one or multiple
clients.

The HLA allows us to easily serialize a class and send objects of this class over the network.

The Class we are using to serialize

This class have to inherance from MessageBase, in this example we will just send a string inside
this class.

using System;
using UnityEngine.Networking;

public class MyNetworkMessage : MessageBase
{
 public string message;
}

Creating a Server

We create a server that listen to the port 9999, allows a maximum of 10 connections, and read
objects from the network of our custom class.

The HLA associates different types of message to an id. There are default messages type defined
in the MsgType class from Unity Networking. For example the connect type have id 32 and it is
called in the server when a client connects to it, or in the client when it connects to a server. You
can register handlers to manage the different types of message.

When you are sending a custom class, like our case, we define a handlers with a new id
associated to the class we are sending over the network.

using UnityEngine;
using System.Collections;
using UnityEngine.Networking;

public class Server : MonoBehaviour {

 int port = 9999;
 int maxConnections = 10;

 // The id we use to identify our messages and register the handler

https://riptutorial.com/ 110

 short messageID = 1000;

 // Use this for initialization
 void Start () {
 // Usually the server doesn't need to draw anything on the screen
 Application.runInBackground = true;
 CreateServer();
 }

 void CreateServer() {
 // Register handlers for the types of messages we can receive
 RegisterHandlers ();

 var config = new ConnectionConfig ();
 // There are different types of channels you can use, check the official documentation
 config.AddChannel (QosType.ReliableFragmented);
 config.AddChannel (QosType.UnreliableFragmented);

 var ht = new HostTopology (config, maxConnections);

 if (!NetworkServer.Configure (ht)) {
 Debug.Log ("No server created, error on the configuration definition");
 return;
 } else {
 // Start listening on the defined port
 if(NetworkServer.Listen (port))
 Debug.Log ("Server created, listening on port: " + port);
 else
 Debug.Log ("No server created, could not listen to the port: " + port);
 }
 }

 void OnApplicationQuit() {
 NetworkServer.Shutdown ();
 }

 private void RegisterHandlers () {
 // Unity have different Messages types defined in MsgType
 NetworkServer.RegisterHandler (MsgType.Connect, OnClientConnected);
 NetworkServer.RegisterHandler (MsgType.Disconnect, OnClientDisconnected);

 // Our message use his own message type.
 NetworkServer.RegisterHandler (messageID, OnMessageReceived);
 }

 private void RegisterHandler(short t, NetworkMessageDelegate handler) {
 NetworkServer.RegisterHandler (t, handler);
 }

 void OnClientConnected(NetworkMessage netMessage)
 {
 // Do stuff when a client connects to this server

 // Send a thank you message to the client that just connected
 MyNetworkMessage messageContainer = new MyNetworkMessage();
 messageContainer.message = "Thanks for joining!";

 // This sends a message to a specific client, using the connectionId
 NetworkServer.SendToClient(netMessage.conn.connectionId,messageID,messageContainer);

 // Send a message to all the clients connected

https://riptutorial.com/ 111

 messageContainer = new MyNetworkMessage();
 messageContainer.message = "A new player has conencted to the server";

 // Broadcast a message a to everyone connected
 NetworkServer.SendToAll(messageID,messageContainer);
 }

 void OnClientDisconnected(NetworkMessage netMessage)
 {
 // Do stuff when a client dissconnects
 }

 void OnMessageReceived(NetworkMessage netMessage)
 {
 // You can send any object that inherence from MessageBase
 // The client and server can be on different projects, as long as the MyNetworkMessage
or the class you are using have the same implementation on both projects
 // The first thing we do is deserialize the message to our custom type
 var objectMessage = netMessage.ReadMessage<MyNetworkMessage>();
 Debug.Log("Message received: " + objectMessage.message);

 }
}

The Client

Now we create a Client

using System;
using UnityEngine;
using UnityEngine.Networking;

public class Client : MonoBehaviour
{
 int port = 9999;
 string ip = "localhost";

 // The id we use to identify our messages and register the handler
 short messageID = 1000;

 // The network client
 NetworkClient client;

 public Client ()
 {
 CreateClient();
 }

 void CreateClient()
 {
 var config = new ConnectionConfig ();

 // Config the Channels we will use
 config.AddChannel (QosType.ReliableFragmented);
 config.AddChannel (QosType.UnreliableFragmented);

 // Create the client ant attach the configuration

https://riptutorial.com/ 112

 client = new NetworkClient ();
 client.Configure (config,1);

 // Register the handlers for the different network messages
 RegisterHandlers();

 // Connect to the server
 client.Connect (ip, port);
 }

 // Register the handlers for the different message types
 void RegisterHandlers () {

 // Unity have different Messages types defined in MsgType
 client.RegisterHandler (messageID, OnMessageReceived);
 client.RegisterHandler(MsgType.Connect, OnConnected);
 client.RegisterHandler(MsgType.Disconnect, OnDisconnected);
 }

 void OnConnected(NetworkMessage message) {
 // Do stuff when connected to the server

 MyNetworkMessage messageContainer = new MyNetworkMessage();
 messageContainer.message = "Hello server!";

 // Say hi to the server when connected
 client.Send(messageID,messageContainer);
 }

 void OnDisconnected(NetworkMessage message) {
 // Do stuff when disconnected to the server
 }

 // Message received from the server
 void OnMessageReceived(NetworkMessage netMessage)
 {
 // You can send any object that inherence from MessageBase
 // The client and server can be on different projects, as long as the MyNetworkMessage
or the class you are using have the same implementation on both projects
 // The first thing we do is deserialize the message to our custom type
 var objectMessage = netMessage.ReadMessage<MyNetworkMessage>();

 Debug.Log("Message received: " + objectMessage.message);
 }
}

Read Networking online: https://riptutorial.com/unity3d/topic/5671/networking

https://riptutorial.com/ 113

https://riptutorial.com/unity3d/topic/5671/networking

Chapter 23: Object Pooling

Examples

Object Pool

Sometimes when you make a game you need to create and destroy a lot of objects of the same
type over and over again. You can simply do this by making a prefab and instantiate/destroy this
whenever you need to, however, doing this is inefficient and can slow your game down.

One way to get around this issue is object pooling. Basically what this means is that you have a
pool (with or without a limit to the amount) of objects that you are going to reuse whenever you
can to prevent unnecessary instantiating or destroying.

Below is an example of a simple object pool

public class ObjectPool : MonoBehaviour
{
 public GameObject prefab;
 public int amount = 0;
 public bool populateOnStart = true;
 public bool growOverAmount = true;

 private List<GameObject> pool = new List<GameObject>();

 void Start()
 {
 if (populateOnStart && prefab != null && amount > 0)
 {
 for (int i = 0; i < amount; i++)
 {
 var instance = Instantiate(Prefab);
 instance.SetActive(false);
 pool.Add(instance);
 }
 }
 }

 public GameObject Instantiate (Vector3 position, Quaternion rotation)
 {
 foreach (var item in pool)
 {
 if (!item.activeInHierarchy)
 {
 item.transform.position = position;
 item.transform.rotation = rotation;
 item.SetActive(true);
 return item;
 }
 }

 if (growOverAmount)
 {
 var instance = (GameObject)Instantiate(prefab, position, rotation);

https://riptutorial.com/ 114

 pool.Add(instance);
 return instance;
 }

 return null;
 }
}

Let's go over the variables first

public GameObject prefab;
public int amount = 0;
public bool populateOnStart = true;
public bool growOverAmount = true;

private List<GameObject> pool = new List<GameObject>();

GameObject prefab: this is the prefab that the object pool will use to instantiate new objects
into the pool.

•

int amount: This is the maximum amount of items that can be in the pool. If you want to
instantiate another item and the pool has already reached its limit then another item from the
pool will be used.

•

bool populateOnStart: you can choose to populate the pool on start or not. Doing so will fill up
the pool with instances of the prefab so that the first time you call Instantiate you will get an
already existing object

•

bool growOverAmount: Setting this to true allows the pool to grow whenever more than the
amount are requested in a certain timeframe. You are not always able to accurately predict
the amount of items to put in your pool so this will add more to your pool when needed.

•

List<GameObject> pool: this is the pool, the place where all your instantiated/destroyed objects
are stored.

•

Now let's check out the Start function

void Start()
{
 if (populateOnStart && prefab != null && amount > 0)
 {
 for (int i = 0; i < amount; i++)
 {
 var instance = Instantiate(Prefab);
 instance.SetActive(false);
 pool.Add(instance);
 }
 }
}

In the start function we check if we should populate the list on start and do so if the prefab has
been set and the amount is bigger than 0 (otherwise we would be creating indefinitely).

This is just a simple for loop instantiating new objects and putting them in the pool. One thing to
pay attention to is that we set all the instances to inactive. This way they are not visible in the
game yet.

https://riptutorial.com/ 115

Next, there is the Instantiate function, which is where most of the magic happens

public GameObject Instantiate (Vector3 position, Quaternion rotation)
{
 foreach (var item in pool)
 {
 if (!item.activeInHierarchy)
 {
 item.transform.position = position;
 item.transform.rotation = rotation;
 item.SetActive(true);
 return item;
 }
 }

 if (growOverAmount)
 {
 var instance = (GameObject)Instantiate(prefab, position, rotation);
 pool.Add(instance);
 return instance;
 }

 return null;
}

The Instantiate function looks just like Unity's own Instantiate function, except the prefab has
already been provided above as a class member.

The first step of the Instantiate function is checking to see if there is an inactive object in the pool
right now. This means that we can reuse that object and give it back to the requester. If there is an
inactive object in the pool we set the position and the rotation, set it to be active (otherwise it could
be reused by accident if you forget to activate it) and return it to the requester.

The second step only happens if there are no inactive items in the pool and the pool is allowed to
grow over the initial amount. What happens is simple: another instance of the prefab is created
and added to the pool. Allowing growth of the pool helps you in having the right amount of objects
in the pool.

The third "step" only happens if there are no inactive items in the pool and the pool is not allowed
to grow. When this happens the requester will receive a null GameObject which means that
nothing was available and should be handled properly to prevent NullReferenceExceptions.

Important!

To make sure your items get back into the pool you should not destroy the game objects. The only
thing you need to do is set them to inactive and that will make them available for reusage through
the pool.

Simple object pool

Below is an example of an object pool that allows renting and returning of a given object type. To
create the object pool a Func for the create function and an Action to destroy the object are
required to give the user flexibility. On requesting an object when the pool is empty a new object

https://riptutorial.com/ 116

will be created and on requesting when the pool has objects then objects are removed from the
pool and returned.

Object Pool

public class ResourcePool<T> where T : class
{
 private readonly List<T> objectPool = new List<T>();
 private readonly Action<T> cleanUpAction;
 private readonly Func<T> createAction;

 public ResourcePool(Action<T> cleanUpAction, Func<T> createAction)
 {
 this.cleanUpAction = cleanUpAction;
 this.createAction = createAction;
 }

 public void Return(T resource)
 {
 this.objectPool.Add(resource);
 }

 private void PurgeSingleResource()
 {
 var resource = this.Rent();
 this.cleanUpAction(resource);
 }

 public void TrimResourcesBy(int count)
 {
 count = Math.Min(count, this.objectPool.Count);
 for (int i = 0; i < count; i++)
 {
 this.PurgeSingleResource();
 }
 }

 public T Rent()
 {
 int count = this.objectPool.Count;
 if (count == 0)
 {
 Debug.Log("Creating new object.");
 return this.createAction();
 }
 else
 {
 Debug.Log("Retrieving existing object.");
 T resource = this.objectPool[count-1];
 this.objectPool.RemoveAt(count-1);
 return resource;
 }
 }
}

Sample usage

public class Test : MonoBehaviour
{

https://riptutorial.com/ 117

 private ResourcePool<GameObject> objectPool;

 [SerializeField]
 private GameObject enemyPrefab;

 void Start()
 {
 this.objectPool = new ResourcePool<GameObject>(Destroy,() =>
Instantiate(this.enemyPrefab));
 }

 void Update()
 {
 // To get existing object or create new from pool
 var newEnemy = this.objectPool.Rent();
 // To return object to pool
 this.objectPool.Return(newEnemy);
 // In this example the message 'Creating new object' should only be seen on the frame
call
 // after that the same object in the pool will be returned.
 }
}

Another simple object pool

Another example: a Weapon that shoots out Bullets.

The Weapon acts as an object pool for the Bullets it creates.

public class Weapon : MonoBehaviour {

 // The Bullet prefab that the Weapon will create
 public Bullet bulletPrefab;

 // This List is our object pool, which starts out empty
 private List<Bullet> availableBullets = new List<Bullet>();

 // The Transform that will act as the Bullet starting position
 public Transform bulletInstantiationPoint;

 // To spawn a new Bullet, this method either grabs an available Bullet from the pool,
 // otherwise Instantiates a new Bullet
 public Bullet CreateBullet () {
 Bullet newBullet = null;

 // If a Bullet is available in the pool, take the first one and make it active
 if (availableBullets.Count > 0) {
 newBullet = availableBullets[availableBullets.Count - 1];

 // Remove the Bullet from the pool
 availableBullets.RemoveAt(availableBullets.Count - 1);

 // Set the Bullet's position and make its GameObject active
 newBullet.transform.position = bulletInstantiationPoint.position;
 newBullet.gameObject.SetActive(true);
 }
 // If no Bullets are available in the pool, Instantiate a new Bullet
 else {
 newBullet newObject = Instantiate(bulletPrefab, bulletInstantiationPoint.position,

https://riptutorial.com/ 118

Quaternion.identity);

 // Set the Bullet's Weapon so we know which pool to return to later on
 newBullet.weapon = this;
 }

 return newBullet;
 }

}

public class Bullet : MonoBehaviour {

 public Weapon weapon;

 // When Bullet collides with something, rather than Destroying it, we return it to the
pool
 public void ReturnToPool () {
 // Add Bullet to the pool
 weapon.availableBullets.Add(this);

 // Disable the Bullet's GameObject so it's hidden from view
 gameObject.SetActive(false);
 }

}

Read Object Pooling online: https://riptutorial.com/unity3d/topic/2276/object-pooling

https://riptutorial.com/ 119

https://riptutorial.com/unity3d/topic/2276/object-pooling

Chapter 24: Optimization

Remarks

If possible, disable scripts on objects when they are not needed. For example if you have a
script on an enemy object that searchers for and fires at the player consider disabling this
script when the enemy is too far for example from the player.

1.

Examples

Fast and Efficient Checks

Avoid unnecessary operations and method calls wherever you can, especially in a method which
is called many times a second, like Update.

Distance/Range Checks

Use sqrMagnitude instead of magnitude when comparing distances. This avoids unnecessary sqrt
operations. Note that when using sqrMagnitude, the right hand side must also be squared.

if ((target.position - transform.position).sqrMagnitude < minDistance * minDistance))

Bounds Checks

Object intersections can be crudely checked by checking whether their Collider/Renderer bounds
intersect. The Bounds structure also has a handy Intersects method which helps determine whether
two bounds intersect.

Bounds also help us to calculate a close approximate of the actual (surface to surface) distance
between objects (see Bounds.SqrDistance).

Caveats

Bounds checking works really well for convex objects, but bounds checks on concave objects may
lead to much higher inaccuracies depending on the shape of the object.

Using Mesh.bounds is not recommended as it returns local space bounds. Use MeshRenderer.bounds
instead.

Coroutine Power

https://riptutorial.com/ 120

https://docs.unity3d.com/ScriptReference/Bounds.Intersects.html
https://docs.unity3d.com/ScriptReference/Bounds.SqrDistance.html

Usage

If you have a long running operation that relies on the not-thread-safe Unity API, use Coroutines to
split it over multiple frames and keep your application responsive.

Coroutines also help performing expensive actions every nth frame instead of running that action
each frame.

Splitting Long-running Routines Over
Multiple Frames

Coroutines help distribute long running operations over multiple frames to help keep up the
framerate of your application.

Routines that paint or generate terrain procedurally or generate noise are examples that may need
the Coroutine treatment.

for (int y = 0; y < heightmap.Height; y++)
{
 for (int x = 0; x < heightmap.Width; x++)
 {
 // Generate pixel at (x, y)
 // Assign pixel at (x, y)

 // Process only 32768 pixels each frame
 if ((y * heightmap.Height + x) % 32 * 1024) == 0)
 yield return null; // Wait for next frame
 }
}

The code above is an easy to understand example. In production code it is better to
avoid the per-pixel check that checks when to yield return (maybe do it every 2-3
rows) and to pre-calculate for loop length in advance.

Performing Expensive Actions Less
Frequently

Coroutines help you perform expensive actions less frequently, so that it isn't as big a
performance hit as it would be if performed every frame.

Taking the following example directly from the Manual:

private void ProximityCheck()
{
 for (int i = 0; i < enemies.Length; i++)

https://riptutorial.com/ 121

https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/Manual/Coroutines.html

 {
 if (Vector3.Distance(transform.position, enemies[i].transform.position) <
dangerDistance)
 return true;
 }
 return false;
}

private IEnumerator ProximityCheckCoroutine()
{
 while(true)
 {
 ProximityCheck();
 yield return new WaitForSeconds(.1f);
 }
}

Proximity tests can be optimized even further by using the CullingGroup API.

Common Pitfalls

A common mistake developers make is accessing results or side effects of coroutines outside the
coroutine. Coroutines return control to the caller as soon as a yield return statement is
encountered and the result or side effect may not be performed yet. To circumvent problems
where you have to use the result/side effect outside the coroutine, check this answer.

Strings

One might argue that there are greater resource hogs in Unity than the humble string, but it is one
of the easier aspects to fix early on.

String operations build garbage

Most string operations build tiny amounts of garbage, but if those operations are called several
times over the course of a single update, it stacks up. Over time it will trigger the automatic
Garbage Collection, which may result in a visible CPU spike.

Cache your string operations

Consider the following example.

string[] StringKeys = new string[] {
 "Key0",
 "Key1",
 "Key2"
};

void Update()
{

https://riptutorial.com/ 122

https://docs.unity3d.com/Manual/CullingGroupAPI.html
http://stackoverflow.com/a/38077315/4038191

 for (var i = 0; i < 3; i++)
 {
 // Cached, no garbage generated
 Debug.Log(StringKeys[i]);
 }

 for (var i = 0; i < 3; i++)
 {
 // Not cached, garbage every cycle
 Debug.Log("Key" + i);
 }

 // The most memory-efficient way is to not create a cache at all and use literals or
constants.
 // However, it is not necessarily the most readable or beautiful way.
 Debug.Log("Key0");
 Debug.Log("Key1");
 Debug.Log("Key2");
}

It may look silly and redundant, but if you're working with Shaders, you might run into situations
such as these. Caching the keys will make a difference.

Please note that string literals and constants do not generate any garbage, as they are injected
statically into the program stack space. If you are generating strings at run-time and are
guaranteed to be generating the same strings each time like the above example, caching will
definitely help.

For other cases where the string generated is not the same each time, there is no other alternative
to generating those strings. As such, the memory spike with manually generating strings each time
is usually negligible, unless tens of thousands of strings are being generated at a time.

Most string operations are Debug messages

Doing string operations for Debug messages, ie. Debug.Log("Object Name: " + obj.name) is fine and
cannot be avoided during development. It is, however, important to ensure that irrelevant debug
messages do not end up in the released product.

One way is to use the Conditional attribute in your debug calls. This not only removes the method
calls, but also all the string operations going into it.

using UnityEngine;
using System.Collections;

public class ConditionalDebugExample: MonoBehaviour
{
 IEnumerator Start()
 {
 while(true)
 {
 // This message will pop up in Editor but not in builds
 Log("Elapsed: " + Time.timeSinceLevelLoad);
 yield return new WaitForSeconds(1f);
 }

https://riptutorial.com/ 123

http://www.riptutorial.com/csharp/example/8669/using-the-conditional-attribute

 }

 [System.Diagnostics.Conditional("UNITY_EDITOR")]
 void Log(string Message)
 {
 Debug.Log(Message);
 }
}

This is a simplified example. You might want to invest some time designing a more fully
fledged logging routine.

String comparison

This is a minor optimisation, but it's worth a mention. Comparing strings is slightly more involved
than one might think. The system will try to take cultural differences into account by default. You
can opt to use a simple binary comparison instead, which performs faster.

// Faster string comparison
if (strA.Equals(strB, System.StringComparison.Ordinal)) {...}
// Compared to
if (strA == strB) {...}

// Less overhead
if (!string.IsNullOrEmpty(strA)) {...}
// Compared to
if (strA == "") {...}

// Faster lookups
Dictionary<string, int> myDic = new Dictionary<string, int>(System.StringComparer.Ordinal);
// Compared to
Dictionary<string, int> myDictionary = new Dictionary<string, int>();

Cache references

Cache references to avoid the expensive calls especially in the update function. This can be done
by caching these references on start if available or when available and checking for null/bool flat to
avoid getting the reference again.

Examples:

Cache component references

change

void Update()
{
 var renderer = GetComponent<Renderer>();
 renderer.material.SetColor("_Color", Color.green);
}

to

https://riptutorial.com/ 124

private Renderer myRenderer;
void Start()
{
 myRenderer = GetComponent<Renderer>();
}

void Update()
{
 myRenderer.material.SetColor("_Color", Color.green);
}

Cache object references

change

void Update()
{
 var enemy = GameObject.Find("enemy");
 enemy.transform.LookAt(new Vector3(0,0,0));
}

to

private Transform enemy;

void Start()
{
 this.enemy = GameObject.Find("enemy").transform;
}

void Update()
{
 enemy.LookAt(new Vector3(0, 0, 0));
}

Additionally cache expensive calls like calls to Mathf where possible.

Avoid calling methods using strings

Avoid calling methods using strings that can accept methods. This approach will make use of
reflection that can slow down your game especially when used in the update function.

Examples:

 //Avoid StartCoroutine with method name
 this.StartCoroutine("SampleCoroutine");

 //Instead use the method directly
 this.StartCoroutine(this.SampleCoroutine());

 //Avoid send message
 var enemy = GameObject.Find("enemy");
 enemy.SendMessage("Die");

 //Instead make direct call

https://riptutorial.com/ 125

 var enemy = GameObject.Find("enemy") as Enemy;
 enemy.Die();

Avoid empty unity methods

Avoid empty unity methods. Apart from being bad programming style, there is a very small
overhead involved in runtime scripting. Over many instances, this can build up and affect
performance.

void Update
{
}

void FixedUpdate
{
}

Read Optimization online: https://riptutorial.com/unity3d/topic/3433/optimization

https://riptutorial.com/ 126

https://riptutorial.com/unity3d/topic/3433/optimization

Chapter 25: Physics

Examples

Rigidbodies

Overview

The Rigidbody component gives a GameObject a physical presence in the scene in that it is able
to respond to forces. You could apply forces directly to the GameObject or allow it to react to
external forces such as gravity or another Rigidbody hitting it.

Adding a Rigidbody component

You can add a Rigidbody by clicking Component > Physics > Rigidbody

Moving a Rigidbody object

It is recommended that if you apply a Rigidbody to a GameObject that you use forces or torque to
move it rather than manipulating it's Transform. Use AddForce() or AddTorque() methods for this:

// Add a force to the order of myForce in the forward direction of the Transform.
GetComponent<Rigidbody>().AddForce(transform.forward * myForce);

// Add torque about the Y axis to the order of myTurn.
GetComponent<Rigidbody>().AddTorque(transform.up * torque * myTurn);

Mass

You can alter the mass of a Rigidbody GameObject to affect how it reacts with other Rigidbodies
and forces. A higher mass means the GameObject will have more of an influence on other
physics-based GameObjects, and will require a greater force to move itself. Objects of differing
mass will fall at the same rate if they have the same drag values. To alter mass in code:

GetComponent<Rigidbody>().mass = 1000;

https://riptutorial.com/ 127

Drag

The higher the drag value, the more an object will slow down while moving. Think of it like an
opposing force. To alter drag in code:

GetComponent<Rigidbody>().drag = 10;

isKinematic

If you mark a Rigidbody as Kinematic then it cannot be affected by other forces but can still affect
other GameObjects. To alter in code:

GetComponent<Rigidbody>().isKinematic = true;

Constraints

It is also possible to add constraints to each axis to freeze the Rigidbody's position or rotation in
local space. The default is RigidbodyConstraints.None as shown here:

An example of constraints in code:

// Freeze rotation on all axes.
GetComponent<Rigidbody>().constraints = RigidbodyConstraints.FreezeRotation

// Freeze position on all axes.
GetComponent<Rigidbody>().constraints = RigidbodyConstraints.FreezePosition

// Freeze rotation and motion an all axes.
GetComponent<Rigidbody>().constraints = RigidbodyConstraints.FreezeAll

You can use the bitwise OR operator | to combine multiple constraints like so:

// Allow rotation on X and Y axes and motion on Y and Z axes.
GetComponent<Rigidbody>().constraints = RigidbodyConstraints.FreezePositionZ |
 RigidbodyConstraints.FreezeRotationX;

Collisions

https://riptutorial.com/ 128

http://i.stack.imgur.com/e6PwA.png

If you want a GameObject with a Rigidbody on it to respond to collisions you will also need to add
a collider to it. Types of collider are:

Box collider•
Sphere collider•
Capsule collider•
Wheel collider•
Mesh collider•

If you apply more than one collider to a GameObject, we call it a Compound collider.

You can make a collider into a Trigger in order to use the OnTriggerEnter(), OnTriggerStay() and
OnTriggerExit() methods. A trigger collider will not physically react to collisions, other
GameObjects simply pass through it. They are useful for detecting when another GameObject is in
a certain area or not, for example, when collecting an item, we may want to be able to just run
through it but detect when this happens.

Gravity in Rigid Body

The useGravity property of a RigidBody controls whether gravity affects it or not. If set to false the
RigidBody will behave as if in outer space (without a constant force being applied to it in some
direction).

GetComponent<RigidBody>().useGravity = false;

It is very useful in the situations where you need all other properties of RigidBody except the motion
controlled by gravity.

When enabled, the RigidBody will be affected by a gravitational force, set up under Physics Settings
:

Gravity is defined in world units per second squared, and is entered here as a three-dimensional
vector: meaning that with the settings in the example image, all RigidBodies with the useGravity
property set to True will experience a force of 9.81 world units per second per second in the

https://riptutorial.com/ 129

https://i.stack.imgur.com/nozwu.png

downwards direction (as negative Y-values in Unity's coordinate system point downwards).

Read Physics online: https://riptutorial.com/unity3d/topic/3680/physics

https://riptutorial.com/ 130

https://riptutorial.com/unity3d/topic/3680/physics

Chapter 26: Prefabs

Syntax

public static Object PrefabUtility.InstantiatePrefab(Object target);•
public static Object AssetDatabase.LoadAssetAtPath(string assetPath, Type type);•
public static Object Object.Instantiate(Object original);•
public static Object Resources.Load(string path);•

Examples

Introduction

Prefabs are an asset type that allows the storage of a complete GameObject with its components,
properties, attached components and serialized property values. There are many scenarios where
this is useful, including:

Duplicating objects in a scene•
Sharing a common object across multiple scenes•
Being able to modify a prefab once and having the changes apply across multiple
objects/scenes

•

Creating duplicate objects with minor modifications, while having the common elements be
editable from one base prefab

•

Instantiating GameObjects at runtime•

There is a rule of thumb of sorts in Unity that says "everything should be Prefabs". While this is
probably exaggeration, it does encourage code reuse and the building of GameObjects in a
reusable way, which is both memory efficient and good design.

Creating prefabs

To create a prefab, drag a game object from the scene hierarchy into the Assets folder or
subfolder:

https://riptutorial.com/ 131

https://docs.unity3d.com/Manual/Prefabs.html
https://i.stack.imgur.com/cvuMx.png

The game object name turns blue, indicating it is connected to a prefab.
Now this object is a prefab instance, just like an object instance of a class.

A prefab can be deleted after instantiation. In that case the name of the game object previously
connected to it turns red:

Prefab inspector

If you select a prefab in the hierarchy view you'll notice that it's inspector slightly differs from an
ordinary game object:

vs

https://riptutorial.com/ 132

https://i.stack.imgur.com/W9Q2G.png
https://i.stack.imgur.com/YwRbf.png
https://i.stack.imgur.com/blyBH.png
https://i.stack.imgur.com/OwUoK.png

Bold properties mean that their values differ from the prefab values. You can change any
property of an instantiated prefab without affecting original prefab values. When a value is
changed in a prefab instance, it turns bold and any subsequent changes of the same value in the
prefab will not be reflected in the changed instance.

You can revert to original prefab values by clicking Revert button, which will also have value
changes reflect in the instance. Additionally, to revert an individual value, you can right click it and
press Revert Value to Prefab. To revert a component, right click it and press Revert to Prefab.

Clicking the Apply button overwrites prefab property values with the current game object property
values. There is no "Undo" button or confirm dialog, so handle this button with care.

Select button highlights connected prefab in project's folder structure.

Instantiating prefabs

There are 2 ways of instantiating prefabs: during design time or runtime.

Design time instantiation

Instantiating prefabs at design time is useful to visually place multiple instances of the same object
(e.g. placing trees when designing a level of your game).

To visually instantiate a prefab drag it from the project view to scene hierarchy.•

If you are writing an editor extension, you can also instantiate a prefab programmatically
calling PrefabUtility.InstantiatePrefab() method:

•

https://riptutorial.com/ 133

https://i.stack.imgur.com/X6vQY.png
https://i.stack.imgur.com/YwRbf.png
http://www.riptutorial.com/unity3d/topic/2506/extending-the-editor

GameObject gameObject =
(GameObject)PrefabUtility.InstantiatePrefab(AssetDatabase.LoadAssetAtPath("Assets/MainCamera.prefab",
typeof(GameObject)));

Runtime instantiation

Instantiating prefabs at runtime is useful to create instances of an object according to some logic
(e.g. spawning an enemy every 5 seconds).

To instantiate a prefab you need a reference to the prefab object. This can be done by having a
public GameObject field in your MonoBehaviour script (and setting its value using the inspector in the
Unity Editor):

public class SomeScript : MonoBehaviour {
 public GameObject prefab;
}

Or by putting the prefab in the Resource folder and using Resources.Load:

GameObject prefab = Resources.Load("Assets/Resources/MainCamera");

Once you have a reference to the prefab object you can instantiate it using the Instantiate
function anywhere in your code (e.g. inside a loop to create multiple objects):

GameObject gameObject = Instantiate<GameObject>(prefab, new Vector3(0,0,0),
Quaternion.identity);

Note: Prefab term does not exist at runtime.

Nested prefabs

Nested prefabs are not avaible in Unity at the moment. You can drag one prefab to another, and
apply that, but any changes on the child prefab will not be applied to nested one.

But there is a simple workaround - You have to add to parent prefab a simple script, that will
instantiate a child one.

using UnityEngine;

public class ParentPrefab : MonoBehaviour {

 [SerializeField] GameObject childPrefab;
 [SerializeField] Transform childPrefabPositionReference;

 // Use this for initialization
 void Start () {
 print("Hello, I'm a parent prefab!");
 Instantiate(
 childPrefab,

https://riptutorial.com/ 134

http://www.riptutorial.com/unity3d/topic/4070/resources

 childPrefabPositionReference.position,
 childPrefabPositionReference.rotation,
 gameObject.transform
);
 }
}

Parent prefab:

Child prefab:

https://riptutorial.com/ 135

https://i.stack.imgur.com/ZHgtQ.png

Scene before and after start:

https://riptutorial.com/ 136

https://i.stack.imgur.com/oEDot.png

Read Prefabs online: https://riptutorial.com/unity3d/topic/2133/prefabs

https://riptutorial.com/ 137

https://i.stack.imgur.com/EH9H6.png
https://i.stack.imgur.com/gDT1H.png
https://riptutorial.com/unity3d/topic/2133/prefabs

Chapter 27: Quaternions

Syntax

Quaternion.LookRotation(Vector3 forward [, Vector3 up]);•
Quaternion.AngleAxis(float angles, Vector3 axisOfRotation);•
float angleBetween = Quaternion.Angle(Quaternion rotation1, Quaternion rotation2);•

Examples

Intro to Quaternion vs Euler

Euler angles are "degree angles" like 90, 180, 45, 30 degrees. Quaternions differ from Euler
angles in that they represent a point on a Unit Sphere (the radius is 1 unit). You can think of this
sphere as a 3D version of the Unit circle you learn in trigonometry. Quaternions differ from Euler
angles in that they use imaginary numbers to define a 3D rotation.

While this may sound complicated (and arguably it is), Unity has great builtin functions that allow
you to switch between Euler angles and quaterions, as well as functions to modify quaternions,
without knowing a single thing about the math behind them.

Converting Between Euler and Quaternion

// Create a quaternion that represents 30 degrees about X, 10 degrees about Y
Quaternion rotation = Quaternion.Euler(30, 10, 0);

// Using a Vector
Vector3 EulerRotation = new Vector3(30, 10, 0);
Quaternion rotation = Quaternion.Euler(EulerRotation);

// Convert a transfroms Quaternion angles to Euler angles
Quaternion quaternionAngles = transform.rotation;
Vector3 eulerAngles = quaternionAngles.eulerAngles;

Why Use a Quaternion?

Quaternions solve a problem known as gimbal locking. This occurs when the primary axis of
rotation becomes collinear with the tertiary axis of rotation. Here's a visual example @ 2:09

Quaternion Look Rotation

Quaternion.LookRotation(Vector3 forward [, Vector3 up]) will create a Quaternion rotation that
looks forward 'down' the forward vector and has the Y axis aligned with the 'up' vector. If the up
vector is not specified, Vector3.up will be used.

Rotate this Game Object to look at a target Game Object

https://riptutorial.com/ 138

https://youtu.be/zc8b2Jo7mno?t=2m9s

// Find a game object in the scene named Target
public Transform target = GameObject.Find("Target").GetComponent<Transform>();

// We subtract our position from the target position to create a
// Vector that points from our position to the target position
// If we reverse the order, our rotation would be 180 degrees off.
Vector3 lookVector = target.position - transform.position;
Quaternion rotation = Quaternion.LookRotation(lookVector);
transform.rotation = rotation;

Read Quaternions online: https://riptutorial.com/unity3d/topic/1782/quaternions

https://riptutorial.com/ 139

https://riptutorial.com/unity3d/topic/1782/quaternions

Chapter 28: Raycast

Parameters

Parameter Details

origin The starting point of the ray in world coordinates

direction The direction of the ray

maxDistance The max distance the ray should check for collisions

layerMask
A Layer mask that is used to selectively ignore Colliders when
casting a ray.

queryTriggerInteraction Specifies where this query should hit Triggers.

Examples

Physics Raycast

This function casts a ray from point origin in direction direction of length maxDistance against all
colliders in the scene.

The function takes in the origin direction maxDistance and calculate if there is a collider in front of
the GameObject.

Physics.Raycast(origin, direction, maxDistance);

For example, this function will print Hello World to the console if there is something within 10 units
of the GameObject attached to it:

using UnityEngine;

public class TestPhysicsRaycast: MonoBehaviour
{
 void FixedUpdate()
 {
 Vector3 fwd = transform.TransformDirection(Vector3.forward);

 if (Physics.Raycast(transform.position, fwd, 10))
 print("Hello World");
 }
}

Physics2D Raycast2D

https://riptutorial.com/ 140

You can use raycasts to check if an ai can walk without falling off the edge of a level.

using UnityEngine;

public class Physics2dRaycast: MonoBehaviour
 {
 public LayerMask LineOfSightMask;
 void FixedUpdate()
 {
 RaycastHit2D hit = Physics2D.Raycast(raycastRightPart, Vector2.down, 0.6f *
heightCharacter, LineOfSightMask);
 if(hit.collider != null)
 {
 //code when the ai can walk
 }
 else
 {
 //code when the ai cannot walk
 }
 }
}

In this example the direction is right. The variable raycastRightPart is the right part of the
character, so the raycast will happen at the right part of the character. The distance is 0.6f times
the height of the character so the raycast won't give a hit when he hits the ground that is way
lower than the ground he is standing on at the moment. Make sure the Layermask is set to ground
only, otherwise it will detect other kinds of objects as well.

RaycastHit2D itself is a structure and not a class so hit can't be null; this means you
have to check for the collider of a RaycastHit2D variable.

Encapsulating Raycast calls

Having your scripts call Raycast directly may lead to problems if you need to change the collision
matrices in the future, as you'll have to track down every LayerMask field to accommodate the
changes. Depending on the size of your project, this may become a huge undertaking.

Encapsulating Raycast calls may make your life easier down the line.

Looking at it from a SoC principle, a gameobject really shouldn't know or care about LayerMasks.
It only needs a method to scan its surroundings. Whether the raycast result returns this or that
shouldn't matter to the gameobject. It should only act upon the information it receives and not
make any assumptions on the environment it exists in.

One way to approach this is to move the LayerMask value to ScriptableObject instances and use
those as a form of raycast services that you inject into your scripts.

// RaycastService.cs
using UnityEngine;

[CreateAssetMenu(menuName = "StackOverflow")]
public class RaycastService : ScriptableObject
{

https://riptutorial.com/ 141

https://en.wikipedia.org/wiki/Separation_of_concerns
http://www.riptutorial.com/unity3d/topic/3434/scriptableobject

 [SerializeField]
 LayerMask layerMask;

 public RaycastHit2D Raycast2D(Vector2 origin, Vector2 direction, float distance)
 {
 return Physics2D.Raycast(origin, direction, distance, layerMask.value);
 }

 // Add more methods as needed

}

// MyScript.cs
using UnityEngine;

public class MyScript : MonoBehaviour
{
 [SerializeField]
 RaycastService raycastService;

 void FixedUpdate()
 {
 RaycastHit2D hit = raycastService.Raycast2D(Vector2.zero, Vector2.down, 1f);
 }
}

This allows you to make a number of raycast services, all with different LayerMask combinations
for different situations. You could have one that hits only ground colliders, and another that hits
ground colliders and one way platforms.

If you ever need to make drastic changes to your LayerMask setups, you only need to update
these RaycastService assets.

Further reading

Inversion of control•
Dependency injection•

Read Raycast online: https://riptutorial.com/unity3d/topic/2826/raycast

https://riptutorial.com/ 142

https://en.wikipedia.org/wiki/Inversion_of_control
https://en.wikipedia.org/wiki/Dependency_injection
https://riptutorial.com/unity3d/topic/2826/raycast

Chapter 29: Resources

Examples

Introduction

With Resources class it's possible to dynamically load assets that are not part of the scene. It's
very usefull when you have to use on demand assets, for example localize multi language audios,
texts, etc..

Assets must be placed in a folder named Resources. It's possible to have multiple Resources
folders spread across the project's hierarchy. Resources class will inspect all Resources folders you
may have.

Every asset placed within Resources will be included in the build even it's not referenced in your
code. Thus don't insert assets in Resources indiscriminately.

//Example of how to load language specific audio from Resources

[RequireComponent(typeof(AudioSource))]
public class loadIntroAudio : MonoBehaviour {
 void Start () {
 string language = Application.systemLanguage.ToString();
 AudioClip ac = Resources.Load(language + "/intro") as AudioClip; //loading intro.mp3
specific for user's language (note the file file extension should not be used)
 if (ac==null)
 {
 ac = Resources.Load("English/intro") as AudioClip; //fallback to the english
version for any unsupported language
 }
 transform.GetComponent<AudioSource>().clip = ac;
 transform.GetComponent<AudioSource>().Play();
 }
}

Resources 101

Introduction

Unity has a few 'specially named' folders that allows for a variety of uses. One of these folders is
called 'Resources'

The 'Resources' folder is one of only TWO ways of loading assets at runtime in Unity (The other
being AssetBundles (Unity Docs)

The 'Resources' folder can reside anywhere inside your Assets folder, and you can have multiple
folders named Resources. The contents of all 'Resources' folders are merged during compile time.

https://riptutorial.com/ 143

https://docs.unity3d.com/Manual/AssetBundlesIntro.html

The primary way to load an asset from a Resources folder is to use the Resources.Load function.
This function takes a string parameter which allows you to specify the path of the file relative to
the Resources folder. Note that you do NOT need to specify file extensions while loading an asset

public class ResourcesSample : MonoBehaviour {

 void Start () {
 //The following line will load a TextAsset named 'foobar' which was previously place
under 'Assets/Resources/Stackoverflow/foobar.txt'
 //Note the absence of the '.txt' extension! This is important!

 var text = Resources.Load<TextAsset>("Stackoverflow/foobar").text;
 Debug.Log(string.Format("The text file had this in it :: {0}", text));
 }
}

Objects which are comprised of multiple objects can also be loaded from Resources. Examples
are such objects are 3D models with textures baked in, or a multiple sprite.

//This example will load a multiple sprite texture from Resources named "A_Multiple_Sprite"
var sprites = Resources.LoadAll("A_Multiple_Sprite") as Sprite[];

Putting it all together

Here's one of my helper classes which I use to load all sounds for any game. You can attach this
to any GameObject in a scene and it will load the specified audio files from the
'Resources/Sounds' folder

public class SoundManager : MonoBehaviour {

 void Start () {

 //An array of all sounds you want to load
 var filesToLoad = new string[] { "Foo", "Bar" };

 //Loop over the array, attach an Audio source for each sound clip and assign the
 //clip property.
 foreach(var file in filesToLoad) {
 var soundClip = Resources.Load<AudioClip>("Sounds/" + file);
 var audioSource = gameObject.AddComponent<AudioSource>();
 audioSource.clip = soundClip;
 }
 }
}

https://riptutorial.com/ 144

https://docs.unity3d.com/ScriptReference/Resources.Load.html

Final Notes

Unity is smart when it comes to including assets into your build. Any asset that is not
serialized (i.e. used in a scene that's included in a build) is excluded from a build.
HOWEVER this DOES NOT apply to any asset inside the Resources folder. Therefore, do
not go overboard on adding assets to this folder

1.

Assets that are loaded using Resources.Load or Resources.LoadAll can be unloaded in the
future by using Resources.UnloadUnusedAssets or Resources.UnloadAsset

2.

Read Resources online: https://riptutorial.com/unity3d/topic/4070/resources

https://riptutorial.com/ 145

https://docs.unity3d.com/ScriptReference/Resources.UnloadUnusedAssets.html
https://docs.unity3d.com/ScriptReference/Resources.UnloadAsset.html
https://riptutorial.com/unity3d/topic/4070/resources

Chapter 30: ScriptableObject

Remarks

ScriptableObjects with AssetBundles

Pay attention when adding prefabs to AssetBundles if they contain references to
ScriptableObjects. Since ScriptableObjects are essentially assets, Unity creates duplicates of
them before adding them to AssetBundles, which may result in undesired behaviour during
runtime.

When you load such a GameObject from an AssetBundle, it may be necessary to reinject the
ScriptableObject assets to the loaded scripts, replacing the bundled ones. See Dependency
Injection

Examples

Introduction

ScriptableObjects are serialized objects that are not bound to scenes or gameobjects as
MonoBehaviours are. To put it one way, they are data and methods bound to asset files inside
your project. These ScriptableObject assets can be passed to MonoBehaviours or other
ScriptableObjects, where their public methods can be accessed.

Due to their nature as serialized assets, they make for excellent manager classes and data
sources.

Creating ScriptableObject assets

Below is a simple ScriptableObject implementation.

using UnityEngine;

[CreateAssetMenu(menuName = "StackOverflow/Examples/MyScriptableObject")]
public class MyScriptableObject : ScriptableObject
{
 [SerializeField]
 int mySerializedNumber;

 int helloWorldCount = 0;

 public void HelloWorld()
 {
 helloWorldCount++;
 Debug.LogFormat("Hello! My number is {0}.", mySerializedNumber);
 Debug.LogFormat("I have been called {0} times.", helloWorldCount);

https://riptutorial.com/ 146

http://www.riptutorial.com/design-patterns/topic/1723/dependency-injection
http://www.riptutorial.com/design-patterns/topic/1723/dependency-injection

 }
}

By adding the CreateAssetMenu attribute to the class, Unity will list it in the Assets/Create submenu.
In this case it's under Assets/Create/StackOverflow/Examples.

Once created, ScriptableObject instances can be passed to other scripts and ScriptableObjects
through the Inspector.

using UnityEngine;

public class SampleScript : MonoBehaviour {

 [SerializeField]
 MyScriptableObject myScriptableObject;

 void OnEnable()
 {
 myScriptableObject.HelloWorld();
 }
}

Create ScriptableObject instances through code

You create new ScriptableObject instances through ScriptableObject.CreateInstance<T>()

T obj = ScriptableObject.CreateInstance<T>();

Where T extends ScriptableObject.

Do not create ScriptableObjects by calling their constructors, ie. new ScriptableObject().

Creating ScriptableObjects by code during runtime is rarely called for because their main use is
data serialization. You might as well use standard classes at this point. It is more common when
you are scripting editor extensions.

ScriptableObjects are serialized in editor even in PlayMode

Extra care should be taken when accessing serialized fields in a ScriptableObject instance.

If a field is marked public or serialized through SerializeField, changing its value is permanent.
They do not reset when exiting playmode like MonoBehaviours do. This can be useful at times, but
it can also make a mess.

Because of this it's best to make serialized fields read-only and avoid public fields altogether.

public class MyScriptableObject : ScriptableObject
{
 [SerializeField]
 int mySerializedValue;

 public int MySerializedValue

https://riptutorial.com/ 147

 {
 get { return mySerializedValue; }
 }
}

If you wish to store public values in a ScriptableObject that are reset between play sessions,
consider using the following pattern.

public class MyScriptableObject : ScriptableObject
{
 // Private fields are not serialized and will reset to default on reset
 private int mySerializedValue;

 public int MySerializedValue
 {
 get { return mySerializedValue; }
 set { mySerializedValue = value; }
 }
}

Find existing ScriptableObjects during runtime

To find active ScriptableObjects during runtime, you can use Resources.FindObjectsOfTypeAll().

T[] instances = Resources.FindObjectsOfTypeAll<T>();

Where T is the type of the ScriptableObject instance you're searching. Active means it has been
loaded in memory in some form before.

This method is very slow so remember to cache the return value and avoid calling it frequently.
Referencing the ScriptableObjects directly in your scripts should be your preferred option.

Tip: You can maintain your own instance collections for faster lookups. Have your
ScriptableObjects register themselves to a shared collection during OnEnable().

Read ScriptableObject online: https://riptutorial.com/unity3d/topic/3434/scriptableobject

https://riptutorial.com/ 148

https://riptutorial.com/unity3d/topic/3434/scriptableobject

Chapter 31: Singletons in Unity

Remarks

While there are schools of thought which make compelling arguments why unconstrained use of
Singletons is a bad idea, e.g. Singleton on gameprogrammingpatterns.com, there are occasions
when you might want to persist a GameObject in Unity over multiple Scenes (e.g. for seamless
background music) while ensuring that no more than one instance can exist; a perfect use case for
a Singleton.

By adding this script to a GameObject, once it has been instantiated (e.g. by including it anywhere
in a Scene) it will remain active across Scenes, and only one instance will ever exist.

ScriptableObject (UnityDoc) instances provide a valid alternative to Singletons for some use
cases. While they don't implicitly enforce the single instance rule, they retain their state between
scenes and play nicely with the Unity serialization process. They also promote Inversion of Control
as dependencies are injected through the editor.

// MyAudioManager.cs
using UnityEngine;

[CreateAssetMenu] // Remember to create the instance in editor
public class MyAudioManager : ScriptableObject {
 public void PlaySound() {}
}

// MyGameObject.cs
using UnityEngine;

public class MyGameObject : MonoBehaviour
{
 [SerializeField]
 MyAudioManager audioManager; //Insert through Inspector

 void OnEnable()
 {
 audioManager.PlaySound();
 }
}

Further reading

Singleton Implementation in C#•

Examples

https://riptutorial.com/ 149

http://gameprogrammingpatterns.com/singleton.html
http://www.riptutorial.com/unity3d/topic/3434/scriptableobject
https://docs.unity3d.com/ScriptReference/ScriptableObject.html
https://en.wikipedia.org/wiki/Inversion_of_control
https://en.wikipedia.org/wiki/Dependency_injection
http://www.riptutorial.com/csharp/topic/1192/singleton-implementation

Implementation using RuntimeInitializeOnLoadMethodAttribute

Since Unity 5.2.5 it's possible to use RuntimeInitializeOnLoadMethodAttribute to execute
initialization logic bypassing MonoBehaviour order of execution. It provides a way to create more
clean and robust implementation:

using UnityEngine;

sealed class GameDirector : MonoBehaviour
{
 // Because of using RuntimeInitializeOnLoadMethod attribute to find/create and
 // initialize the instance, this property is accessible and
 // usable even in Awake() methods.
 public static GameDirector Instance
 {
 get; private set;
 }

 // Thanks to the attribute, this method is executed before any other MonoBehaviour
 // logic in the game.
 [RuntimeInitializeOnLoadMethod(RuntimeInitializeLoadType.BeforeSceneLoad)]
 static void OnRuntimeMethodLoad()
 {
 var instance = FindObjectOfType<GameDirector>();

 if (instance == null)
 instance = new GameObject("Game Director").AddComponent<GameDirector>();

 DontDestroyOnLoad(instance);

 Instance = instance;
 }

 // This Awake() will be called immediately after AddComponent() execution
 // in the OnRuntimeMethodLoad(). In other words, before any other MonoBehaviour's
 // in the scene will begin to initialize.
 private void Awake()
 {
 // Initialize non-MonoBehaviour logic, etc.
 Debug.Log("GameDirector.Awake()", this);
 }
}

The resulting order of execution:

GameDirector.OnRuntimeMethodLoad() started...1.
GameDirector.Awake()2.
GameDirector.OnRuntimeMethodLoad() completed.3.
OtherMonoBehaviour1.Awake()4.
OtherMonoBehaviour2.Awake(), etc.5.

A simple Singleton MonoBehaviour in Unity C#

In this example, a private static instance of the class is declared at its beginning.

The value of a static field is shared between instances, so if a new instance of this class gets

https://riptutorial.com/ 150

http://docs.unity3d.com/ScriptReference/RuntimeInitializeOnLoadMethodAttribute.html
https://docs.unity3d.com/Manual/ExecutionOrder.html

created the if will find a reference to the first Singleton object, destroying the new instance (or its
game object).

using UnityEngine;

public class SingletonExample : MonoBehaviour {

 private static SingletonExample _instance;

 void Awake(){

 if (_instance == null){

 _instance = this;
 DontDestroyOnLoad(this.gameObject);

 //Rest of your Awake code

 } else {
 Destroy(this);
 }
 }

 //Rest of your class code

}

Advanced Unity Singleton

This example combines multiple variants of MonoBehaviour singletons found on the internet into
one and let you change its behavior depending on global static fields.

This example was tested using Unity 5. To use this singleton, all you need to do is extend it as
follows: public class MySingleton : Singleton<MySingleton> {}. You may also need to override
AwakeSingleton to use it instead of usual Awake. For further tweaking, change default values of static
fields as described below.

This implementation makes use of DisallowMultipleComponent attribute to keep one
instance per GameObject.

1.

This class is abstract and can only be extended. It also contains one virtual method
AwakeSingleton that needs to be overridden instead of implementing normal Awake.

2.

This implementation is thread safe.3.
This singleton is optimized. By using instantiated flag instead of instance null check we
avoid the overhead that comes with Unity's implementation of == operator. (Read more)

4.

This implementation does not allow any calls to the singleton instance when it's about to get
destroyed by Unity.

5.

This singleton comes with the following options:6.

FindInactive: whether to look for other instances of components of same type attached to
inactive GameObject.

•

Persist: whether to keep component alive between scenes.•

https://riptutorial.com/ 151

https://docs.unity3d.com/ScriptReference/DisallowMultipleComponent.html
http://blogs.unity3d.com/2014/05/16/custom-operator-should-we-keep-it/

DestroyOthers: whether to destroy any other components of same type and keep only one.•
Lazy: whether to set singleton instance "on the fly" (in Awake) or only "on demand" (when
getter is called).

•

using UnityEngine;

[DisallowMultipleComponent]
public abstract class Singleton<T> : MonoBehaviour where T : Singleton<T>
{
 private static volatile T instance;
 // thread safety
 private static object _lock = new object();
 public static bool FindInactive = true;
 // Whether or not this object should persist when loading new scenes. Should be set in
Init().
 public static bool Persist;
 // Whether or not destory other singleton instances if any. Should be set in Init().
 public static bool DestroyOthers = true;
 // instead of heavy comparision (instance != null)
 // http://blogs.unity3d.com/2014/05/16/custom-operator-should-we-keep-it/
 private static bool instantiated;

 private static bool applicationIsQuitting;

 public static bool Lazy;

 public static T Instance
 {
 get
 {
 if (applicationIsQuitting)
 {
 Debug.LogWarningFormat("[Singleton] Instance '{0}' already destroyed on
application quit. Won't create again - returning null.", typeof(T));
 return null;
 }
 lock (_lock)
 {
 if (!instantiated)
 {
 Object[] objects;
 if (FindInactive) { objects = Resources.FindObjectsOfTypeAll(typeof(T)); }
 else { objects = FindObjectsOfType(typeof(T)); }
 if (objects == null || objects.Length < 1)
 {
 GameObject singleton = new GameObject();
 singleton.name = string.Format("{0} [Singleton]", typeof(T));
 Instance = singleton.AddComponent<T>();
 Debug.LogWarningFormat("[Singleton] An Instance of '{0}' is needed in
the scene, so '{1}' was created{2}", typeof(T), singleton.name, Persist ? " with
DontDestoryOnLoad." : ".");
 }
 else if (objects.Length >= 1)
 {
 Instance = objects[0] as T;
 if (objects.Length > 1)
 {
 Debug.LogWarningFormat("[Singleton] {0} instances of '{1}'!",
objects.Length, typeof(T));
 if (DestroyOthers)

https://riptutorial.com/ 152

 {
 for (int i = 1; i < objects.Length; i++)
 {
 Debug.LogWarningFormat("[Singleton] Deleting extra '{0}'
instance attached to '{1}'", typeof(T), objects[i].name);
 Destroy(objects[i]);
 }
 }
 }
 return instance;
 }
 }
 return instance;
 }
 }
 protected set
 {
 instance = value;
 instantiated = true;
 instance.AwakeSingleton();
 if (Persist) { DontDestroyOnLoad(instance.gameObject); }
 }
 }

 // if Lazy = false and gameObject is active this will set instance
 // unless instance was called by another Awake method
 private void Awake()
 {
 if (Lazy) { return; }
 lock (_lock)
 {
 if (!instantiated)
 {
 Instance = this as T;
 }
 else if (DestroyOthers && Instance.GetInstanceID() != GetInstanceID())
 {
 Debug.LogWarningFormat("[Singleton] Deleting extra '{0}' instance attached to
'{1}'", typeof(T), name);
 Destroy(this);
 }
 }
 }

 // this might be called for inactive singletons before Awake if FindInactive = true
 protected virtual void AwakeSingleton() {}

 protected virtual void OnDestroy()
 {
 applicationIsQuitting = true;
 instantiated = false;
 }
}

Singleton Implementation through base class

In projects that feature several singleton classes (as is often the case), it can be clean and
convenient to abstract the singleton behaviour to a base class:

https://riptutorial.com/ 153

using UnityEngine;
using System.Collections.Generic;
using System;

public abstract class MonoBehaviourSingleton<T> : MonoBehaviour {

 private static Dictionary<Type, object> _singletons
 = new Dictionary<Type, object>();

 public static T Instance {
 get {
 return (T)_singletons[typeof(T)];
 }
 }

 void OnEnable() {
 if (_singletons.ContainsKey(GetType())) {
 Destroy(this);
 } else {
 _singletons.Add(GetType(), this);
 DontDestroyOnLoad(this);
 }
 }
}

A MonoBehaviour may then implement the singleton pattern by extending
MonoBehaviourSingleton. This approach allows the pattern to be utilised with a minimal footprint
on the Singleton itself:

using UnityEngine;
using System.Collections;

public class SingletonImplementation : MonoBehaviourSingleton<SingletonImplementation> {

 public string Text= "String Instance";

 // Use this for initialisation
 IEnumerator Start () {
 var demonstration = "SingletonImplementation.Start()\n" +
 "Note that the this text logs only once and\n"
 "only one class instance is allowed to exist.";
 Debug.Log(demonstration);
 yield return new WaitForSeconds(2f);
 var secondInstance = new GameObject();
 secondInstance.AddComponent<SingletonImplementation>();
 }

}

Note that one of the benefits of the singleton pattern is that a reference to the instance may be
accessed statically:

// Logs: String Instance
Debug.Log(SingletonImplementation.Instance.Text);

Keep in mind though, this practise should be minimised in order to reduce coupling. This approach
also comes at a slight performance cost due to the use of Dictionary, but as this collection may

https://riptutorial.com/ 154

contain only one instance of each singleton class, the trade-off in terms of the DRY principle (Don't
Repeat Yourself), readability and convenience is small.

Singleton Pattern utilizing Unitys Entity-Component system

The core idea is to use GameObjects to represent singletons, which has multiple advantages:

Keeps complexity to a minimum but supports concepts like dependency injection•
Singletons have a normal Unity lifecycle as part of the Entity-Component system•
Singletons can be lazy loaded and cached locally where regulary needed (e.g. in update
loops)

•

No static fields needed•
No need to modify existing MonoBehaviours / Components to use them as Singletons•
Easy to reset (just destroy the Singletons GameObject), will be lazy loaded again on next
usage

•

Easy to inject mocks (just initialize it with the mock before using it)•
Inspection and configuration using normal Unity editor and can happen already on editor
time (Screenshot of a Singleton accessible in the Unity editor)

•

Test.cs (which uses the example singleton):

using UnityEngine;
using UnityEngine.Assertions;

public class Test : MonoBehaviour {
 void Start() {
 ExampleSingleton singleton = ExampleSingleton.instance;
 Assert.IsNotNull(singleton); // automatic initialization on first usage
 Assert.AreEqual("abc", singleton.myVar1);
 singleton.myVar1 = "123";
 // multiple calls to instance() return the same object:
 Assert.AreEqual(singleton, ExampleSingleton.instance);
 Assert.AreEqual("123", ExampleSingleton.instance.myVar1);
 }
}

ExampleSingleton.cs (which contains an example and the actual Singleton class):

using UnityEngine;
using UnityEngine.Assertions;

public class ExampleSingleton : MonoBehaviour {
 public static ExampleSingleton instance { get { return Singleton.get<ExampleSingleton>();
} }
 public string myVar1 = "abc";
 public void Start() { Assert.AreEqual(this, instance, "Singleton more than once in
scene"); }
}

/// <summary> Helper that turns any MonBehaviour or other Component into a Singleton
</summary>
public static class Singleton {
 public static T get<T>() where T : Component {
 return GetOrAddGo("Singletons").GetOrAddChild("" + typeof(T)).GetOrAddComponent<T>();

https://riptutorial.com/ 155

https://i.imgur.com/ShhafVx.png

 }
 private static GameObject GetOrAddGo(string goName) {
 var go = GameObject.Find(goName);
 if (go == null) { return new GameObject(goName); }
 return go;
 }
}

public static class GameObjectExtensionMethods {
 public static GameObject GetOrAddChild(this GameObject parentGo, string childName) {
 var childGo = parentGo.transform.FindChild(childName);
 if (childGo != null) { return childGo.gameObject; } // child found, return it
 var newChild = new GameObject(childName); // no child found, create it
 newChild.transform.SetParent(parentGo.transform, false); // add it to parent
 return newChild;
 }

 public static T GetOrAddComponent<T>(this GameObject parentGo) where T : Component {
 var comp = parentGo.GetComponent<T>();
 if (comp == null) { return parentGo.AddComponent<T>(); }
 return comp;
 }
}

The two extension methods for GameObject are helpful in other situations as well, if you don't
need them move them inside the Singleton class and make them private.

MonoBehaviour & ScriptableObject based Singleton Class

Most Singleton examples use MonoBehaviour as the base class. The main disadvantage is that
this Singleton class only lives during run time. This has some drawbacks:

There is no way of directly editing the singleton fields other than changing the code.•
No way to store a reference to other assets on the Singleton.•
No way of setting the singleton as the destination of a Unity UI event. I end up using what i
call "Proxy Components" that its sole propose is to have 1 line methods that call
"GameManager.Instance.SomeGlobalMethod()".

•

As noted on the remarks there are implementations that try to solve this using ScriptableObjects
as base class but lose the run time benefits of the MonoBehaviour. This implementation solves
this problems by using a ScriptableObject as a base class and an associated MonoBehavior
during run time:

It is an asset so its properties can be updated on the editor like any other Unity asset.•
It plays nicely with the Unity serialization process.•
Is possible to assign references on the singleton to other assets from the editor
(dependencies are injected through the editor).

•

Unity events can directly call methods on the Singleton.•
Can call it from anywhere in the codebase using "SingletonClassName.Instance"•
Has access to run time MonoBehaviour events and methods like: Update, Awake, Start,
FixedUpdate, StartCoroutine, etc.

•

https://riptutorial.com/ 156

/**
 * Better Singleton by David Darias
 * Use as you like - credit where due would be appreciated :D
 * Licence: WTFPL V2, Dec 2014
 * Tested on Unity v5.6.0 (should work on earlier versions)
 * 03/02/2017 - v1.1
 * **/

using System;
using UnityEngine;
using SingletonScriptableObjectNamespace;

public class SingletonScriptableObject<T> :
SingletonScriptableObjectNamespace.BehaviourScriptableObject where T :
SingletonScriptableObjectNamespace.BehaviourScriptableObject
{
 //Private reference to the scriptable object
 private static T _instance;
 private static bool _instantiated;
 public static T Instance
 {
 get
 {
 if (_instantiated) return _instance;
 var singletonName = typeof(T).Name;
 //Look for the singleton on the resources folder
 var assets = Resources.LoadAll<T>("");
 if (assets.Length > 1) Debug.LogError("Found multiple " + singletonName + "s on
the resources folder. It is a Singleton ScriptableObject, there should only be one.");
 if (assets.Length == 0)
 {
 _instance = CreateInstance<T>();
 Debug.LogError("Could not find a " + singletonName + " on the resources
folder. It was created at runtime, therefore it will not be visible on the assets folder and
it will not persist.");
 }
 else _instance = assets[0];
 _instantiated = true;
 //Create a new game object to use as proxy for all the MonoBehaviour methods
 var baseObject = new GameObject(singletonName);
 //Deactivate it before adding the proxy component. This avoids the execution of
the Awake method when the the proxy component is added.
 baseObject.SetActive(false);
 //Add the proxy, set the instance as the parent and move to DontDestroyOnLoad
scene
 SingletonScriptableObjectNamespace.BehaviourProxy proxy =
baseObject.AddComponent<SingletonScriptableObjectNamespace.BehaviourProxy>();
 proxy.Parent = _instance;
 Behaviour = proxy;
 DontDestroyOnLoad(Behaviour.gameObject);
 //Activate the proxy. This will trigger the MonoBehaviourAwake.
 proxy.gameObject.SetActive(true);
 return _instance;
 }
 }
 //Use this reference to call MonoBehaviour specific methods (for example StartCoroutine)
 protected static MonoBehaviour Behaviour;
 public static void BuildSingletonInstance() {
SingletonScriptableObjectNamespace.BehaviourScriptableObject i = Instance; }
 private void OnDestroy(){ _instantiated = false; }
}

https://riptutorial.com/ 157

// Helper classes for the SingletonScriptableObject
namespace SingletonScriptableObjectNamespace
{
 #if UNITY_EDITOR
 //Empty custom editor to have cleaner UI on the editor.
 using UnityEditor;
 [CustomEditor(typeof(BehaviourProxy))]
 public class BehaviourProxyEditor : Editor
 {
 public override void OnInspectorGUI(){}
 }

 #endif

 public class BehaviourProxy : MonoBehaviour
 {
 public IBehaviour Parent;

 public void Awake() { if (Parent != null) Parent.MonoBehaviourAwake(); }
 public void Start() { if (Parent != null) Parent.Start(); }
 public void Update() { if (Parent != null) Parent.Update(); }
 public void FixedUpdate() { if (Parent != null) Parent.FixedUpdate(); }
 }

 public interface IBehaviour
 {
 void MonoBehaviourAwake();
 void Start();
 void Update();
 void FixedUpdate();
 }

 public class BehaviourScriptableObject : ScriptableObject, IBehaviour
 {
 public void Awake() { ScriptableObjectAwake(); }
 public virtual void ScriptableObjectAwake() { }
 public virtual void MonoBehaviourAwake() { }
 public virtual void Start() { }
 public virtual void Update() { }
 public virtual void FixedUpdate() { }
 }
}

Here there is an example GameManager singleton class using the SingletonScriptableObject (with
a lot of comments):

using System;
using System.Collections;
using System.Collections.Generic;
using UnityEngine;

//this attribute is optional but recommended. It will allow the creation of the singleton via
the asset menu.
//the singleton asset should be on the Resources folder.
[CreateAssetMenu(fileName = "GameManager", menuName = "Game Manager", order = 0)]
public class GameManager : SingletonScriptableObject<GameManager> {

 //any properties as usual
 public int Lives;

https://riptutorial.com/ 158

 public int Points;

 //optional (but recommended)
 //this method will run before the first scene is loaded. Initializing the singleton here
 //will allow it to be ready before any other GameObjects on every scene and will
 //will prevent the "initialization on first usage".
 [RuntimeInitializeOnLoadMethod(RuntimeInitializeLoadType.BeforeSceneLoad)]
 public static void BeforeSceneLoad() { BuildSingletonInstance(); }

 //optional,
 //will run when the Singleton Scriptable Object is first created on the assets.
 //Usually this happens on edit mode, not runtime. (the override keyword is mandatory for
this to work)
 public override void ScriptableObjectAwake(){
 Debug.Log(GetType().Name + " created.");
 }

 //optional,
 //will run when the associated MonoBehavioir awakes. (the override keyword is mandatory
for this to work)
 public override void MonoBehaviourAwake(){
 Debug.Log(GetType().Name + " behaviour awake.");

 //A coroutine example:
 //Singleton Objects do not have coroutines.
 //if you need to use coroutines use the atached MonoBehaviour
 Behaviour.StartCoroutine(SimpleCoroutine());
 }

 //any methods as usual
 private IEnumerator SimpleCoroutine(){
 while(true){
 Debug.Log(GetType().Name + " coroutine step.");
 yield return new WaitForSeconds(3);
 }
 }

 //optional,
 //Classic runtime Update method (the override keyword is mandatory for this to work).
 public override void Update(){

 }

 //optional,
 //Classic runtime FixedUpdate method (the override keyword is mandatory for this to work).
 public override void FixedUpdate(){

 }
}

/*
* Notes:
* - Remember that you have to create the singleton asset on edit mode before using it. You
have to put it on the Resources folder and of course it should be only one.
* - Like other Unity Singleton this one is accessible anywhere in your code using the
"Instance" property i.e: GameManager.Instance
*/

Read Singletons in Unity online: https://riptutorial.com/unity3d/topic/2137/singletons-in-unity

https://riptutorial.com/ 159

https://riptutorial.com/unity3d/topic/2137/singletons-in-unity

Chapter 32: Tags

Introduction

A tag is a string that can be applied to mark GameObject types. In this way, it makes it easier to
identify particular GameObject objects via code.

A tag can be applied to one or more game objects, but a game object will always only have one
tag. By default, the tag "Untagged" is used to represent a GameObject that has not been intentionally
tagged.

Examples

Creating and Applying Tags

Tags are typically applied via the editor; however, you can also apply tags via script. Any custom
tag must be created via the Tags & Layers window before being applied to a game object.

Setting Tags in the Editor

With one or more game objects selected, you can select a tag from the inspector. Game objects
will always carry a single tag; by default, game objects will be tagged as "Untagged". You can also
move to the Tags & Layers window, by selecting "Add Tag..."; however, it is important to note that
this only takes you to the Tags & Layers window. Any tag you create will not automatically apply to
the game object.

Setting Tags via Script

You can directly change a game objects tag via code. It is important to note that you must provide

https://riptutorial.com/ 160

https://i.stack.imgur.com/JWzCP.png

a tag from the list of current tags; if you supply a tag that has not already been created, this will
result in an error.

As detailed in other examples, using a series of static string variables as opposed to manually
writing each tag can ensure consistency and reliability.

The following script demonstrates how we might change a series of game objects tags, using
static string references to ensure consistency. Note the assumption that each static string
represents a tag that has already been created in the Tags & Layers window.

using UnityEngine;

public class Tagging : MonoBehaviour
{
 static string tagUntagged = "Untagged";
 static string tagPlayer = "Player";
 static string tagEnemy = "Enemy";

 /// <summary>Represents the player character. This game object should
 /// be linked up via the inspector.</summary>
 public GameObject player;
 /// <summary>Represents all the enemy characters. All enemies should
 /// be added to the array via the inspector.</summary>
 public GameObject[] enemy;

 void Start ()
 {
 // We ensure that the game object this script is attached to
 // is left untagged by using the default "Untagged" tag.
 gameObject.tag = tagUntagged;

 // We ensure the player has the player tag.
 player.tag = tagUntagged;

 // We loop through the enemy array to ensure they are all tagged.
 for(int i = 0; i < enemy.Length; i++)
 {
 enemy[i].tag = tagEnemy;
 }
 }
}

Creating Custom Tags

Regardless of whether you set tags via the Inspector, or via script, tags must be declared via the
Tags & Layers window before use. You can access this window by selecting "Add Tags..." from a
game objects tag drop down menu. Alternatively, you can find the window under Edit > Project
Settings > Tags and Layers.

https://riptutorial.com/ 161

Simply select the + button, enter the desired name and select Save to create a tag. Selecting the -
button will remove the currently highlighted tag. Note that in this manner, the tag will be
immediately displayed as "(Removed)", and will be completely removed when the project is next
reloaded.

Selecting the gear/cog from the top right of the window will allow you to reset all custom options.
This will immediately remove all custom tags, along with any custom layer you may have under
"Sorting Layers" and "Layers".

Finding GameObjects by Tag:

Tags make it particularly easy to locate specific game objects. We can look for a single game
object, or look for multiple.

Finding a Single GameObject

We can use the static function GameObject.FindGameObjectWithTag(string tag) to look for individual
game objects. It is important to note that, in this way, game objects are not queried in any
particular order. If you search for a tag that is used on multiple game objects in the scene, this
function will not be able to guarantee which game object is returned. As such, it is more
appropriate when we know that only one game object uses such tag, or when we are not worried
about the exact instance of GameObject that is returned.

///<summary>We create a static string to allow us consistency.</summary>
string playerTag = "Player"

///<summary>We can now use the tag to reference our player GameObject.</summary>
GameObject player = GameObject.FindGameObjectWithTag(playerTag);

https://riptutorial.com/ 162

https://i.stack.imgur.com/NAVSg.png

Finding an Array of GameObject instances

We can use the static function GameObject.FindGameObjectsWithTag(string tag) to look for all game
objects that use a particular tag. This is useful when we want iterate through a group of particular
game objects. This can also be useful if we want to find a single game object, but may have
multiple game objects using the same tag. As we can not guarantee the exact instance returned
by GameObject.FindGameObjectWithTag(string tag), we must instead retrieve an array of all potential
GameObject instances with GameObject.FindGameObjectsWithTag(string tag), and further analyse the
resulting array to find the instance we are looking for.

///<summary>We create a static string to allow us consistency.</summary>
string enemyTag = "Enemy";

///<summary>We can now use the tag to create an array of all enemy GameObjects.</summary>
GameObject[] enemies = GameObject.FindGameObjectsWithTag(enemyTag);

// We can now freely iterate through our array of enemies
foreach(GameObject enemy in enemies)
{
 // Do something to each enemy (link up a reference, check for damage, etc.)
}

Comparing Tags

When comparing two GameObjects by Tags, it should be noted that the following would cause
Garbage Collector overhead as a string is created everytime:

if (go.Tag == "myTag")
{
 //Stuff
}

When performing those comparisons inside Update() and other regular Unity's callback (or a loop),
you should use this heap allocation-free method:

if (go.CompareTag("myTag")
{
 //Stuff
}

Additionally it's easier to keep your tags in a static class.

public static class Tags
{
 public const string Player = "Player";
 public const string MyCustomTag = "MyCustomTag";
}

Then you can compare safely

https://riptutorial.com/ 163

if (go.CompareTag(Tags.MyCustomTag)
{
 //Stuff
}

this way, your tag strings are generated at compile time, and you limit the implications of spelling
mistakes.

Just like keeping tags into a static class, it is also possible to store it into an enumeration:

public enum Tags
{
 Player, Ennemies, MyCustomTag;
}

and then you can compare it using the enum toString() method:

if (go.CompareTag(Tags.MyCustomTag.toString())
{
 //Stuff
}

Read Tags online: https://riptutorial.com/unity3d/topic/5534/tags

https://riptutorial.com/ 164

https://riptutorial.com/unity3d/topic/5534/tags

Chapter 33: Transforms

Syntax

void Transform.Translate(Vector3 translation, Space relativeTo = Space.Self)•
void Transform.Translate(float x, float y, float z, Space relativeTo = Space.Self)•
void Transform.Rotate(Vector3 eulerAngles, Space relativeTo = Space.Self)•
void Transform.Rotate(float xAngle, float yAngle, float zAngle, Space relativeTo =
Space.Self)

•

void Transform.Rotate(Vector3 axis, float angle, Space relativeTo = Space.Self)•
void Transform.RotateAround(Vector3 point, Vector3 axis, float angle)•
void Transform.LookAt(Transform target, Vector3 worldUp = Vector3.up)•
void Transform.LookAt(Vector3 worldPosition, Vector3 worldUp = Vector3.up)•

Examples

Overview

Transforms hold the majority of data about an object in unity, including it's parent(s), child(s),
position, rotation, and scale. It also has functions to modify each of these properties. Every
GameObject has a Transform.

Translating (moving) an object

// Move an object 10 units in the positive x direction
transform.Translate(10, 0, 0);

// translating with a vector3
vector3 distanceToMove = new Vector3(5, 2, 0);
transform.Translate(distanceToMove);

Rotating an object

// Rotate an object 45 degrees about the Y axis
transform.Rotate(0, 45, 0);

// Rotates an object about the axis passing through point (in world coordinates) by angle in
degrees
transform.RotateAround(point, axis, angle);
// Rotates on it's place, on the Y axis, with 90 degrees per second
transform.RotateAround(Vector3.zero, Vector3.up, 90 * Time.deltaTime);

// Rotates an object to make it's forward vector point towards the other object
transform.LookAt(otherTransform);
// Rotates an object to make it's forward vector point towards the given position (in world
coordinates)
transform.LookAt(new Vector3(10, 5, 0));

More information and examples can be seen at Unity documentation.

https://riptutorial.com/ 165

https://docs.unity3d.com/ScriptReference/Transform.html

Also note that if the game is using rigid bodies, then the transform should not be interacted with
directly (unless the rigid body has isKinematic == true). In those case use AddForce or other
similar methods to act on the rigid body directly.

Parenting and Children

Unity works with hierarchies in order to keep your project organized. You can assign objects a
place in the hierarchy using the editor but you can also do this through code.

Parenting

You can set an object's parent with the following methods

var other = GetOtherGameObject();
other.transform.SetParent(transform);
other.transform.SetParent(transform, worldPositionStays);

Whenever you set a transforms parent, it will keep the objects position as a world position. You
can choose to make this position relative by passing false for the worldPositionStays parameter.

You can also check if the object is a child of another transform with the following method

other.transform.IsChildOf(transform);

Getting a Child

Since objects can be parented to one another, you can also find children in the hierarchy. The
simplest way of doing this is by using the following method

transform.Find("other");
transform.FindChild("other");

Note: FindChild calls Find under the hood

You can also search for children further down the hierarchy. You do this by adding in a "/" to
specify going a level deeper.

transform.Find("other/another");
transform.FindChild("other/another");

Another way of fetching a child is using the GetChild

transform.GetChild(index);

GetChild requires an integer as index which must be smaller than the total child count

int count = transform.childCount;

https://riptutorial.com/ 166

https://docs.unity3d.com/ScriptReference/Rigidbody.AddForce.html

Changing Sibling Index

You can change the order of the children of a GameObject. You can do this to define the draw
order of the children (assuming that they are on the same Z level and the same sorting order).

other.transform.SetSiblingIndex(index);

You can also quickly set the sibling index to either first or last using the following methods

other.transform.SetAsFirstSibling();
other.transform.SetAsLastSibling();

Detaching all Children

If you want to release all children of a transform, you can do this:

foreach(Transform child in transform)
{
 child.parent = null;
}

Also, Unity provides a method for this purpose:

transform.DetachChildren();

Basically, both looping and DetachChildren() set the parents of first-depth children to null - which
means they will have no parents.

(first-depth children: the transforms that are directly child of transform)

Read Transforms online: https://riptutorial.com/unity3d/topic/2190/transforms

https://riptutorial.com/ 167

https://riptutorial.com/unity3d/topic/2190/transforms

Chapter 34: Unity Animation

Examples

Basic Animation for Running

This code shows a simple example of animation in Unity.

For this example, you should have 2 animation clips; Run and Idle. Those animations should be
Stand-In-Place motions. Once the animation clips are selected, create an Animator Controller. Add
this Controller to the player or game object you want to animate.

Open the Animator window from Windows option. Drag the 2 animation clips to the Animator
window and 2 states would be created. Once created, use the left parameters tab to add 2
parameters, both of them as bool. Name one as "PerformRun" and other as "PerformIdle". Set
"PerformIdle" to true.

Make transitionsfrom Idle state to Run and Run to idle (Refer the image). Click on Idle->Run
transition and in the Inspector window, de-select HasExit. Do the same for the other transition. For
Idle->Run transition, add a condition: PerformIdle. For Run->Idle, add a condition: PerformRun.
Add the C# script given below to the game object. It should run with animation using the Up button
and rotate with Left and Right buttons.

using UnityEngine;
using System.Collections;

public class RootMotion : MonoBehaviour {

//Public Variables
[Header("Transform Variables")]
public float RunSpeed = 0.1f;
public float TurnSpeed = 6.0f;

Animator animator;

void Start()
{
 /**
 * Initialize the animator that is attached on the current game object i.e. on which you
will attach this script.
 */
 animator = GetComponent<Animator>();
}

void Update()
{
 /**
 * The Update() function will get the bool parameters from the animator state machine and
set the values provided by the user.
 * Here, I have only added animation for Run and Idle. When the Up key is pressed, Run
animation is played. When we let go, Idle is played.

https://riptutorial.com/ 168

 */

 if (Input.GetKey (KeyCode.UpArrow)) {
 animator.SetBool ("PerformRun", true);
 animator.SetBool ("PerformIdle", false);
 } else {
 animator.SetBool ("PerformRun", false);
 animator.SetBool ("PerformIdle", true);
 }
}

void OnAnimatorMove()
 {
 /**
 * OnAnimatorMove() function will shadow the "Apply Root Motion" on the animator. Your
game objects psoition will now be determined
 * using this fucntion.
 */
 if (Input.GetKey (KeyCode.UpArrow)){
 transform.Translate (Vector3.forward * RunSpeed);
 if (Input.GetKey (KeyCode.RightArrow)) {
 transform.Rotate (Vector3.up * Time.deltaTime * TurnSpeed);
 }
 else if (Input.GetKey (KeyCode.LeftArrow)) {
 transform.Rotate (-Vector3.up * Time.deltaTime * TurnSpeed);
 }
 }

 }

}

Creating and Using Animation Clips

This example will show how to make and use animation clips for game objects or players.

Note, the models used in this example are downloaded from Unity Asset Store. The player was
downloaded from the following link: https://www.assetstore.unity3d.com/en/#!/content/21874.

https://riptutorial.com/ 169

http://i.stack.imgur.com/1cvGG.jpg
https://www.assetstore.unity3d.com/en/#!/content/21874

To create animations, first open the Animation Window. You can open it by clicking on Window
and Select Animation or press Ctrl+6. The select the game object to which you want to apply the
animation clip, from the Hierarchy Window, and then click on Create button on the Animation
Window.

Name your animation (like IdlePlayer, SprintPlayer, DyingPlayer etc.) and Save it. Now, from the
Animation Window, click on Add Property button. This will allow you to change the property of the
game object or player with respect to time. This can include Tranforms like rotation, position and
scale and anyother property that is attached to the game object e.g. Collider, Mesh Renderer etc.

To create a running animation for game object, you will need a humanoid 3D model. You can
download the model from the above link. Follow the above steps to create a new animation. Add a
Transform property and select Rotation for one of the character leg.

https://riptutorial.com/ 170

http://i.stack.imgur.com/IZqzc.jpg
http://i.stack.imgur.com/3W63z.jpg

At this moment, your Play button and Rotation values in the game object property would have
turned red. Click the drop down arrow to see the rotation X, Y and Z values. The default animation
time is set to 1 second. Animations use key frames to interpolate between values. To animate, add
keys at different points in time and change the rotation values from the Inspector Window. For e.g.
the rotation value at time 0.0s can be 0.0. At time 0.5s the value can be 20.0 for X. At time 1.0s
the value can be 0.0. We can end our animation at 1.0s.

Your animation length depends on the last Keys that you add to the Animation. You can add more
keys to make the interpolation smoother.

2D Sprite Animation

Sprite animation consists in showing an existing sequence of images or frames.

First import a sequence of images to the asset folder. Either create some images from scratch or
download some from the Asset Store. (This example uses this free asset.)

Drag every individual image of a single animation from the assets folder to the scene view. Unity
will show a dialog for naming the new animation clip.

https://riptutorial.com/ 171

http://i.stack.imgur.com/ThoNz.jpg
http://u3d.as/jUy
http://i.stack.imgur.com/WhuGf.png

This is a useful shortcut for:

creating new game objects•
assigning two components (a Sprite Renderer and an Animator)•
creating animation controllers (and linking the new Animator component to them)•
creating animation clips with the selected frames•

Preview the playback in the animation tab by clicking Play:

https://riptutorial.com/ 172

http://i.stack.imgur.com/Z0BfW.png
http://i.stack.imgur.com/Lo4d2.png

The same method can be used to create new animations for the same game object, then deleting
the new game object and animation controller. Add the new animation clip to the animation
controller of that object in the same manner as with 3D animation.

Animation Curves

Animation curves allows you to change a float parameter as the animation plays. For example, if
there is an animation of length 60 seconds and you want a float value/parameter, call it X, to vary
through the animation (like at animation time = 0.0s; X = 0.0 , at animation time = 30.0s; X = 1.0,
at animation time = 60.0s; X = 0.0).

Once you have the float value, you can use it to translate, rotate, scale or use it in any other way.

For my example, I will show a player game object running. When the animation for run plays, the
player's translation speed should increase as the animation proceeds. When the animation
reaches its end, the translation speed should decrease.

I have a running animation clip created. Select the clip and then in the inspector window, click on
Edit.

https://riptutorial.com/ 173

http://i.stack.imgur.com/50h4e.gif

Once there, scroll down to Curves. Click on the + sign to add a curve. Name the Curve e.g.
ForwardRunCurve. Click on the miniature curve on the right. It will open a small window with a
default curve in it.

We want a parabolic shaped curve where it rises and then falls. By default, there are 2 points on
the line. You can add more points by double clicking on the curve. Drag the points to create a
shape similar to the following.

In the Animator Window, add the running clip. Also, add a float parameter with the same name as
the curve i.e. ForwardRunCurve.

https://riptutorial.com/ 174

http://i.stack.imgur.com/GqRvX.jpg
http://i.stack.imgur.com/32zNy.jpg
http://i.stack.imgur.com/59x6F.jpg

When the Animation plays, the float value will change according to the curve. The following code
will show how to use the float value:

using UnityEngine;
using System.Collections;

public class RunAnimation : MonoBehaviour {

Animator animator;
float curveValue;

void Start()
{
 animator = GetComponent<Animator>();
}

void Update()
{
 curveValue = animator.GetFloat("ForwardRunCurve");

 transform.Translate (Vector3.forward * curveValue);
}

}

The curveValue variable holds the value of the curve(ForwardRunCruve) at any given time. We
are using that value to change the speed of the translation. You can attach this script to the player
game object.

Read Unity Animation online: https://riptutorial.com/unity3d/topic/5448/unity-animation

https://riptutorial.com/ 175

https://riptutorial.com/unity3d/topic/5448/unity-animation

Chapter 35: Unity Lighting

Examples

Types of Light

Area Light

Light is emitted across the surface of a rectangular area. They are baked only which means you
won't be able to see the effect until you bake the scene.

Area Lights have the following properties:

Width - Width of light area.•
Height - Height of light area.•
Color - Assign the color of the light.•
Intensity - How powerful the light is from 0 - 8.•
Bounce Intensity - How powerful the indirect light is from 0 - 8.•
Draw Halo - Will draw a halo around the light.•
Flare - Allows you to assign a flare effect to the light.•
Render Mode - Auto, Important, Not Important.•
Culling Mask - Allows you to selectively light parts of a scene.•

Directional Light

https://riptutorial.com/ 176

https://i.stack.imgur.com/jWq5e.png

Directional Lights emit light in a single direction (much like the sun). It does not matter where in the
scene the actual GameObject is placed as the light is "everywhere". The light intensity does not
diminish like the other light types.

A Directional Light has the following properties:

Baking - Realtime, Baked or Mixed.•
Color - Assign the color of the light.•
Intensity - How powerful the light is from 0 - 8.•
Bounce Intensity - How powerful the indirect light is from 0 - 8.•
Shadow Type - No Shadows, Hard Shadows or Soft Shadows.•
Cookie - Allow you to assign a cookie for the light.•
Cookie Size - The size of the assigned cookie.•
Draw Halo - Will draw a halo around the light.•
Flare - Allows you to assign a flare effect to the light.•
Render Mode - Auto, Important, Not Important.•
Culling Mask - Allows you to selectively light parts of a scene.•

Point Light

A Point Light emits light from a point in space in all directions. The further from the origin point, the
less intense the light.

https://riptutorial.com/ 177

https://i.stack.imgur.com/ArDzK.png

Point Lights have the following properties:

Baking - Realtime, Baked or Mixed.•
Range - The distance from the point where light no longer reaches.•
Color - Assign the color of the light.•
Intensity - How powerful the light is from 0 - 8.•
Bounce Intensity - How powerful the indirect light is from 0 - 8.•
Shadow Type - No Shadows, Hard Shadows or Soft Shadows.•
Cookie - Allow you to assign a cookie for the light.•
Draw Halo - Will draw a halo around the light.•
Flare - Allows you to assign a flare effect to the light.•
Render Mode - Auto, Important, Not Important.•
Culling Mask - Allows you to selectively light parts of a scene.•

Spot Light

A Spot Light is much like a Point Light but the emission is restricted to an angle. The result is a
"cone" of light, useful for car headlights or searchlights.

https://riptutorial.com/ 178

https://i.stack.imgur.com/s8PwR.png

Spot Lights have the following properties:

Baking - Realtime, Baked or Mixed.•
Range - The distance from the point where light no longer reaches.•
Spot Angle - The angle of light emission.•
Color - Assign the color of the light.•
Intensity - How powerful the light is from 0 - 8.•
Bounce Intensity - How powerful the indirect light is from 0 - 8.•
Shadow Type - No Shadows, Hard Shadows or Soft Shadows.•
Cookie - Allow you to assign a cookie for the light.•
Draw Halo - Will draw a halo around the light.•
Flare - Allows you to assign a flare effect to the light.•
Render Mode - Auto, Important, Not Important.•
Culling Mask - Allows you to selectively light parts of a scene.•

Note about Shadows

If you select Hard or Soft Shadows, the following options become available in the inspector:

Strength - How dark the shadows are from 0 - 1.•
Resolution - How detailed shadows are.•
Bias - he degree to which shadow casting surfaces are pushed away from the light.•
Normal Bias - The degree to which shadow casting surfaces are pushed inwards along their
normals.

•

Shadow Near Plane - 0.1 - 10.•

https://riptutorial.com/ 179

https://i.stack.imgur.com/nkJgW.png

Emission

Emission is when a surface (or rather a material) emits light. In the inspector panel for a material
on a static object using the Standard Shader there is an emission property:

If you change this property to a value higher than the default of 0, you can set the emission color,
or assign an emission map to the material. Any texture assigned to this slot will enable the
emission to use its own colors.

There is also a Global Illumination option which allows you to set whether the emission is baked
onto nearby static objects or not:

Baked - The emission will be baked into the scene•
Realtime - The emission will affect dynamic objects•
None - The emission will not affect nearby objects•

If the object is not set to static, the effect will still make the object appear to "glow" but no light is
emitted. The cube here is static, the cylinder is not:

You can set the emission color in code like this:

Renderer renderer = GetComponent<Renderer>();
Material mat = renderer.material;
mat.SetColor("_EmissionColor", Color.yellow);

Light emitted will fall off at a quadratic rate and will only show against static materials in the scene.

https://riptutorial.com/ 180

https://i.stack.imgur.com/f0JYE.png
https://i.stack.imgur.com/GQToN.png
https://i.stack.imgur.com/myK2D.png

Read Unity Lighting online: https://riptutorial.com/unity3d/topic/7884/unity-lighting

https://riptutorial.com/ 181

https://riptutorial.com/unity3d/topic/7884/unity-lighting

Chapter 36: Unity Profiler

Remarks

Using Profiler on different Device

There are few importants things to know to properly hook the Profiler on different platforms.

Android

In order to properly attach the profile, "Build and Run" button from the Build Settings window with
the option Autoconnect Profiler checked must be used.

Another mandatory option, in Android Player Settings inspector in the Other Settings tab, there is
a checkbox Enable Internal profiler which needs to be checked so LogCat will output profiler
info.

Using only "Build" will not allow the profiler to connect to an Android device because the "Build

https://riptutorial.com/ 182

https://i.stack.imgur.com/13A2Z.png
https://docs.unity3d.com/Manual/class-PlayerSettingsAndroid.html
https://i.stack.imgur.com/S7JB8.png

and Run" use specific command line arguments to start it with LogCat.

iOS

In order to properly attach the profile, "Build and Run" button from the Build Settings window with
the option Autoconnect Profiler checked must be used on the first run.

On iOS, there is no option in player settings that must be set for the Profiler to be enable. It should
work out of the box.

Examples

Profiler Markup

Using the Profiler Class

One very good practice is to use Profiler.BeginSample and Profiler.EndSample because it will
have its own entry in the Profiler Window.

Also, those tag will be stripped out on non-Development build using using ConditionalAttribute, so
you don't need to remove them from your code.

public class SomeClass : MonoBehaviour
{
 void SomeFunction()
 {
 Profiler.BeginSample("SomeClass.SomeFunction");
 // Various call made here
 Profiler.EndSample();
 }
}

https://riptutorial.com/ 183

https://i.stack.imgur.com/bJFLV.png
https://docs.unity3d.com/ScriptReference/Profiler.html

This will create an Entry "SomeClass.SomeFunction" in the Profiler Window that will allow easier
debugging and identification of Bottle neck.

Read Unity Profiler online: https://riptutorial.com/unity3d/topic/6974/unity-profiler

https://riptutorial.com/ 184

https://riptutorial.com/unity3d/topic/6974/unity-profiler

Chapter 37: User Interface System (UI)

Examples

Subscribing to event in code

By default, one should subscribe to event using inspector, but sometimes it's better to do it in
code. In this example we subscribe to click event of a button in order to handle it.

using UnityEngine;
using UnityEngine.UI;

[RequireComponent(typeof(Button))]
public class AutomaticClickHandler : MonoBehaviour
{
 private void Awake()
 {
 var button = this.GetComponent<Button>();
 button.onClick.AddListener(HandleClick);
 }

 private void HandleClick()
 {
 Debug.Log("AutomaticClickHandler.HandleClick()", this);
 }
}

The UI components usually provide their main listener easily :

Button : onClick•
Dropdown : onValueChanged•
InputField : onEndEdit, onValidateInput, onValueChanged•
Scrollbar : onValueChanged•
ScrollRect : onValueChanged•
Slider : onValueChanged•
Toggle : onValueChanged•

Adding mouse listeners

Sometimes, you want to add listeners on particular events not natively provided by the
components, in particular mouse events. To do so, you will have to add them by yourself using an
EventTrigger component :

using UnityEngine;
using UnityEngine.EventSystems;

[RequireComponent(typeof(EventTrigger))]
public class CustomListenersExample : MonoBehaviour
{
 void Start()

https://riptutorial.com/ 185

https://docs.unity3d.com/ScriptReference/UI.Button-onClick.html
https://docs.unity3d.com/ScriptReference/UI.Dropdown-onValueChanged.html
https://docs.unity3d.com/ScriptReference/UI.InputField-onEndEdit.html
https://docs.unity3d.com/ScriptReference/UI.InputField-onValidateInput.html
https://docs.unity3d.com/ScriptReference/UI.InputField-onValueChanged.html
https://docs.unity3d.com/ScriptReference/UI.Scrollbar-onValueChanged.html
https://docs.unity3d.com/ScriptReference/UI.ScrollRect-onValueChanged.html
https://docs.unity3d.com/ScriptReference/UI.Slider-onValueChanged.html
https://docs.unity3d.com/ScriptReference/UI.Toggle-onValueChanged.html

 {
 EventTrigger eventTrigger = GetComponent<EventTrigger>();
 EventTrigger.Entry entry = new EventTrigger.Entry();
 entry.eventID = EventTriggerType.PointerDown;
 entry.callback.AddListener((data) => { OnPointerDownDelegate(
(PointerEventData)data); });
 eventTrigger.triggers.Add(entry);
 }

 public void OnPointerDownDelegate(PointerEventData data)
 {
 Debug.Log("OnPointerDownDelegate called.");
 }
}

Various eventID are possible :

PointerEnter•
PointerExit•
PointerDown•
PointerUp•
PointerClick•
Drag•
Drop•
Scroll•
UpdateSelected•
Select•
Deselect•
Move•
InitializePotentialDrag•
BeginDrag•
EndDrag•
Submit•
Cancel•

Read User Interface System (UI) online: https://riptutorial.com/unity3d/topic/2296/user-interface-
system--ui-

https://riptutorial.com/ 186

https://riptutorial.com/unity3d/topic/2296/user-interface-system--ui-
https://riptutorial.com/unity3d/topic/2296/user-interface-system--ui-

Chapter 38: Using Git source control with
Unity

Examples

Using Git Large File Storage (LFS) with Unity

Foreword

Git can work with video game development out of the box. However the main caveat is that
versioning large (>5 MB) media files can be a problem over the long term as your commit history
bloats - Git simply wasn't originally built for versioning binary files.

The great news is that since mid-2015 GitHub has released a plugin for Git called Git LFS that
directly deals with this problem. You can now easily and efficiently version large binary files!

Finally, this documentation is focused on the specific requirements and information necessary to
ensure your Git life works well with video game development. This guide will not cover how to use
Git itself.

Installing Git & Git-LFS

You have a number of options available to you as a developer and the first choice is whether to
install the core Git command-line or let one of the popular Git GUI applications deal with it for you.

Option 1: Use a Git GUI Application

This is really a personal preference here as there are quite a few options in terms of Git GUI or
whether to use a GUI at all. You have a number of applications to choose from, here are 3 of the
more popular ones:

Sourcetree (Free)•
Github Desktop (Free)•
SmartGit (Commerical)•

Once you've installed your application of choice, please google and follow instructions on how to
ensure it is setup for Git-LFS. We'll be skipping this step in this guide as it is application specific.

Option 2: Install Git & Git-LFS

This is pretty simple - Install Git. Then. Install Git LFS.

https://riptutorial.com/ 187

https://git-lfs.github.com/
https://www.sourcetreeapp.com/
https://desktop.github.com/
http://www.syntevo.com/smartgit/
https://git-scm.com/downloads
https://git-lfs.github.com/

Configuring Git Large File Storage on your
project

If you're using the Git LFS plugin to give better support for binary files, then you'll need to set
some file types to be managed by Git LFS. Add the below to your .gitattributes file in the root of
your repository to support common binary files used in Unity projects:

Image formats:
*.tga filter=lfs diff=lfs merge=lfs -text
*.png filter=lfs diff=lfs merge=lfs -text
*.tif filter=lfs diff=lfs merge=lfs -text
*.jpg filter=lfs diff=lfs merge=lfs -text
*.gif filter=lfs diff=lfs merge=lfs -text
*.psd filter=lfs diff=lfs merge=lfs -text

Audio formats:
*.mp3 filter=lfs diff=lfs merge=lfs -text
*.wav filter=lfs diff=lfs merge=lfs -text
*.aiff filter=lfs diff=lfs merge=lfs -text

3D model formats:
*.fbx filter=lfs diff=lfs merge=lfs -text
*.obj filter=lfs diff=lfs merge=lfs -text

Unity formats:
*.sbsar filter=lfs diff=lfs merge=lfs -text
*.unity filter=lfs diff=lfs merge=lfs -text

Other binary formats
*.dll filter=lfs diff=lfs merge=lfs -text

Setting up a Git repository for Unity

When initializing a Git repository for Unity development, there are a couple of things that need to
be done.

Unity Ignore Folders

Not everything should be versioned in the repository. You can add the template below to your
.gitignore file in the root of your repository. Or alternatively, you can check the open source Unity
.gitignore on GitHub and alternatively generate one using gitignore.io for unity.

Unity Generated
[Tt]emp/
[Ll]ibrary/
[Oo]bj/

Unity3D Generated File On Crash Reports
sysinfo.txt

https://riptutorial.com/ 188

https://github.com/github/gitignore/blob/master/Unity.gitignore
https://github.com/github/gitignore/blob/master/Unity.gitignore
https://www.gitignore.io/api/unity

Visual Studio / MonoDevelop Generated
ExportedObj/
obj/
*.csproj
*.unityproj
*.sln
*.suo
*.tmp
*.user
*.userprefs
*.pidb
*.booproj
*.svd

OS Generated
desktop.ini
.DS_Store
.DS_Store?
.Spotlight-V100
.Trashes
ehthumbs.db
Thumbs.db

To learn more about how to setup a .gitignore file, check out here.

Unity Project Settings

By default Unity projects aren't setup to support versioning correctly.

(Skip this step in v4.5 and up) Enable External option in Unity → Preferences → Packages →
Repository.

1.

Switch to Visible Meta Files in Edit → Project Settings → Editor → Version Control Mode.2.
Switch to Force Text in Edit → Project Settings → Editor → Asset Serialization Mode.3.
Save the scene and project from File menu.4.

Additional Configuration

One of the few major annoyances one has with using Git with Unity projects is that Git doesn't
care about directories and will happily leave empty directories around after removing files from
them. Unity will make *.meta files for these directories and can cause a bit of a battle between
team members when Git commits keep adding and removing these meta files.

Add this Git post-merge hook to the /.git/hooks/ folder for repositories with Unity projects in them.
After any Git pull/merge, it will look at what files have been removed, check if the directory it
existed in is empty, and if so delete it.

Scenes and Prefabs merging

A common problem when working with Unity is when 2 or more developers are modifying a Unity
scene or prefab (*.unity files). Git does not know how to merge them correctly out of the box.

https://riptutorial.com/ 189

http://www.riptutorial.com/git/topic/245/ignoring-files-and-folders
https://github.com/strich/git-dir-cleaner-for-unity3d

Thankfully the Unity team deployed a tool called SmartMerge which makes simple merge
automatic. The first thing to do is to add the following lines to your .git or .gitconfig file:
(Windows: %USERPROFILE%\.gitconfig, Linux/Mac OS X: ~/.gitconfig)

[merge]
tool = unityyamlmerge

[mergetool "unityyamlmerge"]
trustExitCode = false
cmd = '<path to UnityYAMLMerge>' merge -p "$BASE" "$REMOTE" "$LOCAL" "$MERGED"

On Windows the path to UnityYAMLMerge is :

C:\Program Files\Unity\Editor\Data\Tools\UnityYAMLMerge.exe

or

C:\Program Files (x86)\Unity\Editor\Data\Tools\UnityYAMLMerge.exe

and on MacOSX :

/Applications/Unity/Unity.app/Contents/Tools/UnityYAMLMerge

Once this is done, the mergetool will be available when conflicts arise during merge/rebase. Don't
forget to run git mergetool manually to trigger UnityYAMLMerge.

Read Using Git source control with Unity online: https://riptutorial.com/unity3d/topic/2195/using-git-
source-control-with-unity

https://riptutorial.com/ 190

https://docs.unity3d.com/Manual/SmartMerge.html
https://riptutorial.com/unity3d/topic/2195/using-git-source-control-with-unity
https://riptutorial.com/unity3d/topic/2195/using-git-source-control-with-unity

Chapter 39: Vector3

Introduction

The Vector3 structure represents a 3D coordinate, and is one of the backbone structures of the
UnityEngine library. The Vector3 structure is most commonly found in the Transform component of
most game objects, where it is used to hold position and scale. Vector3 provides good functionality
for performing common vector operations. You can read more on the Vector3 structure in the Unity
API.

Syntax

public Vector3();•
public Vector3(float x, float y);•
public Vector3(float x, float y, float z);•
Vector3.Lerp(Vector3 startPosition, Vector3 targetPosition, float movementFraction);•
Vector3.LerpUnclamped(Vector3 startPosition, Vector3 targetPosition, float
movementFraction);

•

Vector3.MoveTowards(Vector3 startPosition, Vector3 targetPosition, float distance);•

Examples

Static Values

The Vector3 structure contains some static variables that provide commonly used Vector3 values.
Most represent a direction, but they can still be used creatively to provide additional functionality.

Vector3.zero and Vector3.one

Vector3.zero and Vector3.one are typically used in connection to a normalised Vector3; that is, a
Vector3 where the x, y and z values have a magnitude of 1. As such, Vector3.zero represents the
lowest value, whilst Vector3.one represents the largest value.

Vector3.zero is also commonly used to set the default position on object transforms.

The following class uses Vector3.zero and Vector3.one to inflate and deflate a sphere.

using UnityEngine;

public class Inflater : MonoBehaviour
{
 <summary>A sphere set up to inflate and deflate between two values.</summary>

https://riptutorial.com/ 191

https://docs.unity3d.com/ScriptReference/Vector3.html
https://docs.unity3d.com/ScriptReference/Vector3.html
https://docs.unity3d.com/ScriptReference/Vector3.html
https://docs.unity3d.com/ScriptReference/Vector3.html

 public ScaleBetween sphere;

 ///<summary>On start, set the sphere GameObject up to inflate
 /// and deflate to the corresponding values.</summary>
 void Start()
 {
 // Vector3.zero = Vector3(0, 0, 0); Vector3.one = Vector3(1, 1, 1);
 sphere.SetScale(Vector3.zero, Vector3.one);
 }
}

Static Directions

The static directions can be useful in a number of applications, with direction along the positive
and negative of all three axis. It is important to note that Unity employs a left-handed coordinate
system, which has an affect on direction.

https://riptutorial.com/ 192

https://i.stack.imgur.com/B42Db.gif

The following class uses the static Vector3 directions to move objects along the three axis.

using UnityEngine;

public class StaticMover : MonoBehaviour
{
 <summary>GameObjects set up to move back and forth between two directions.</summary>
 public MoveBetween xMovement, yMovement, zMovement;

 ///<summary>On start, set each MoveBetween GameObject up to move
 /// in the corresponding direction(s).</summary>
 void Start()
 {
 // Vector3.left = Vector3(-1, 0, 0); Vector3.right = Vector3(1, 0, 0);
 xMovement.SetDirections(Vector3.left, Vector3.right);

 // Vector3.down = Vector3(0, -1, 0); Vector3.up = Vector3(0, 0, 1);
 yMovement.SetDirections(Vector3.down, Vector3.up);

 // Vector3.back = Vector3(0, 0, -1); Vector3.forward = Vector3(0, 0, 1);
 zMovement.SetDirections(Vector3.back, Vector3.forward);
 }
}

https://riptutorial.com/ 193

https://i.stack.imgur.com/Ta1hi.png

Index

Value x y z Equivalent new Vector3() method

Vector3.zero 0 0 0 new Vector3(0, 0, 0)

Vector3.one 1 1 1 new Vector3(1, 1, 1)

Vector3.left -1 0 0 new Vector3(-1, 0, 0)

Vector3.right 1 0 0 new Vector3(1, 0, 0)

Vector3.down 0 -1 0 new Vector3(0, -1, 0)

Vector3.up 0 1 0 new Vector3(0, 1, 0)

Vector3.back 0 0 -1 new Vector3(0, 0, -1)

Vector3.forward 0 0 1 new Vector3(0, 0, 1)

Creating a Vector3

A Vector3 structure can be created in several ways. Vector3 is a struct, and as such, will typically
need to be instantiated before use.

Constructors

https://riptutorial.com/ 194

https://i.stack.imgur.com/KFlAD.gif

There are three built in constructors for instantiating a Vector3.

Constructor Result

new Vector3() Creates a Vector3 structure with co-ordinates of (0, 0, 0).

new Vector3(float x, float y)
Creates a Vector3 structure with the given x and y co-
ordinates. z will be set to 0.

new Vector3(float x, float y,
float z)

Creates a Vector3 structure with the given x, y and z co-
ordinates.

Converting from a Vector2 or Vector4

While rare, you may run into situations where you would need to treat the co-ordinates of a Vector2
or Vector4 structure as a Vector3. In such cases, you can simply pass the Vector2 or Vector4 directly
into the Vector3, without previously instantiating it. As should be assumed, a Vector2 struct will only
pass x and y values, while a Vector4 class will omit its w.

We can see direct conversion in the below script.

void VectorConversionTest()
{
 Vector2 vector2 = new Vector2(50, 100);
 Vector4 vector4 = new Vector4(50, 100, 200, 400);

 Vector3 fromVector2 = vector2;
 Vector3 fromVector4 = vector4;

 Debug.Log("Vector2 conversion: " + fromVector2);
 Debug.Log("Vector4 conversion: " + fromVector4);
}

Applying Movement

The Vector3 structure contains some static functions that can provide utility when we wish to apply
movement to the Vector3.

Lerp

https://riptutorial.com/ 195

https://i.stack.imgur.com/4efdP.png
https://docs.unity3d.com/ScriptReference/Vector3.Lerp.html

and LerpUnclamped

The lerp functions provide movement between two co-ordinates based off a provided fraction.
Where Lerp will only permit movement between the two co-ordinates, LerpUnclamped allows for
fractions that move outside of the boundaries between the two co-ordinates.

We provide the fraction of movement as a float. With a value of 0.5, we find the midpoint between
the two Vector3 co-ordinates. A value of 0 or 1 will return the first or second Vector3, respectivley,
as these values either correlate to no movement (thus returning the first Vector3), or completed
movement (this returning the second Vector3). It is important to note that neither function will
accommodate for change in the movement fraction. This is something we need to manually
account for.

With Lerp, all values are clamped between 0 and 1. This is useful when we want to provide
movement towards a direction, and do not want to overshoot the destination. LerpUnclamped can
take any value, and can be used to provide movement away from the destination, or past the
destination.

The following script uses Lerp and LerpUnclamped to move an object at a consistent pace.

using UnityEngine;

public class Lerping : MonoBehaviour
{
 /// <summary>The red box will use Lerp to move. We will link
 /// this object in via the inspector.</summary>
 public GameObject lerpObject;
 /// <summary>The starting position for our red box.</summary>
 public Vector3 lerpStart = new Vector3(0, 0, 0);
 /// <summary>The end position for our red box.</summary>
 public Vector3 lerpTarget = new Vector3(5, 0, 0);

 /// <summary>The blue box will use LerpUnclamped to move. We will
 /// link this object in via the inspector.</summary>
 public GameObject lerpUnclampedObject;
 /// <summary>The starting position for our blue box.</summary>
 public Vector3 lerpUnclampedStart = new Vector3(0, 3, 0);
 /// <summary>The end position for our blue box.</summary>
 public Vector3 lerpUnclampedTarget = new Vector3(5, 3, 0);

 /// <summary>The current fraction to increment our lerp functions by.</summary>
 public float lerpFraction = 0;

 private void Update()
 {
 // First, I increment the lerp fraction.
 // delaTime * 0.25 should give me a value of +1 every second.
 lerpFraction += (Time.deltaTime * 0.25f);

 // Next, we apply the new lerp values to the target transform position.
 lerpObject.transform.position
 = Vector3.Lerp(lerpStart, lerpTarget, lerpFraction);
 lerpUnclampedObject.transform.position
 = Vector3.LerpUnclamped(lerpUnclampedStart, lerpUnclampedTarget, lerpFraction);

https://riptutorial.com/ 196

https://docs.unity3d.com/ScriptReference/Vector3.LerpUnclamped.html

 }
}

MoveTowards

MoveTowards behaves very similar to Lerp; the core difference is that we provide an actual distance
to move, instead of a fraction between two points. It is important to note that MoveTowards will not
extend past the target Vector3.

Much like with LerpUnclamped, we can provide a negative distance value to move away from the
target Vector3. In such cases, we never move past the target Vector3, and thus movement is
indefinite. In these cases, we can treat the target Vector3 as an "opposite direction"; as long as the
Vector3 points in the same direction, relative to the start Vector3, negative movement should
behave as normal.

The following script uses MoveTowards to move a group of objects towards a set of positions using a
smoothed distance.

using UnityEngine;

public class MoveTowardsExample : MonoBehaviour
{
 /// <summary>The red cube will move up, the blue cube will move down,
 /// the green cube will move left and the yellow cube will move right.
 /// These objects will be linked via the inspector.</summary>
 public GameObject upCube, downCube, leftCube, rightCube;
 /// <summary>The cubes should move at 1 unit per second.</summary>
 float speed = 1f;

 void Update()
 {

https://riptutorial.com/ 197

https://i.stack.imgur.com/BIntm.gif
https://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html

 // We determine our distance by applying a deltaTime scale to our speed.
 float distance = speed * Time.deltaTime;

 // The up cube will move upwards, until it reaches the
 //position of (Vector3.up * 2), or (0, 2, 0).
 upCube.transform.position
 = Vector3.MoveTowards(upCube.transform.position, (Vector3.up * 2f), distance);

 // The down cube will move downwards, as it enforces a negative distance..
 downCube.transform.position
 = Vector3.MoveTowards(downCube.transform.position, Vector3.up * 2f, -distance);

 // The right cube will move to the right, indefinetly, as it is constantly updating
 // its target position with a direction based off the current position.
 rightCube.transform.position = Vector3.MoveTowards(rightCube.transform.position,
 rightCube.transform.position + Vector3.right, distance);

 // The left cube does not need to account for updating its target position,
 // as it is moving away from the target position, and will never reach it.
 leftCube.transform.position
 = Vector3.MoveTowards(leftCube.transform.position, Vector3.right, -distance);
 }
}

SmoothDamp

Think of SmoothDamp as a variant of MoveTowards with built in smoothing. According to official
documentation, this function is most commonly used to perform smooth camera following.

Along with the start and target Vector3 coordinates, we must also provide a Vector3 to represent
the velocity, and a float representing the approximate time it should take to complete the
movement. Unlike previous examples, we provide the velocity as a reference, to be incremented,
internally. It is important to take note of this, as changing velocity outside of the function while we
are still performing the function can have undesired results.

https://riptutorial.com/ 198

https://i.stack.imgur.com/m8EzX.gif
https://docs.unity3d.com/ScriptReference/Vector3.SmoothDamp.html

In addition to the required variables, we may also provide a float to represent the maximum speed
of our object, and a float to represent the time gap since the previous SmoothDamp call to the object.
We do not need to provide these values; by default, there will be no maximum speed, and the time
gap will be interpretted as Time.deltaTime. More importantly, if you are calling the function one per
object inside a MonoBehaviour.Update() function, you should not need to declare a time gap.

using UnityEngine;

public class SmoothDampMovement : MonoBehaviour
{
 /// <summary>The red cube will imitate the default SmoothDamp function.
 /// The blue cube will move faster by manipulating the "time gap", while
 /// the green cube will have an enforced maximum speed. Note that these
 /// objects have been linked via the inspector.</summary>
 public GameObject smoothObject, fastSmoothObject, cappedSmoothObject;

 /// <summary>We must instantiate the velocities, externally, so they may
 /// be manipulated from within the function. Note that by making these
 /// vectors public, they will be automatically instantiated as Vector3.Zero
 /// through the inspector. This also allows us to view the velocities,
 /// from the inspector, to observe how they change.</summary>
 public Vector3 regularVelocity, fastVelocity, cappedVelocity;

 /// <summary>Each object should move 10 units along the X-axis.</summary>
 Vector3 regularTarget = new Vector3(10f, 0f);
 Vector3 fastTarget = new Vector3(10f, 1.5f);
 Vector3 cappedTarget = new Vector3(10f, 3f);

 /// <summary>We will give a target time of 5 seconds.</summary>
 float targetTime = 5f;

 void Update()
 {
 // The default SmoothDamp function will give us a general smooth movement.
 smoothObject.transform.position = Vector3.SmoothDamp(smoothObject.transform.position,
 regularTarget, ref regularVelocity, targetTime);

 // Note that a "maxSpeed" outside of reasonable limitations should not have any
 // effect, while providing a "deltaTime" of 0 tells the function that no time has
 // passed since the last SmoothDamp call, resulting in no movement, the second time.
 smoothObject.transform.position = Vector3.SmoothDamp(smoothObject.transform.position,
 regularTarget, ref regularVelocity, targetTime, 10f, 0f);

 // Note that "deltaTime" defaults to Time.deltaTime due to an assumption that this
 // function will be called once per update function. We can call the function
 // multiple times during an update function, but the function will assume that enough
 // time has passed to continue the same approximate movement. As a result,
 // this object should reach the target, quicker.
 fastSmoothObject.transform.position = Vector3.SmoothDamp(
 fastSmoothObject.transform.position, fastTarget, ref fastVelocity, targetTime);
 fastSmoothObject.transform.position = Vector3.SmoothDamp(
 fastSmoothObject.transform.position, fastTarget, ref fastVelocity, targetTime);

 // Lastly, note that a "maxSpeed" becomes irrelevant, if the object does not
 // realistically reach such speeds. Linear speed can be determined as
 // (Distance / Time), but given the simple fact that we start and end slow, we can
 // infer that speed will actually be higher, during the middle. As such, we can
 // infer that a value of (Distance / Time) or (10/5) will affect the

https://riptutorial.com/ 199

 // function. We will half the "maxSpeed", again, to make it more noticeable.
 cappedSmoothObject.transform.position = Vector3.SmoothDamp(
 cappedSmoothObject.transform.position,
 cappedTarget, ref cappedVelocity, targetTime, 1f);
 }
}

Read Vector3 online: https://riptutorial.com/unity3d/topic/7827/vector3

https://riptutorial.com/ 200

https://i.stack.imgur.com/4cSuY.gif
https://riptutorial.com/unity3d/topic/7827/vector3

Chapter 40: Virtual Reality (VR)

Examples

VR Platforms

There are two main platforms in VR, one is mobile platform, like Google Cardboard, Samsung
GearVR, the other is PC platform, like HTC Vive, Oculus, PS VR...

Unity officially supports the Oculus Rift, Google Carboard, Steam VR, Playstation VR, Gear VR
, and the Microsoft Hololens.

Most platforms have their own support and sdk. Usually, you need to download the sdk as an
extension firstly for unity.

SDKs:

Google Cardboard•
Daydream Platform•
Samsung GearVR (integrated since Unity 5.3)•
Oculus Rift•
HTC Vive/Open VR•
Microsoft Hololens•

Documentation:

Google Cardboard/Daydream•
Samsung GearVR•
Oculus Rift•
HTC Vive•
Microsoft Hololens•

Enabling VR support

In Unity Editor, open Player Settings (Edit > Project Settings > Player).

Under Other Settings, check Virtual Reality Supported.

https://riptutorial.com/ 201

https://github.com/googlevr/gvr-unity-sdk
https://developers.google.com/vr/unity/download
http://www.gearvrf.org/bin/view/GearVRF/GearVRfWikiGetStarted#GearDocuments
https://developer.oculus.com/downloads/
https://github.com/ValveSoftware/openvr
https://unity3d.com/partners/windows/hololens#download
https://developers.google.com/vr/android/
http://www.gearvrf.org/bin/view/GearVRF/GearVRfWikiGetStarted#GearDocuments
https://developer3.oculus.com/documentation/
https://github.com/ValveSoftware/openvr/wiki/API-Documentation
https://developer.microsoft.com/en-us/windows/holographic/documentation

Add or remove VR devices for each build target in the Virtual Reality SDKs list under the
checkbox.

Hardware

There is a necessary hardware dependency for a VR application, that usually depends on the
platform that you're building for. There are 2 broad categories for hardware devices based on their
motion capabilities:

3 DOF (Degrees of Freedom)1.
6 DOF (Degrees of Freedom)2.

3 DOF means that the motion of the Head-Mounted Display (HMD) is constrained to operate in 3
dimensions that is rotate about the three orthogonal axes centered on the HMDs center of gravity -
the longitudinal, vertical and horizontal axes. Motion about the longitudinal axis is called roll,
motion about the lateral axis is called pitch and motion about the perpendicular axis is called yaw,
similar principles that govern motion of any moving object like an aeroplane or a car, which means
that although you will be able to see in all X, Y, Z directions by the motion of your HMD in the
Virtual environment, but you wouldn’t be able to move or touch anything (motion by an additional
bluetooth controller is not the same).

However, 6 DOF allows for a room-scale experience wherein you can also move about the X,Y
and Z axis apart from the roll, pitch and yaw motions about its centre of gravity, hence the 6
degree of freedom.

Currently a Room-scale VR facilitated for 6 DOF requires high computation performance with a
high-end graphic card and RAM that you probably won’t get from your standard laptops and will
require a desktop computer with optimal performance and also at least 6ft × 6ft free space,
whereas a 3 DOF experience can be achieved by just a standard smart phone with an inbuilt gyro
(which is inbuilt in most modern smart phones that cost about $200 or more).

Some common devices available in the market today are:

Oculus Rift (6 DOF)•
HTC Vive (6 DOF)•

https://riptutorial.com/ 202

http://i.stack.imgur.com/6CnC4.png
https://www3.oculus.com/en-us/rift/
https://www.vive.com/us/

Daydream (3 DOF)•
Gear VR Powered by Oculus (3 DOF)•
Google Cardboard (3 DOF)•

Read Virtual Reality (VR) online: https://riptutorial.com/unity3d/topic/5787/virtual-reality--vr-

https://riptutorial.com/ 203

https://vr.google.com/daydream/
https://www3.oculus.com/en-us/gear-vr/
https://vr.google.com/cardboard/
https://riptutorial.com/unity3d/topic/5787/virtual-reality--vr-

Credits

S.
No

Chapters Contributors

1
Getting started with
unity3d

Alexey Shimansky, Chris McFarland, Community, Desutoroiya,
driconmax, Ḟḹáḿíṅḡ ỏḿƀíé, James Radvan, josephsw, Linus
Juhlin, Luís Fonseca, Maarten Bicknese, martinhodler,
matiaslauriti, Mike B, Minzkraut, PlanetVaster, R.K123, S. Tarık
Çetin, Skyblade, SourabhV, SP., tenpn, tim, user3071284

2 Ads integration ʇolɐǝz ǝɥʇ qoq

3
Android Plugins 101
- An Introduction

Venkat at Axiom Studios

4 Asset Store JakeD, Trent, zwcloud

5 Attributes 4444, Thundernerd

6 Audio System R4mbi, ʇolɐǝz ǝɥʇ qoq

7 Collision Ḟḹáḿíṅḡ ỏḿƀíé, jjhavokk, Xander Luciano

8
Communication with
server

David Martinez, devon t, Ḟḹáḿíṅḡ ỏḿƀíé, Maxim Kamalov, tim

9 Coroutines
agiro, Fattie, Fehr, Giuseppe De Francesco, Problematic,
Skyblade, Thulani Chivandikwa, Thundernerd, ʇolɐǝz ǝɥʇ qoq,
volvis

10 CullingGroup API volvis

11 Design Patterns Ian Newland

12 Extending the Editor Pierrick Bignet, Skyblade, Thundernerd, ʇolɐǝz ǝɥʇ qoq, volvis

13
Finding and
collecting
GameObjects

Pierrick Bignet, S. Tarık Çetin, volvis

14
How to use asset
packages

Ḟḹáḿíṅḡ ỏḿƀíé

Immediate Mode
Graphical User
Interface System

15 Skyblade, Soaring Code

https://riptutorial.com/ 204

https://riptutorial.com/contributor/6104996/alexey-shimansky
https://riptutorial.com/contributor/206410/chris-mcfarland
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5939201/desutoroiya
https://riptutorial.com/contributor/7086875/driconmax
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/6623425/james-radvan
https://riptutorial.com/contributor/3133699/josephsw
https://riptutorial.com/contributor/1308765/linus-juhlin
https://riptutorial.com/contributor/1308765/linus-juhlin
https://riptutorial.com/contributor/1483038/luis-fonseca
https://riptutorial.com/contributor/2637098/maarten-bicknese
https://riptutorial.com/contributor/474117/martinhodler
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/175107/mike-b
https://riptutorial.com/contributor/3948598/minzkraut
https://riptutorial.com/contributor/4544261/planetvaster
https://riptutorial.com/contributor/6322837/r-k123
https://riptutorial.com/contributor/6301627/s--tarik-cetin
https://riptutorial.com/contributor/6301627/s--tarik-cetin
https://riptutorial.com/contributor/6301627/s--tarik-cetin
https://riptutorial.com/contributor/644496/skyblade
https://riptutorial.com/contributor/659972/sourabhv
https://riptutorial.com/contributor/5219775/sp-
https://riptutorial.com/contributor/11801/tenpn
https://riptutorial.com/contributor/5249708/tim
https://riptutorial.com/contributor/3071284/user3071284
https://riptutorial.com/contributor/3696113/-ol--z-----qoq
https://riptutorial.com/contributor/2245773/venkat-at-axiom-studios
https://riptutorial.com/contributor/6655092/jaked
https://riptutorial.com/contributor/2020476/trent
https://riptutorial.com/contributor/3427520/zwcloud
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/2112835/thundernerd
https://riptutorial.com/contributor/7219335/r4mbi
https://riptutorial.com/contributor/3696113/-ol--z-----qoq
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/1370195/jjhavokk
https://riptutorial.com/contributor/1425140/xander-luciano
https://riptutorial.com/contributor/243212/david-martinez
https://riptutorial.com/contributor/3735776/devon-t
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/776442/maxim-kamalov
https://riptutorial.com/contributor/5249708/tim
https://riptutorial.com/contributor/6207726/agiro
https://riptutorial.com/contributor/294884/fattie
https://riptutorial.com/contributor/783724/fehr
https://riptutorial.com/contributor/1864152/giuseppe-de-francesco
https://riptutorial.com/contributor/535666/problematic
https://riptutorial.com/contributor/644496/skyblade
https://riptutorial.com/contributor/611628/thulani-chivandikwa
https://riptutorial.com/contributor/2112835/thundernerd
https://riptutorial.com/contributor/3696113/-ol--z-----qoq
https://riptutorial.com/contributor/6626317/volvis
https://riptutorial.com/contributor/6626317/volvis
https://riptutorial.com/contributor/2175883/ian-newland
https://riptutorial.com/contributor/776291/pierrick-bignet
https://riptutorial.com/contributor/644496/skyblade
https://riptutorial.com/contributor/2112835/thundernerd
https://riptutorial.com/contributor/3696113/-ol--z-----qoq
https://riptutorial.com/contributor/6626317/volvis
https://riptutorial.com/contributor/776291/pierrick-bignet
https://riptutorial.com/contributor/6301627/s--tarik-cetin
https://riptutorial.com/contributor/6301627/s--tarik-cetin
https://riptutorial.com/contributor/6626317/volvis
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/644496/skyblade
https://riptutorial.com/contributor/2359957/soaring-code

(IMGUI)

16
Importers and
(Post)Processors

gman, Skyblade, volvis

17 Input System Programmer, Skyblade, ʇolɐǝz ǝɥʇ qoq

18 Layers Arijoon, dreadnought, Light Drake, RamenChef, Skyblade

19 Mobile platforms Airwarfare, Skyblade

20
MonoBehaviour
class implementation

matiaslauriti, Skyblade, Thundernerd, user3797758

21
Multiplatform
development

user3797758, volvis

22 Networking David Martinez, driconmax, Rafiwui, RamenChef

23 Object Pooling
Chris McFarland, Ed Marty, lase, matiaslauriti, S. Tarık Çetin,

Thulani Chivandikwa, Thundernerd, ʇolɐǝz ǝɥʇ qoq, volvis

24 Optimization
Ed Marty, EvilTak, Ḟḹáḿíṅḡ ỏḿƀíé, Grigory, JohnTube,
Skyblade, Thulani Chivandikwa, volvis

25 Physics eunoia, Ḟḹáḿíṅḡ ỏḿƀíé, jack jay

26 Prefabs

Brandon Mintern, Dávid Florek, Ḟḹáḿíṅḡ ỏḿƀíé, gman,
Gnemlock, Guglie, James Radvan, Jean Vitor, josephsw, Lich,
matiaslauriti, Skyblade, Thulani Chivandikwa, ʇolɐǝz ǝɥʇ qoq,
Woltus, yummypasta

27 Quaternions matiaslauriti, Tiziano Coroneo, Xander Luciano, yummypasta

28 Raycast
driconmax, Meinkraft, Skyblade, user3570542, volvis,
wouterrobot

29 Resources glaubergft, MadJlzz, Skyblade, Venkat at Axiom Studios

30 ScriptableObject volvis

31 Singletons in Unity
David Darias, Fehr, James Radvan, JohnTube, matiaslauriti,
Maxim Kamalov, Simon Heinen, SP., Tiziano Coroneo, Umair M
, volvis, Zze,

32 Tags
Arijoon, Augure, glaubergft, Gnemlock, MadJlzz, Skyblade,
Trent

33 Transforms
ADB, Jean Vitor, matiaslauriti, S. Tarık Çetin, Skyblade,
Thundernerd, Xander Luciano

https://riptutorial.com/ 205

https://riptutorial.com/contributor/128511/gman
https://riptutorial.com/contributor/644496/skyblade
https://riptutorial.com/contributor/6626317/volvis
https://riptutorial.com/contributor/3785314/programmer
https://riptutorial.com/contributor/644496/skyblade
https://riptutorial.com/contributor/3696113/-ol--z-----qoq
https://riptutorial.com/contributor/2914896/arijoon
https://riptutorial.com/contributor/3666799/dreadnought
https://riptutorial.com/contributor/6236831/light-drake
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/644496/skyblade
https://riptutorial.com/contributor/5850403/airwarfare
https://riptutorial.com/contributor/644496/skyblade
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/644496/skyblade
https://riptutorial.com/contributor/2112835/thundernerd
https://riptutorial.com/contributor/3797758/user3797758
https://riptutorial.com/contributor/3797758/user3797758
https://riptutorial.com/contributor/6626317/volvis
https://riptutorial.com/contributor/243212/david-martinez
https://riptutorial.com/contributor/7086875/driconmax
https://riptutorial.com/contributor/5478864/rafiwui
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/206410/chris-mcfarland
https://riptutorial.com/contributor/36007/ed-marty
https://riptutorial.com/contributor/711299/lase
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/6301627/s--tarik-cetin
https://riptutorial.com/contributor/6301627/s--tarik-cetin
https://riptutorial.com/contributor/611628/thulani-chivandikwa
https://riptutorial.com/contributor/2112835/thundernerd
https://riptutorial.com/contributor/3696113/-ol--z-----qoq
https://riptutorial.com/contributor/6626317/volvis
https://riptutorial.com/contributor/36007/ed-marty
https://riptutorial.com/contributor/4038191/eviltak
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/435828/grigory
https://riptutorial.com/contributor/1449056/johntube
https://riptutorial.com/contributor/644496/skyblade
https://riptutorial.com/contributor/611628/thulani-chivandikwa
https://riptutorial.com/contributor/6626317/volvis
https://riptutorial.com/contributor/3563383/eunoia
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/6047274/jack-jay
https://riptutorial.com/contributor/1237044/brandon-mintern
https://riptutorial.com/contributor/7598218/david-florek
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/128511/gman
https://riptutorial.com/contributor/4710152/gnemlock
https://riptutorial.com/contributor/648044/guglie
https://riptutorial.com/contributor/6623425/james-radvan
https://riptutorial.com/contributor/5318192/jean-vitor
https://riptutorial.com/contributor/3133699/josephsw
https://riptutorial.com/contributor/6695201/lich
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/644496/skyblade
https://riptutorial.com/contributor/611628/thulani-chivandikwa
https://riptutorial.com/contributor/3696113/-ol--z-----qoq
https://riptutorial.com/contributor/7603647/woltus
https://riptutorial.com/contributor/4699945/yummypasta
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/5503863/tiziano-coroneo
https://riptutorial.com/contributor/1425140/xander-luciano
https://riptutorial.com/contributor/4699945/yummypasta
https://riptutorial.com/contributor/7086875/driconmax
https://riptutorial.com/contributor/3927621/meinkraft
https://riptutorial.com/contributor/644496/skyblade
https://riptutorial.com/contributor/3570542/user3570542
https://riptutorial.com/contributor/6626317/volvis
https://riptutorial.com/contributor/5165479/wouterrobot
https://riptutorial.com/contributor/2830647/glaubergft
https://riptutorial.com/contributor/3877016/madjlzz
https://riptutorial.com/contributor/644496/skyblade
https://riptutorial.com/contributor/2245773/venkat-at-axiom-studios
https://riptutorial.com/contributor/6626317/volvis
https://riptutorial.com/contributor/575173/david-darias
https://riptutorial.com/contributor/783724/fehr
https://riptutorial.com/contributor/6623425/james-radvan
https://riptutorial.com/contributor/1449056/johntube
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/776442/maxim-kamalov
https://riptutorial.com/contributor/165106/simon-heinen
https://riptutorial.com/contributor/5219775/sp-
https://riptutorial.com/contributor/5503863/tiziano-coroneo
https://riptutorial.com/contributor/4366237/umair-m
https://riptutorial.com/contributor/6626317/volvis
https://riptutorial.com/contributor/3509591/zze
https://riptutorial.com/contributor/7402523/---
https://riptutorial.com/contributor/7402523/---
https://riptutorial.com/contributor/7402523/---
https://riptutorial.com/contributor/2914896/arijoon
https://riptutorial.com/contributor/5207835/augure
https://riptutorial.com/contributor/2830647/glaubergft
https://riptutorial.com/contributor/4710152/gnemlock
https://riptutorial.com/contributor/3877016/madjlzz
https://riptutorial.com/contributor/644496/skyblade
https://riptutorial.com/contributor/2020476/trent
https://riptutorial.com/contributor/3610/adb
https://riptutorial.com/contributor/5318192/jean-vitor
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/6301627/s--tarik-cetin
https://riptutorial.com/contributor/6301627/s--tarik-cetin
https://riptutorial.com/contributor/644496/skyblade
https://riptutorial.com/contributor/2112835/thundernerd
https://riptutorial.com/contributor/1425140/xander-luciano

34 Unity Animation 4444, Fiery Raccoon, Guglie

35 Unity Lighting Ḟḹáḿíṅḡ ỏḿƀíé

36 Unity Profiler Amitayu Chakraborty, ForceMagic, RamenChef, Skyblade

37
User Interface
System (UI)

Hellium, matiaslauriti, Maxim Kamalov, Programmer,
RamenChef, Skyblade, Umair M

38
Using Git source
control with Unity

Commodore Yournero, Hacky, James Radvan, matiaslauriti,
Max Yankov, Maxim Kamalov, Pierrick Bignet, Ricardo Amores,
S. Tarık Çetin, S.Richmond, Skyblade, Thulani Chivandikwa,
YsenGrimm, yummypasta

39 Vector3 driconmax, Ḟḹáḿíṅḡ ỏḿƀíé, Gnemlock

40 Virtual Reality (VR) 4444, Airwarfare, Guglie, pew., Pratham Sehgal, tim

https://riptutorial.com/ 206

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/5812373/fiery-raccoon
https://riptutorial.com/contributor/648044/guglie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/6894903/amitayu-chakraborty
https://riptutorial.com/contributor/62921/forcemagic
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/644496/skyblade
https://riptutorial.com/contributor/6858891/hellium
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/776442/maxim-kamalov
https://riptutorial.com/contributor/3785314/programmer
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/644496/skyblade
https://riptutorial.com/contributor/4366237/umair-m
https://riptutorial.com/contributor/2397464/commodore-yournero
https://riptutorial.com/contributor/924864/hacky
https://riptutorial.com/contributor/6623425/james-radvan
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/312725/max-yankov
https://riptutorial.com/contributor/776442/maxim-kamalov
https://riptutorial.com/contributor/776291/pierrick-bignet
https://riptutorial.com/contributor/10136/ricardo-amores
https://riptutorial.com/contributor/6301627/s--tarik-cetin
https://riptutorial.com/contributor/6301627/s--tarik-cetin
https://riptutorial.com/contributor/420787/s-richmond
https://riptutorial.com/contributor/644496/skyblade
https://riptutorial.com/contributor/611628/thulani-chivandikwa
https://riptutorial.com/contributor/2005366/ysengrimm
https://riptutorial.com/contributor/4699945/yummypasta
https://riptutorial.com/contributor/7086875/driconmax
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/2926103/--a-i------bie
https://riptutorial.com/contributor/4710152/gnemlock
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/5850403/airwarfare
https://riptutorial.com/contributor/648044/guglie
https://riptutorial.com/contributor/8404616/pew-
https://riptutorial.com/contributor/7421448/pratham-sehgal
https://riptutorial.com/contributor/5249708/tim

	About
	Chapter 1: Getting started with unity3d
	Remarks
	Versions
	Examples
	Installation or Setup

	Overview
	Installing
	Installing Multiple Versions of Unity
	Basic editor and code
	Layout
	Linux Layout

	Basic Usage
	Basic Scripting
	Editor Layouts
	Customizing Your Workspace

	Chapter 2: Ads integration
	Introduction
	Remarks
	Examples
	Unity Ads Basics in C#
	Unity Ads Basics in JavaScript

	Chapter 3: Android Plugins 101 - An Introduction
	Introduction
	Remarks
	Beginning with Android plugins
	Outline to creating a plugin and terminology
	Choosing between the plugin creation methods
	Examples
	UnityAndroidPlugin.cs
	UnityAndroidNative.java
	UnityAndroidPluginGUI.cs

	Chapter 4: Asset Store
	Examples
	Accessing the Asset Store
	Purchasing Assets
	Importing Assets
	Publishing Assets
	Confirm the invoice number of one purchase

	Chapter 5: Attributes
	Syntax
	Remarks

	SerializeField
	Examples
	Common inspector attributes
	Component attributes
	Runtime attributes
	Menu attributes
	Editor attributes

	Chapter 6: Audio System
	Introduction
	Examples
	Audio class - Play audio

	Chapter 7: Collision
	Examples
	Colliders

	Box Collider
	Properties
	Example

	Sphere Collider
	Properties
	Example

	Capsule Collider
	Properties
	Example

	Wheel Collider
	Properties
	Suspension Spring
	Example

	Mesh Collider
	Properties
	Example
	Wheel Collider
	Trigger Colliders

	Methods

	Trigger Collider Scripting
	Example

	Chapter 8: Communication with server
	Examples
	Get
	Simple Post (Post Fields)
	Post (Upload A File)

	Upload A Zip File To Server
	Sending a request to the server

	Chapter 9: Coroutines
	Syntax
	Remarks

	Performance considerations
	Reduce garbage by caching YieldInstructions
	Examples
	Coroutines

	Example
	Ending a coroutine
	MonoBehaviour methods that can be Coroutines
	Chaining coroutines
	Ways to yield

	Chapter 10: CullingGroup API
	Remarks
	Examples
	Culling object distances
	Culling object visibility
	Bounding distances

	Visualising bounding distances
	Chapter 11: Design Patterns
	Examples
	Model View Controller (MVC) Design Pattern

	Chapter 12: Extending the Editor
	Syntax
	Parameters
	Examples
	Custom Inspector
	Custom Property Drawer
	Menu Items
	Gizmos

	Example One
	Example two
	Result
	Not selected
	Selected
	Editor Window

	Why an Editor Window?
	Create a basic EditorWindow
	Simple Example
	Going deeper

	Advanced topics
	Drawing in the SceneView

	Chapter 13: Finding and collecting GameObjects
	Syntax
	Remarks
	Which method to use
	Going deeper
	Examples
	Searching by GameObject's name
	Searching by GameObject's tags
	Inserted to scripts in Edit Mode
	Finding GameObjects by MonoBehaviour scripts
	Find GameObjects by name from child objects

	Chapter 14: How to use asset packages
	Examples
	Asset packages

	Importing a .unitypackage

	Chapter 15: Immediate Mode Graphical User Interface System (IMGUI)
	Syntax
	Examples
	GUILayout

	Chapter 16: Importers and (Post)Processors
	Syntax
	Remarks
	Examples
	Texture postprocessor
	A Basic Importer

	Chapter 17: Input System
	Examples
	Reading Key Press and difference between GetKey, GetKeyDown and GetKeyUp
	Read Accelerometer Sensor (Basic)
	Read Accelerometer Sensor (Advance)
	Read Accelerometer Sensor(Precision)
	Read Mouse Button (Left, Middle, Right) Clicks

	Chapter 18: Layers
	Examples
	Layer usage
	LayerMask Structure

	Chapter 19: Mobile platforms
	Syntax
	Examples
	Detecting Touch

	TouchPhase
	Chapter 20: MonoBehaviour class implementation
	Examples
	No overridden methods

	Chapter 21: Multiplatform development
	Examples
	Compiler Definitions
	Organizing platform specific methods to partial classes

	Chapter 22: Networking
	Remarks
	Headless mode in Unity
	Examples
	Creating a server, a client, and sending a message.

	The Class we are using to serialize
	Creating a Server
	The Client

	Chapter 23: Object Pooling
	Examples
	Object Pool
	Simple object pool
	Another simple object pool

	Chapter 24: Optimization
	Remarks
	Examples
	Fast and Efficient Checks

	Distance/Range Checks
	Bounds Checks
	Caveats
	Coroutine Power

	Usage
	Splitting Long-running Routines Over Multiple Frames
	Performing Expensive Actions Less Frequently
	Common Pitfalls
	Strings

	String operations build garbage
	Cache your string operations
	Most string operations are Debug messages

	String comparison
	Cache references
	Avoid calling methods using strings
	Avoid empty unity methods

	Chapter 25: Physics
	Examples
	Rigidbodies

	Overview
	Adding a Rigidbody component
	Moving a Rigidbody object
	Mass
	Drag
	isKinematic
	Constraints
	Collisions
	Gravity in Rigid Body

	Chapter 26: Prefabs
	Syntax
	Examples
	Introduction
	Creating prefabs

	Prefab inspector
	Instantiating prefabs

	Design time instantiation
	Runtime instantiation
	Nested prefabs

	Chapter 27: Quaternions
	Syntax
	Examples
	Intro to Quaternion vs Euler
	Quaternion Look Rotation

	Chapter 28: Raycast
	Parameters
	Examples
	Physics Raycast
	Physics2D Raycast2D
	Encapsulating Raycast calls

	Further reading

	Chapter 29: Resources
	Examples
	Introduction
	Resources 101

	Introduction
	Putting it all together
	Final Notes
	Chapter 30: ScriptableObject
	Remarks

	ScriptableObjects with AssetBundles
	Examples
	Introduction

	Creating ScriptableObject assets
	Create ScriptableObject instances through code
	ScriptableObjects are serialized in editor even in PlayMode
	Find existing ScriptableObjects during runtime

	Chapter 31: Singletons in Unity
	Remarks

	Further reading
	Examples
	Implementation using RuntimeInitializeOnLoadMethodAttribute
	A simple Singleton MonoBehaviour in Unity C#
	Advanced Unity Singleton
	Singleton Implementation through base class
	Singleton Pattern utilizing Unitys Entity-Component system
	MonoBehaviour & ScriptableObject based Singleton Class

	Chapter 32: Tags
	Introduction
	Examples
	Creating and Applying Tags

	Setting Tags in the Editor
	Setting Tags via Script
	Creating Custom Tags
	Finding GameObjects by Tag:

	Finding a Single GameObject
	Finding an Array of GameObject instances
	Comparing Tags

	Chapter 33: Transforms
	Syntax
	Examples
	Overview
	Parenting and Children

	Chapter 34: Unity Animation
	Examples
	Basic Animation for Running
	Creating and Using Animation Clips
	2D Sprite Animation
	Animation Curves

	Chapter 35: Unity Lighting
	Examples
	Types of Light

	Area Light
	Directional Light
	Point Light
	Spot Light
	Note about Shadows
	Emission

	Chapter 36: Unity Profiler
	Remarks
	Using Profiler on different Device
	Android
	iOS
	Examples
	Profiler Markup

	Using the Profiler Class

	Chapter 37: User Interface System (UI)
	Examples
	Subscribing to event in code
	Adding mouse listeners

	Chapter 38: Using Git source control with Unity
	Examples
	Using Git Large File Storage (LFS) with Unity

	Foreword
	Installing Git & Git-LFS
	Option 1: Use a Git GUI Application
	Option 2: Install Git & Git-LFS

	Configuring Git Large File Storage on your project
	Setting up a Git repository for Unity

	Unity Ignore Folders
	Unity Project Settings
	Additional Configuration
	Scenes and Prefabs merging

	Chapter 39: Vector3
	Introduction
	Syntax
	Examples
	Static Values

	Vector3.zero and Vector3.one
	Static Directions
	Index
	Creating a Vector3

	Constructors
	Converting from a Vector2 or Vector4
	Applying Movement
	Lerp and LerpUnclamped
	MoveTowards
	SmoothDamp

	Chapter 40: Virtual Reality (VR)
	Examples
	VR Platforms

	SDKs:
	Documentation:
	Enabling VR support
	Hardware

	Credits

