
verilog

#verilog

Table of Contents

About 1

Chapter 1: Getting started with verilog 2

Remarks 2

Versions 2

Examples 2

Installation or Setup 2

Introduction 2

Hello World 5

Installation of Icarus Verilog Compiler for Mac OSX Sierra 6

Install GTKWave for graphical display of simulation data on Mac OSx Sierra 7

Using Icarus Verilog and GTKWaves to simulate and view a design graphically 7

Chapter 2: Hello World 12

Examples 12

Compiling and Running the Example 12

Hello World 12

Chapter 3: Memories 14

Remarks 14

Examples 14

Simple Dual Port RAM 14

Single Port Synchronous RAM 14

Shift register 15

Single Port Async Read/Write RAM 15

Chapter 4: Procedural Blocks 17

Syntax 17

Examples 17

Simple counter 17

Non-blocking assignments 17

Chapter 5: Synthesis vs Simulation mismatch 19

Introduction 19

Examples 19

Comparison 19

Sensitivity list 19

Credits 20

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: verilog

It is an unofficial and free verilog ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official verilog.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/verilog
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with verilog

Remarks

Verilog is a hardware description language (HDL) that is used to design, simulate, and verify
digital circuitry at a behavioral or register-transfer level. It is noteworthy for a reasons that
distinguish it from "traditional" programming languages:

There are two types of assignment, blocking and non-blocking, each with their own uses and
semantics.

•

Variables must be declared as either single-bit wide or with an explicit width.•
Designs are hierarchical, with the ability to instantiate modules that have a desired
behaviour.

•

In simulation (not typically in synthesis), wire variables may be in one of four states: 0, 1,
floating (z), and undefined (x).

•

Versions

Version Release Date

Verilog IEEE-1364-1995 1995-01-01

Verilog IEEE-1364-2001 2001-09-28

Verilog IEEE-1364.1-2002 2002-12-18

Verilog IEEE-1364-2005 2006-04-07

SystemVerilog IEEE-1800-2009 2009-12-11

SystemVerilog IEEE-1800-2012 2013-02-21

Examples

Installation or Setup

Detailed instructions on getting Verilog set up or installed is dependent on the tool you use since
there are many Verilog tools.

Introduction

Verilog is a hardware description language (HDL) used to model electronic systems. It most
commonly describes an electronic system at the register-transfer level (RTL) of abstraction. It is
also used in the verification of analog circuits and mixed-signal circuits. Its structure and main

https://riptutorial.com/ 2

https://standards.ieee.org/getieee/1800/download/1800-2012.pdf

principles (as described below) are designed to describe and successfully implement an
electronic system.

Rigidity
An electronic circuit is a physical entity having a fixed structure and Verilog is adapted for
that. Modules (module), Ports(input/output/inout) , connections (wires), blocks (@always),
registers (reg) are all fixed at compile time. The number of entities and interconnects do not
change dynamically. There is always a "module" at the top-level representing the chip
structure (for synthesis), and one at the system level for verification.

•

Parallelism
The inherent simultaneous operations in the physical chip is mimicked in the language by
always (most commmon), initial and fork/join blocks.

•

 module top();
 reg r1,r2,r3,r4; // 1-bit registers
 initial
 begin
 r1 <= 0 ;
 end
 initial
 begin
 fork
 r2 <= 0 ;
 r3 <= 0 ;
 join
 end
 always @(r4)
 r4 <= 0 ;
 endmodule

All of the above statements are executed in parallel within the same time unit.

Timing and Synchronization
Verilog supports various constructs to describe the temporal nature of circuits. Timings and
delays in circuits can be implemented in Verilog, for example by #delay constructs. Similarly,
Verilog also accommodates for synchronous and asynchronous circuits and components like
flops, latches and combinatorial logic using various constructs, for example "always" blocks.
A set of blocks can also be synchronized via a common clock signal or a block can be
triggered based on specific set of inputs.

#10 ; // delay for 10 time units
always @(posedge clk) // synchronous
always @(sig1 or sig2) // combinatorial logic
@(posedge event1) // wait for post edge transition of event1
wait (signal == 1) // wait for signal to be 1

•

Uncertainty
Verilog supports some of the uncertainty inherent in electronic circuits. "X" is used to
represent unknown state of the circuit. "Z" is used to represent undriven state of the circuit.

reg1 = 1'bx;

•

https://riptutorial.com/ 3

reg2 = 1'bz;

Abstraction
Verilog supports designing at different levels of abstraction. The highest level of abstraction
for a design is the Resister transfer Level (RTL), the next being the gate level and the lowest
the cell level (User Define Primitives), RTL abstraction being the most commonly used.
Verilog also supports behavioral level of abstraction with no regard to the structural
realization of the design, primarily used for verification.

•

 // Example of a D flip flop at RTL abstraction
module dff (
 clk , // Clock Input
 reset , // Reset input
 d , // Data Input
 q // Q output
);
 //-----------Input Ports---------------
 input d, clk, reset ;

 //-----------Output Ports---------------
 output q;

 reg q;

 always @ (posedge clk)
 if (~reset) begin
 q <= 1'b0;
 end else begin
 q <= d;
 end

endmodule

// And gate model based at Gate level abstraction
module and(input x,input y,output o);

wire w;
// Two instantiations of the module NAND
nand U1(w,x, y);
nand U2(o, w, w);

endmodule

// Gate modeled at Cell-level Abstraction
primitive udp_and(
a, // declare three ports
b,
c
);
output a; // Outputs
input b,c; // Inputs

// UDP function code here
// A = B & C;
table
 // B C : A
 1 1 : 1;

https://riptutorial.com/ 4

 0 1 : 0;
 1 0 : 0;
 0 0 : 0;
endtable

endprimitive

There are three main use cases for Verilog. They determine the structure of the code and its
interpretation and also determine the tool sets used. All three applications are necessary for
successful implementation of any Verilog design.

Physical Design / Back-end
Here Verilog is used to primarily view the design as a matrix of interconnecting gates
implementing logical design. RTL/logic/Design goes through various steps from synthesis ->
placement -> clock tree construction -> routing -> DRC -> LVS -> to tapeout. The precise
steps and sequences vary based on the exact nature of implementation.

1.

Simulation
In this use case, the primary aim is to generate test vectors to validate the design as per the
specification. The code written in this use case need not be synthesizable and it remains
within verification sphere. The code here more closely resembles generic software structures
like for/while/do loops etc.

2.

Design
Design involves implementing the specification of a circuit generally at the RTL level of
abstraction. The Verilog code is then given for Verification and the fully verified code is given
for physical implementation. The code is written using only the synthesizable constructs of
Verilog. Certain RTL coding style can cause simulation vs synthesis mismatch and care has
to be taken to avoid those.

3.

There are two main implementation flows. They will also affect the way Verilog code is written and
implemented. Certain styles of coding and certain structures are more suitable in one flow over the
other.

ASIC Flow (application-specific integrated circuit)•
FPGA Flow (Field-programmable gate array) - include FPGA and CPLD's•

Hello World

This example uses the icarus verilog compiler.

Step 1: Create a file called hello.v

module myModule();

initial
 begin
 $display("Hello World!"); // This will display a message
 $finish ; // This causes the simulation to end. Without, it would go on..and on.
 end

https://riptutorial.com/ 5

endmodule

Step 2. We compile the .v file using icarus:

>iverilog -o hello.vvp hello.v

The -o switch assigns a name to the output object file. Without this switch the output file would be
called a.out. The hello.v indicates the source file to be compiled. There should be practically no
output when you compile this source code, unless there are errors.

Step 3. You are ready to simulate this Hello World verilog program. To do so, invoke as such:

>vvp hello.vvp
Hello World!
>

Installation of Icarus Verilog Compiler for Mac OSX Sierra

Install Xcode from the App Store.1.
Install the Xcode developer tools2.

> xcode-select --install

This will provide basic command line tools such as gcc and make

Install Mac Ports https://www.macports.org/install.php3.

The OSX Sierra install package will provide an open-source method of installing and upgrading
additional software packages on the Mac platform. Think yum or apt-get for the Mac.

Install icarus using Mac ports4.

> sudo port install iverilog

Verify the installation from the command line5.

$ iverilog
iverilog: no source files.

Usage: iverilog [-ESvV] [-B base] [-c cmdfile|-f cmdfile]
 [-g1995|-g2001|-g2005] [-g<feature>]
 [-D macro[=defn]] [-I includedir] [-M depfile] [-m module]
 [-N file] [-o filename] [-p flag=value]
 [-s topmodule] [-t target] [-T min|typ|max]
 [-W class] [-y dir] [-Y suf] source_file(s)

See the man page for details.
$

You are now ready to compile and simulate your first Verilog file on the Mac.

https://riptutorial.com/ 6

Install GTKWave for graphical display of simulation data on Mac OSx Sierra

GTKWave is a fully feature graphical viewing package that supports several graphical data
storage standards, but it also happens to support VCD, which is the format that vvp will output. So,
to pick up GTKWave, you have a couple options

Goto http://gtkwave.sourceforge.net/gtkwave.zip and download it. This version is typically the
latest.

1.

If you have installed MacPorts (https://www.macports.org/), simply run sudo port install
gtkwave. This will probably want to install on the dependencies to. Note this method will
usually get you an older version. If you don't have MacPorts installed, there is a installation
setup example for doing this on this page. Yes! You will need all of the xcode developer
tools, as this methods will "build" you a GTKWave from source.

2.

When installation is done, you may be asked to select a python version. I already had 2.7.10
installed so I never "selected" a new one.

At this point you can start gtkwave from the command line with gtkwave. When it starts you may be
asked to install, or update XQuarts. Do so. In my case XQuarts 2.7.11 is installed.

Note: I actually needed to reboot to get XQuarts correctly, then I typed gtkwave again and the
application comes up.

In the next example, I will create two independent files, a testbench and module to test, and we
will use the gtkwave to view the design.

Using Icarus Verilog and GTKWaves to simulate and view a design graphically

This example uses Icarus and GTKWave. Installation instructions for those tools on OSx are
provided elsewhere on this page.

Lets begin with the module design. This module is a BCD to 7 segment display. I have coded the
design in an obtuse way simply to give us something that is easily broken and we can spend
sometime fixing graphically. So we have a clock, reset, a 4 data input representing a BCD value,
and a 7 bit output that represent the seven segment display. Create a file called bcd_to_7seg.v
and place the source below in it.

module bcd_to_7seg (
 input clk,
 input reset,
 input [3:0] bcd,
 output [6:0] seven_seg_display

);
 parameter TP = 1;
 reg seg_a;
 reg seg_b;
 reg seg_c;
 reg seg_d;
 reg seg_e;
 reg seg_f;

https://riptutorial.com/ 7

http://gtkwave.sourceforge.net/gtkwave.zip
https://www.macports.org/

 reg seg_g;

 always @ (posedge clk or posedge reset)
 begin
 if (reset)
 begin
 seg_a <= #TP 1'b0;
 seg_b <= #TP 1'b0;
 seg_c <= #TP 1'b0;
 seg_d <= #TP 1'b0;
 seg_e <= #TP 1'b0;
 seg_f <= #TP 1'b0;
 seg_g <= #TP 1'b0;
 end
 else
 begin
 seg_a <= #TP ~(bcd == 4'h1 || bcd == 4'h4);
 seg_b <= #TP bcd < 4'h5 || bcd > 6;
 seg_c <= #TP bcd != 2;
 seg_d <= #TP bcd == 0 || bcd[3:1] == 3'b001 || bcd == 5 || bcd == 6 || bcd == 8;
 seg_e <= #TP bcd == 0 || bcd == 2 || bcd == 6 || bcd == 8;
 seg_f <= #TP bcd == 0 || bcd == 4 || bcd == 5 || bcd == 6 || bcd > 7;
 seg_g <= #TP (bcd > 1 && bcd < 7) || (bcd > 7);
 end
 end

 assign seven_seg_display = {seg_g,seg_f,seg_e,seg_d,seg_c,seg_b,seg_a};
endmodule

Next, we need a test to check if this module is working correctly. The case statement in the
testbench is actually easier to read in my opinion and more clear as to what it does. But I did not
wan to put the same case statment in the design AND in the test. That is bad practice. Rather two
independent designs are being used to validate one-another.

Withing the code below, you will notice two lines $dumpfile("testbench.vcd"); and
$dumpvars(0,testbench);. These lines are what create the VCD output file that will be used to
perform graphical analysis of the design. If you leave them out, you won't get a VCD file
generated. Create a file called testbench.v and place the source below in it.

`timescale 1ns/100ps
module testbench;
reg clk;
reg reset;
reg [31:0] ii;
reg [31:0] error_count;
reg [3:0] bcd;
wire [6:0] seven_seg_display;
parameter TP = 1;
parameter CLK_HALF_PERIOD = 5;

 // assign clk = #CLK_HALF_PERIOD ~clk; // Create a clock with a period of ten ns
 initial
 begin
 clk = 0;
 #5;
 forever clk = #(CLK_HALF_PERIOD) ~clk;
 end

https://riptutorial.com/ 8

 initial
 begin
 $dumpfile("testbench.vcd");
 $dumpvars(0,testbench);
 // clk = #CLK_HALF_PERIOD ~clk;
 $display("%0t, Reseting system", $time);
 error_count = 0;
 bcd = 4'h0;
 reset = #TP 1'b1;
 repeat (30) @ (posedge clk);
 reset = #TP 1'b0;
 repeat (30) @ (posedge clk);
 $display("%0t, Begin BCD test", $time); // This displays a message

 for (ii = 0; ii < 10; ii = ii + 1)
 begin
 repeat (1) @ (posedge clk);
 bcd = ii[3:0];
 repeat (1) @ (posedge clk);
 if (seven_seg_display !== seven_seg_prediction(bcd))
 begin
 $display("%0t, ERROR: For BCD %d, module output 0b%07b does not match
prediction logic value of 0b%07b.",$time,bcd, seven_seg_display,seven_seg_prediction(bcd));
 error_count = error_count + 1;
 end
 end
 $display("%0t, Test Complete with %d errors", $time, error_count);
 $display("%0t, Test %s", $time, ~|error_count ? "pass." : "fail.");
 $finish ; // This causes the simulation to end.
 end

parameter SEG_A = 7'b0000001;
parameter SEG_B = 7'b0000010;
parameter SEG_C = 7'b0000100;
parameter SEG_D = 7'b0001000;
parameter SEG_E = 7'b0010000;
parameter SEG_F = 7'b0100000;
parameter SEG_G = 7'b1000000;

function [6:0] seven_seg_prediction;
 input [3:0] bcd_in;

 // +--- A ---+
 // | |
 // F B
 // | |
 // +--- G ---+
 // | |
 // E C
 // | |
 // +--- D ---+

 begin
 case (bcd_in)
 4'h0: seven_seg_prediction = SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F;
 4'h1: seven_seg_prediction = SEG_B | SEG_C;
 4'h2: seven_seg_prediction = SEG_A | SEG_B | SEG_G | SEG_E | SEG_D;
 4'h3: seven_seg_prediction = SEG_A | SEG_B | SEG_G | SEG_C | SEG_D;

https://riptutorial.com/ 9

 4'h4: seven_seg_prediction = SEG_F | SEG_G | SEG_B | SEG_C;
 4'h5: seven_seg_prediction = SEG_A | SEG_F | SEG_G | SEG_C | SEG_D;
 4'h6: seven_seg_prediction = SEG_A | SEG_F | SEG_G | SEG_E | SEG_C | SEG_D;
 4'h7: seven_seg_prediction = SEG_A | SEG_B | SEG_C;
 4'h8: seven_seg_prediction = SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F | SEG_G;
 4'h9: seven_seg_prediction = SEG_A | SEG_F | SEG_G | SEG_B | SEG_C;
 default: seven_seg_prediction = 7'h0;
 endcase
 end
endfunction

bcd_to_7seg u0_bcd_to_7seg (
.clk (clk),
.reset (reset),
.bcd (bcd),
.seven_seg_display (seven_seg_display)
);

endmodule

Now that we have two files, a testbench.v and bcd_to_7seg.v, we need to compile, elaborate
using Icarus. To do this:

$ iverilog -o testbench.vvp testbench.v bcd_to_7seg.v

Next we need to simulate

$ vvp testbench.vvp
LXT2 info: dumpfile testbench.vcd opened for output.
0, Reseting system
6000, Begin BCD test
8000, Test Complete with 0 errors
8000, Test pass.

At this point if you want to validate the file is really being tested, go into the bcd_2_7seg.v file and
move some of the logic around and repeat those first two steps.

As an example I change the line seg_c <= #TP bcd != 2; to seg_c <= #TP bcd != 4;. Recompile and
simulate does the following:

$ iverilog -o testbench.vvp testbench.v bcd_to_7seg.v
$ vvp testbench.vvp
LXT2 info: dumpfile testbench.vcd opened for output.
0, Reseting system
6000, Begin BCD test
6600, ERROR: For BCD 2, module output 0b1011111 does not match prediction logic value of
0b1011011.
7000, ERROR: For BCD 4, module output 0b1100010 does not match prediction logic value of
0b1100110.
8000, Test Complete with 2 errors
8000, Test fail.
$

https://riptutorial.com/ 10

So now, lets view the simulation using GTKWave. From the command line, issue a

gtkwave testbench.vcd &

When the GTKWave window appears, you will see in the upper left hand box, the module name
testbench. Click it. This will reveal the sub-modules, tasks, and functions associated with that file.
Wires and registers will also appear in the lower left hand box.

Now drag, clk, bcd, error_count and seven_seg_display into the signal box next to the waveform
window. The signals will now be plotted. Error_count will show you which particular BCD input
generated the wrong seven_seg_display output.

You are now ready to troubleshoot a Verilog bug graphically.

Read Getting started with verilog online: https://riptutorial.com/verilog/topic/1080/getting-started-
with-verilog

https://riptutorial.com/ 11

https://riptutorial.com/verilog/topic/1080/getting-started-with-verilog
https://riptutorial.com/verilog/topic/1080/getting-started-with-verilog

Chapter 2: Hello World

Examples

Compiling and Running the Example

Assuming a source file of hello_world.v and a top level module of hello_world. The code can be
run using various simulators. Most simulators are compiled simulators. They require multiple steps
to compile and execute. Generally the

First step is to compile the Verilog design.•
Second step is to elaborate and optimize the design.•
Third step is to run the simulation.•

The details of the steps could vary based on the simulator but the overall idea remains the same.

Three step process using Cadence Simulator

 ncvlog hello_world.v
 ncelab hello_world
 ncsim hello_world

First step ncvlog is to compile the file hello_world.v•
Second step ncelab is to elaborate the code with the top level module hello_world.•
Third step ncsim is to run the simulation with the top level module hello_world.•
The simulator generates all the compiled and optimized code into a work lib. [INCA_libs -
default library name]

•

single step using Cadence Simulator.

The command line will internally call the required three steps. This is to mimic the older interpreted
simulator execution style (single command line).

irun hello_world.v
or
ncverilog hello_world.v

Hello World

The program outputs Hello World! to standard output.

module HELLO_WORLD(); // module doesn't have input or outputs
 initial begin
 $display("Hello World");
 $finish; // stop the simulator
 end
endmodule

https://riptutorial.com/ 12

Module is a basic building block in Verilog. It represent a collection of elements and is enclosed
between module and end module keyword. Here hello_world is the top most (and the only) module
.

Initial block executes at the start of simulation. The begin and end is used to mark the boundary of
the initial block. $display outputs the message to the standard output. It inserts and end of line "\n"
to the message.

This code can't by synthesized, i.e. it can't be put in a chip.

Read Hello World online: https://riptutorial.com/verilog/topic/1819/hello-world

https://riptutorial.com/ 13

https://riptutorial.com/verilog/topic/1819/hello-world

Chapter 3: Memories

Remarks

For FIFOs, you typically instantiate a vendor-specific block (also called a "core" or "IP").

Examples

Simple Dual Port RAM

Simple Dual Port RAM with separate addresses and clocks for read/write operations.

module simple_ram_dual_clock #(
 parameter DATA_WIDTH=8, //width of data bus
 parameter ADDR_WIDTH=8 //width of addresses buses
)(
 input [DATA_WIDTH-1:0] data, //data to be written
 input [ADDR_WIDTH-1:0] read_addr, //address for read operation
 input [ADDR_WIDTH-1:0] write_addr, //address for write operation
 input we, //write enable signal
 input read_clk, //clock signal for read operation
 input write_clk, //clock signal for write operation
 output reg [DATA_WIDTH-1:0] q //read data
);

 reg [DATA_WIDTH-1:0] ram [2**ADDR_WIDTH-1:0]; // ** is exponentiation

 always @(posedge write_clk) begin //WRITE
 if (we) begin
 ram[write_addr] <= data;
 end
 end

 always @(posedge read_clk) begin //READ
 q <= ram[read_addr];
 end

endmodule

Single Port Synchronous RAM

Simple Single Port RAM with one address for read/write operations.

module ram_single #(
 parameter DATA_WIDTH=8, //width of data bus
 parameter ADDR_WIDTH=8 //width of addresses buses
)(
 input [(DATA_WIDTH-1):0] data, //data to be written
 input [(ADDR_WIDTH-1):0] addr, //address for write/read operation
 input we, //write enable signal
 input clk, //clock signal
 output [(DATA_WIDTH-1):0] q //read data

https://riptutorial.com/ 14

);

 reg [DATA_WIDTH-1:0] ram [2**ADDR_WIDTH-1:0];
 reg [ADDR_WIDTH-1:0] addr_r;

 always @(posedge clk) begin //WRITE
 if (we) begin
 ram[addr] <= data;
 end
 addr_r <= addr;
 end

 assign q = ram[addr_r]; //READ

endmodule

Shift register

N-bit deep shift register with asynchronous reset.

module shift_register #(
 parameter REG_DEPTH = 16
)(
 input clk, //clock signal
 input ena, //enable signal
 input rst, //reset signal
 input data_in, //input bit
 output data_out //output bit
);

 reg [REG_DEPTH-1:0] data_reg;

 always @(posedge clk or posedge rst) begin
 if (rst) begin //asynchronous reset
 data_reg <= {REG_DEPTH{1'b0}}; //load REG_DEPTH zeros
 end else if (enable) begin
 data_reg <= {data_reg[REG_DEPTH-2:0], data_in}; //load input data as LSB and shift
(left) all other bits
 end
 end

 assign data_out = data_reg[REG_DEPTH-1]; //MSB is an output bit

endmodule

Single Port Async Read/Write RAM

Simple single port RAM with async read/write operations

module ram_single_port_ar_aw #(
 parameter DATA_WIDTH = 8,
 parameter ADDR_WITDH = 3
)(
 input we, // write enable
 input oe, // output enable
 input [(ADDR_WITDH-1):0] waddr, // write address
 input [(DATA_WIDTH-1):0] wdata, // write data

https://riptutorial.com/ 15

 input raddr, // read adddress
 output [(DATA_WIDTH-1):0] rdata // read data
);

 reg [(DATA_WIDTH-1):0] ram [0:2**ADDR_WITDH-1];
 reg [(DATA_WIDTH-1):0] data_out;

 assign rdata = (oe && !we) ? data_out : {DATA_WIDTH{1'bz}};

 always @*
 begin : mem_write
 if (we) begin
 ram[waddr] = wdata;
 end
 end

 always @* // if anything below changes (i.e. we, oe, raddr), execute this
 begin : mem_read
 if (!we && oe) begin
 data_out = ram[raddr];
 end
 end

endmodule

Read Memories online: https://riptutorial.com/verilog/topic/2654/memories

https://riptutorial.com/ 16

https://riptutorial.com/verilog/topic/2654/memories

Chapter 4: Procedural Blocks

Syntax

always @ (posedge clk) begin /* statements */ end•
always @ (negedge clk) begin /* statements */ end•
always @ (posedge clk or posedge reset) // may synthesize less efficiently than
synchronous reset

•

Examples

Simple counter

A counter using an FPGA style flip-flop initialisation:

module counter(
 input clk,
 output reg[7:0] count
)
initial count = 0;
always @ (posedge clk) begin
 count <= count + 1'b1;
end

A counter implemented using asynchronous resets suitable for ASIC synthesis:

module counter(
 input clk,
 input rst_n, // Active-low reset
 output reg [7:0] count
)
always @ (posedge clk or negedge rst_n) begin
 if (~rst_n) begin
 count <= 'b0;
 end
 else begin
 count <= count + 1'b1;
 end
end

The procedural blocks in these examples increment count at every rising clock edge.

Non-blocking assignments

A non-blocking assignment (<=) is used for assignment inside edge-sensitive always blocks. Within
a block, the new values are not visible until the entire block has been processed. For example:

module flip(
 input clk,

https://riptutorial.com/ 17

 input reset
)
reg f1;
reg f2;

always @ (posedge clk) begin
 if (reset) begin // synchronous reset
 f1 <= 0;
 f2 <= 1;
 end
 else begin
 f1 <= f2;
 f2 <= f1;
 end
end
endmodule

Notice the use of non-blocking (<=) assignments here. Since the first assignment doesn't actually
take effect until after the procedural block, the second assignment does what is intended and
actually swaps the two variables -- unlike in a blocking assignment (=) or assignments in other
languages; f1 still has its original value on the right-hand-side of the second assignment in the
block.

Read Procedural Blocks online: https://riptutorial.com/verilog/topic/2512/procedural-blocks

https://riptutorial.com/ 18

https://riptutorial.com/verilog/topic/2512/procedural-blocks

Chapter 5: Synthesis vs Simulation mismatch

Introduction

A good explanation of this topic is in http://www.sunburst-
design.com/papers/CummingsSNUG1999SJ_SynthMismatch.pdf

Examples

Comparison

wire d = 1'bx; // say from previous block. Will be 1 or 0 in hardware

if (d == 1'b) // false in simulation. May be true of false in hardware

Sensitivity list

wire a;
wire b;
reg q;

always @(a) // b missing from sensativity list
 q = a & b; // In simulation q will change only when a changes

In hardware, q will change whenever a or b changes.

Read Synthesis vs Simulation mismatch online: https://riptutorial.com/verilog/topic/9220/synthesis-
vs-simulation-mismatch

https://riptutorial.com/ 19

http://www.sunburst-design.com/papers/CummingsSNUG1999SJ_SynthMismatch.pdf
http://www.sunburst-design.com/papers/CummingsSNUG1999SJ_SynthMismatch.pdf
https://riptutorial.com/verilog/topic/9220/synthesis-vs-simulation-mismatch
https://riptutorial.com/verilog/topic/9220/synthesis-vs-simulation-mismatch

Credits

S.
No

Chapters Contributors

1
Getting started with
verilog

Brian Carlton, Community, hexafraction, Morgan, Qiu, Rahul
Menon, Rich Maes, wilcroft

2 Hello World Brian Carlton, Morgan, Rahul Menon

3 Memories Brian Carlton, jclin, Kamil Rymarz, Morgan, Qiu, wilcroft

4 Procedural Blocks Brian Carlton, hexafraction, Morgan, wilcroft

5
Synthesis vs
Simulation mismatch

Brian Carlton

https://riptutorial.com/ 20

https://riptutorial.com/contributor/20147/brian-carlton
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1424875/hexafraction
https://riptutorial.com/contributor/97073/morgan
https://riptutorial.com/contributor/2572285/qiu
https://riptutorial.com/contributor/6454737/rahul-menon
https://riptutorial.com/contributor/6454737/rahul-menon
https://riptutorial.com/contributor/806065/rich-maes
https://riptutorial.com/contributor/2529711/wilcroft
https://riptutorial.com/contributor/20147/brian-carlton
https://riptutorial.com/contributor/97073/morgan
https://riptutorial.com/contributor/6454737/rahul-menon
https://riptutorial.com/contributor/20147/brian-carlton
https://riptutorial.com/contributor/651907/jclin
https://riptutorial.com/contributor/6695661/kamil-rymarz
https://riptutorial.com/contributor/97073/morgan
https://riptutorial.com/contributor/2572285/qiu
https://riptutorial.com/contributor/2529711/wilcroft
https://riptutorial.com/contributor/20147/brian-carlton
https://riptutorial.com/contributor/1424875/hexafraction
https://riptutorial.com/contributor/97073/morgan
https://riptutorial.com/contributor/2529711/wilcroft
https://riptutorial.com/contributor/20147/brian-carlton

	About
	Chapter 1: Getting started with verilog
	Remarks
	Versions
	Examples
	Installation or Setup
	Introduction
	Hello World
	Installation of Icarus Verilog Compiler for Mac OSX Sierra
	Install GTKWave for graphical display of simulation data on Mac OSx Sierra
	Using Icarus Verilog and GTKWaves to simulate and view a design graphically

	Chapter 2: Hello World
	Examples
	Compiling and Running the Example
	Hello World

	Chapter 3: Memories
	Remarks
	Examples
	Simple Dual Port RAM
	Single Port Synchronous RAM
	Shift register
	Single Port Async Read/Write RAM

	Chapter 4: Procedural Blocks
	Syntax
	Examples
	Simple counter
	Non-blocking assignments

	Chapter 5: Synthesis vs Simulation mismatch
	Introduction
	Examples
	Comparison
	Sensitivity list

	Credits

