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About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version 
from: vhdl

It is an unofficial and free vhdl ebook created for educational purposes. All the content is extracted 
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack 
Overflow. It is neither affiliated with Stack Overflow nor official vhdl.

The content is released under Creative Commons BY-SA, and the list of contributors to each 
chapter are provided in the credits section at the end of this book. Images may be copyright of 
their respective owners unless otherwise specified. All trademarks and registered trademarks are 
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor 
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/vhdl
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com


Chapter 1: Getting started with vhdl

Remarks

VHDL is a compound acronym for VHSIC (Very High Speed Integrated Circuit) HDL (Hardware 
Description Language). As a Hardware Description Language, it is primarily used to describe or 
model circuits. VHDL is an ideal language for describing circuits since it offers language constructs 
that easily describe both concurrent and sequential behavior along with an execution model that 
removes ambiguity introduced when modeling concurrent behavior.

VHDL is typically interpreted in two different contexts: for simulation and for synthesis. When 
interpreted for synthesis, code is converted (synthesized) to the equivalent hardware elements 
that are modeled. Only a subset of the VHDL is typically available for use during synthesis, and 
supported language constructs are not standardized; it is a function of the synthesis engine used 
and the target hardware device. When VHDL is interpreted for simulation, all language constructs 
are available for modeling the behavior of hardware.

Versions

Version Release Date

IEEE 1076-1987 1988-03-31

IEEE 1076-1993 1994-06-06

IEEE 1076-2000 2000-01-30

IEEE 1076-2002 2002-05-17

IEEE 1076c-2007 2007-09-05

IEEE 1076-2008 2009-01-26

Examples

Installation or Setup

A VHDL program can be simulated or synthesized. Simulation is what resembles most the 
execution in other programming languages. Synthesis translates a VHDL program into a network 
of logic gates. Many VHDL simulation and synthesis tools are parts of commercial Electronic 
Design Automation (EDA) suites. They frequently also handle other Hardware Description 
Languages (HDL), like Verilog, SystemVerilog or SystemC. Some free and open source 
applications exist.
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VHDL simulation

GHDL is probably the most mature free and open source VHDL simulator. It comes in three 
different flavours depending on the backend used: gcc, llvm or mcode. The following examples show 
how to use GHDL (mcode version) and Modelsim, the commercial HDL simulator by Mentor 
Graphics, under a GNU/Linux operating system. Things would be very similar with other tools and 
other operating systems.

Hello World

Create a file hello_world.vhd containing:

-- File hello_world.vhd 
entity hello_world is 
end entity hello_world; 
 
architecture arc of hello_world is 
begin 
  assert false report "Hello world!" severity note; 
end architecture arc;

A VHDL compilation unit is a complete VHDL program that can be compiled alone. Entities are 
VHDL compilation units that are used to describe the external interface of a digital circuit, that is, 
its input and output ports. In our example, the entity is named hello_world and is empty. The 
circuit we are modeling is a black box, it has no inputs and no outputs. Architectures are another 
type of compilation unit. They are always associated to an entity and they are used to describe 
the behaviour of the digital circuit. One entity may have one or more architectures to describe the 
behavior of the entity. In our example the entity is associated to only one architecture named arc 
that contains only one VHDL statement:

  assert false report "Hello world!" severity note;

The statement will be executed at the beginning of the simulation and print the Hello world! 
message on the standard output. The simulation will then end because there is nothing more to be 
done. The VHDL source file we wrote contains two compilation units. We could have separated 
them in two different files but we could not have split any of them in different files: a compilation 
unit must be entirely contained in one source file. Note that this architecture cannot be synthesized 
because it does not describe a function which can be directly translated to logic gates.

Analyse and run the program with GHDL:

$ mkdir gh_work 
$ ghdl -a --workdir=gh_work hello_world.vhd 
$ ghdl -r --workdir=gh_work hello_world 
hello_world.vhd:6:8:@0ms:(assertion note): Hello world!

The gh_work directory is where GHDL stores the files it generates. This is what the --
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workdir=gh_work option says. The analysis phase checks the syntax correctness and produces a 
text file describing the compilation units found in the source file. The run phase actually compiles, 
links and executes the program. Note that, in the mcode version of GHDL, no binary files are 
generated. The program is recompiled each time we simulate it. The gcc or llvm versions behave 
differently. Note also that ghdl -r does not take the name of a VHDL source file, like ghdl -a does, 
but the name of a compilation unit. In our case we pass it the name of the entity. As it has only 
one architecture associated, there is no need to specify which one to simulate.

With Modelsim:

$ vlib ms_work 
$ vmap work ms_work 
$ vcom hello_world.vhd 
$ vsim -c hello_world -do 'run -all; quit' 
... 
# ** Note: Hello world! 
#    Time: 0 ns  Iteration: 0  Instance: /hello_world 
...

vlib, vmap, vcom and vsim are four commands that Modelsim provides. vlib creates a directory (
ms_work) where the generated files will be stored. vmap associates a directory created by vlib with a 
logical name (work). vcom compiles a VHDL source file and, by default, stores the result in the 
directory associated to the work logical name. Finally, vsim simulates the program and produces 
the same kind of output as GHDL. Note again that what vsim asks for is not a source file but the 
name of an already compiled compilation unit. The -c option tells the simulator to run in command 
line mode instead of the default Graphical User Interface (GUI) mode. The -do option is used to 
pass a TCL script to execute after loading the design. TCL is a scripting language very frequently 
used in EDA tools. The value of the -do option can be the name of a file or, like in our example, a 
string of TCL commands. run -all; quit instruct the simulator to run the simulation until it naturally 
ends - or forever if it lasts forever - and then to quit.

Synchronous counter

-- File counter.vhd 
-- The entity is the interface part. It has a name and a set of input / output 
-- ports. Ports have a name, a direction and a type. The bit type has only two 
-- values: '0' and '1'. It is one of the standard types. 
entity counter is 
  port( 
    clock: in  bit;    -- We are using the rising edge of CLOCK 
    reset: in  bit;    -- Synchronous and active HIGH 
    data:  out natural -- The current value of the counter 
  ); 
end entity counter; 
 
-- The architecture describes the internals. It is always associated 
-- to an entity. 
architecture sync of counter is 
  -- The internal signals we use to count. Natural is another standard 
  -- type. VHDL is not case sensitive. 
  signal current_value: natural; 
  signal NEXT_VALUE:    natural; 
begin 
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  -- A process is a concurrent statement. It is an infinite loop. 
  process 
  begin 
    -- The wait statement is a synchronization instruction. We wait 
    -- until clock changes and its new value is '1' (a rising edge). 
    wait until clock = '1'; 
    -- Our reset is synchronous: we consider it only at rising edges 
    -- of our clock. 
    if reset = '1' then 
      -- <= is the signal assignment operator. 
      current_value <= 0; 
    else 
      current_value <= next_value; 
    end if; 
  end process; 
 
  -- Another process. The sensitivity list is another way to express 
  -- synchronization constraints. It (approximately) means: wait until 
  -- one of the signals in the list changes and then execute the process 
  -- body. Sensitivity list and wait statements cannot be used together 
  -- in the same process. 
  process(current_value) 
  begin 
    next_value <= current_value + 1; 
  end process; 
 
  -- A concurrent signal assignment, which is just a shorthand for the 
  -- (trivial) equivalent process. 
  data <= current_value; 
end architecture sync;

Hello world

There are many ways to print the classical "Hello world!" message in VHDL. The simplest of all is 
probably something like:

-- File hello_world.vhd 
entity hello_world is 
end entity hello_world; 
 
architecture arc of hello_world is 
begin 
  assert false report "Hello world!" severity note; 
end architecture arc;

A simulation environment for the synchronous counter

Simulation environments

A simulation environment for a VHDL design (the Design Under Test or DUT) is another VHDL 
design that, at a minimum:

Declares signals corresponding to the input and output ports of the DUT.•
Instantiates the DUT and connects its ports to the declared signals.•
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Instantiates the processes that drive the signals connected to the input ports of the DUT.•

Optionally, a simulation environment can instantiate other designs than the DUT, like, for instance, 
traffic generators on interfaces, monitors to check communication protocols, automatic verifiers of 
the DUT outputs...

The simulation environment is analyzed, elaborated and executed. Most simulators offer the 
possibility to select a set of signals to observe, plot their graphical waveforms, put breakpoints in 
the source code, step in the source code...

Ideally, a simulation environment should be usable as a robust non-regression test, that is, it 
should automatically detect violations of the DUT specifications, report useful error messages and 
guarantee a reasonable coverage of the DUT functionalities. When such simulation environments 
are available they can be rerun on every change of the DUT to check that it is still functionally 
correct, without the need of tedious and error prone visual inspections of simulation traces.

In practice, designing ideal or even just good simulation environments is challenging. It is 
frequently as, or even more, difficult than designing the DUT itself.

In this example we present a simulation environment for the Synchronous counter example. We 
show how to run it using GHDL and Modelsim and how to observe graphical waveforms using 
GTKWave with GHDL and the built-in waveform viewer with Modelsim. We then discuss an 
interesting aspect of simulations: how to stop them?

A first simulation environment for the 
synchronous counter

The synchronous counter has two input ports and one output ports. A very simple simulation 
environment could be:

-- File counter_sim.vhd 
-- Entities of simulation environments are frequently black boxes without 
-- ports. 
entity counter_sim is 
end entity counter_sim; 
 
architecture sim of counter_sim is 
 
  -- One signal per port of the DUT. Signals can have the same name as 
  -- the corresponding port but they do not need to. 
  signal clk:  bit; 
  signal rst:  bit; 
  signal data: natural; 
 
begin 
 
  -- Instantiation of the DUT 
  u0: entity work.counter(sync) 
  port map( 
    clock => clk, 
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    reset => rst, 
    data  => data 
  ); 
 
  -- A clock generating process with a 2ns clock period. The process 
  -- being an infinite loop, the clock will never stop toggling. 
  process 
  begin 
    clk <= '0'; 
    wait for 1 ns; 
    clk <= '1'; 
    wait for 1 ns; 
  end process; 
 
  -- The process that handles the reset: active from beginning of 
  -- simulation until the 5th rising edge of the clock. 
  process 
  begin 
    rst  <= '1'; 
    for i in 1 to 5 loop 
      wait until rising_edge(clk); 
    end loop; 
    rst  <= '0'; 
    wait; -- Eternal wait. Stops the process forever. 
  end process; 
 
end architecture sim;

Simulating with GHDL

Let us compile and simulate this with GHDL:

$ mkdir gh_work 
$ ghdl -a --workdir=gh_work counter_sim.vhd 
counter_sim.vhd:27:24: unit "counter" not found in 'library "work"' 
counter_sim.vhd:50:35: no declaration for "rising_edge"

Then error messages tell us two important things:

The GHDL analyzer discovered that our design instantiates an entity named counter but this 
entity was not found in library work. This is because we did not compile counter before 
counter_sim. When compiling VHDL designs that instantiate entities, the bottom levels must 
always be compiled before the top levels (hierarchical designs can also be compiled top-
down but only if they instantiate component, not entities).

•

The rising_edge function used by our design is not defined. This is due to the fact that this 
function was introduced in VHDL 2008 and we did not tell GHDL to use this version of the 
language (by default it uses VHDL 1993 with tolerance of VHDL 1987 syntax).

•

Let us fix the two errors and launch the simulation:

$ ghdl -a --workdir=gh_work --std=08 counter.vhd counter_sim.vhd 
$ ghdl -r --workdir=gh_work --std=08 counter_sim sim 
^C
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Note that the --std=08 option is needed for analysis and simulation. Note also that we launched 
the simulation on entity counter_sim, architecture sim, not on a source file.

As our simulation environment has a never ending process (the process that generates the clock), 
the simulation does not stop and we must interrupt it manually. Instead, we can specify a stop time 
with the --stop-time option:

$ ghdl -r --workdir=gh_work --std=08 counter_sim sim --stop-time=60ns 
ghdl:info: simulation stopped by --stop-time

As is, the simulation does not tell us much about the behavior of our DUT. Let's dump the value 
changes of the signals in a file:

$ ghdl -r --workdir=gh_work --std=08 counter_sim sim --stop-time=60ns --vcd=counter_sim.vcd 
Vcd.Avhpi_Error! 
ghdl:info: simulation stopped by --stop-time

(ignore the error message, this is something that needs to be fixed in GHDL and that has no 
consequence). A counter_sim.vcd file has been created. It contains in VCD (ASCII) format all signal 
changes during the simulation. GTKWave can show us the corresponding graphical waveforms:

$ gtkwave counter_sim.vcd

where we can see that the counter works as expected.

Simulating with Modelsim

The principle is exactly the same with Modelsim:
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$ vlib ms_work 
... 
$ vmap work ms_work 
... 
$ vcom -nologo -quiet -2008 counter.vhd counter_sim.vhd 
$ vsim -voptargs="+acc" 'counter_sim(sim)' -do 'add wave /*; run 60ns'

Note the -voptargs="+acc" option passed to vsim: it prevents the simulator from optimizing out the 
data signal and allows us to see it on the waveforms.

Gracefully ending simulations

With both simulators we had to interrupt the never ending simulation or to specify a stop time with 
a dedicated option. This is not very convenient. In many cases the end time of a simulation is 
difficult to anticipate. It would be much better to stop the simulation from inside the VHDL code of 
the simulation environment, when a particular condition is reached, like, for instance, when the 
current value of the counter reaches 20. This can be achieved with an assertion in the process 
that handles the reset:

  process 
  begin 
    rst <= '1'; 
    for i in 1 to 5 loop 
      wait until rising_edge(clk); 
    end loop; 
    rst <= '0'; 
    loop 
      wait until rising_edge(clk); 
      assert data /= 20 report "End of simulation" severity failure; 
    end loop; 
  end process;
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As long as data is different from 20 the simulation continues. When data reaches 20, the simulation 
crashes with an error message:

$ ghdl -a --workdir=gh_work --std=08 counter_sim.vhd 
$ ghdl -r --workdir=gh_work --std=08 counter_sim sim 
counter_sim.vhd:90:24:@51ns:(assertion failure): End of simulation 
ghdl:error: assertion failed 
  from: process work.counter_sim(sim2).P1 at counter_sim.vhd:90 
ghdl:error: simulation failed

Note that we re-compiled only the simulation environment: it is the only design that changed and it 
is the top level. Had we modified only counter.vhd, we would have had to re-compile both: 
counter.vhd because it changed and counter_sim.vhd because it depends on counter.vhd.

Crashing the simulation with an error message is not very elegant. It can even be a problem when 
automatically parsing the simulation messages to decide if an automatic non-regression test 
passed or not. A better and much more elegant solution is to stop all processes when a condition 
is reached. This can be done, for instance, by adding a boolean End Of Simulation (eof) signal. By 
default it is initialized to false at the beginning of the simulation. One of our processes will set it to 
true when the time has come to end the simulation. All the other processes will monitor this signal 
and stop with an eternal wait when it will become true:

  signal eos:  boolean; 
... 
  process 
  begin 
    clk <= '0'; 
    wait for 1 ns; 
    clk <= '1'; 
    wait for 1 ns; 
    if eos then 
      report "End of simulation"; 
      wait; 
    end if; 
  end process; 
 
  process 
  begin 
    rst <= '1'; 
    for i in 1 to 5 loop 
      wait until rising_edge(clk); 
    end loop; 
    rst <= '0'; 
    for i in 1 to 20 loop 
      wait until rising_edge(clk); 
    end loop; 
    eos <= true; 
    wait; 
  end process;

$ ghdl -a --workdir=gh_work --std=08 counter_sim.vhd 
$ ghdl -r --workdir=gh_work --std=08 counter_sim sim 
counter_sim.vhd:120:24:@50ns:(report note): End of simulation

Last but not least, there is an even better solution introduced in VHDL 2008 with the standard 
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package env and the stop and finish procedures it declares:

use std.env.all; 
... 
  process 
  begin 
    rst    <= '1'; 
    for i in 1 to 5 loop 
      wait until rising_edge(clk); 
    end loop; 
    rst    <= '0'; 
    for i in 1 to 20 loop 
      wait until rising_edge(clk); 
    end loop; 
    finish; 
  end process;

$ ghdl -a --workdir=gh_work --std=08 counter_sim.vhd 
$ ghdl -r --workdir=gh_work --std=08 counter_sim sim 
simulation finished @49ns

Signals vs. variables, a brief overview of the simulation semantics of VHDL

This example deals with one of the most fundamental aspects of the VHDL language: the 
simulation semantics. It is intended for VHDL beginners and presents a simplified view where 
many details have been omitted (postponed processes, VHDL Procedural Interface, shared 
variables...) Readers interested in the real complete semantics shall refer to the Language 
Reference Manual (LRM).

Signals and variables

Most classical imperative programming languages use variables. They are value containers. An 
assignment operator is used to store a value in a variable:

a = 15;

and the value currently stored in a variable can be read and used in other statements:

if(a == 15) { print "Fifteen" }

VHDL also uses variables and they have exactly the same role as in most imperative languages. 
But VHDL also offers another kind of value container: the signal. Signals also store values, can 
also be assigned and read. The type of values that can be stored in signals is (almost) the same 
as in variables.

So, why having two kinds of value containers? The answer to this question is essential and at the 
heart of the language. Understanding the difference between variables and signals is the very first 
thing to do before trying to program anything in VHDL.
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Let us illustrate this difference on a concrete example: the swapping.

Note: all the following code snippets are parts of processes. We will see later what 
processes are.

    tmp := a; 
    a   := b; 
    b   := tmp;

swaps variables a and b. After executing these 3 instructions, the new content of a is the old 
content of b and conversely. Like in most programming languages, a third temporary variable (tmp) 
is needed. If, instead of variables, we wanted to swap signals, we would write:

    r <= s; 
    s <= r;

or:

    s <= r; 
    r <= s;

with the same result and without the need of a third temporary signal!

Note: the VHDL signal assignment operator <= is different from the variable assignment 
operator :=.

Let us look at a second example in which we assume that the print subprogram prints the decimal 
representation of its parameter. If a is an integer variable and its current value is 15, executing:

    a := 2 * a; 
    a := a - 5; 
    a := a / 5; 
    print(a);

will print:

5

If we execute this step by step in a debugger we can see the value of a changing from the initial 15 
to 30, 25 and finally 5.

But if s is an integer signal and its current value is 15, executing:

    s <= 2 * s; 
    s <= s - 5; 
    s <= s / 5; 
    print(s); 
    wait on s; 
    print(s);
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will print:

15 
3

If we execute this step by step in a debugger we will not see any value change of s until after the 
wait instruction. Moreover, the final value of s will not be 15, 30, 25 or 5 but 3!

This apparently strange behavior is due the fundamentally parallel nature of digital hardware, as 
we will see in the following sections.

Parallelism

VHDL being a Hardware Description Language (HDL), it is parallel by nature. A VHDL program is 
a collection of sequential programs that run in parallel. These sequential programs are called 
processes:

P1: process 
begin 
  instruction1; 
  instruction2; 
  ... 
  instructionN; 
end process P1; 
 
P2: process 
begin 
  ... 
end process P2;

The processes, just like the hardware they are modelling, never end: they are infinite loops. After 
executing the last instruction, the execution continues with the first.

As with any programming language that supports one form or another of parallelism, a scheduler 
is responsible for deciding which process to execute (and when) during a VHDL simulation. 
Moreover, the language offers specific constructs for inter-process communication and 
synchronization.

Scheduling

The scheduler maintains a list of all processes and, for each of them, records its current state 
which can be running, run-able or suspended. There is at most one process in running state: the one 
that is currently executed. As long as the currently running process does not execute a wait 
instruction, it continues running and prevents any other process from being executed. The VHDL 
scheduler is not preemptive: it is each process responsibility to suspend itself and let other 
processes run. This is one of the problems that VHDL beginners frequently encounter: the free 
running process.
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  P3: process 
    variable a: integer; 
  begin 
    a := s; 
    a := 2 * a; 
    r <= a; 
  end process P3;

Note: variable a is declared locally while signals s and r are declared elsewhere, at a 
higher level. VHDL variables are local to the process that declares them and cannot be 
seen by other processes. Another process could also declare a variable named a, it 
would not be the same variable as the one of process P3.

As soon as the scheduler will resume the P3 process, the simulation will get stuck, the simulation 
current time will not progress anymore and the only way to stop this will be to kill or interrupt the 
simulation. The reason is that P3 has not wait statement and will thus stay in running state forever, 
looping over its 3 instructions. No other process will ever be given a chance to run, even if it is run-
able.

Even processes containing a wait statement can cause the same problem:

  P4: process 
    variable a: integer; 
  begin 
    a := s; 
    a := 2 * a; 
    if a = 16 then 
      wait on s; 
    end if; 
    r <= a; 
  end process P4;

Note: the VHDL equality operator is =.

If process P4 is resumed while the value of signal s is 3, it will run forever because the a = 16 
condition will never be true.

Let us assume that our VHDL program does not contain such pathological processes. When the 
running process executes a wait instruction, it is immediately suspended and the scheduler puts it 
in the suspended state. The wait instruction also carries the condition for the process to become 
run-able again. Example:

    wait on s;

means suspend me until the value of signal s changes. This condition is recorded by the 
scheduler. The scheduler then selects another process among the run-able, puts it in running state 
and executes it. And the same repeats until all run-able processes have been executed and 
suspended.

Important note: when several processes are run-able, the VHDL standard does not 
specify how the scheduler shall select which one to run. A consequence is that, 
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depending on the simulator, the simulator's version, the operating system, or anything 
else, two simulations of the same VHDL model could, at one point, make different 
choices and select a different process to execute. If this choice had an impact on the 
simulation results, we could say that VHDL is non-deterministic. As non-determinism is 
usually undesirable, it would be the responsibility of the programmers to avoid non-
deterministic situations. Fortunately, VHDL takes care of this and this is where signals 
enter the picture.

Signals and inter-process communication

VHDL avoids non determinism using two specific characteristics:

Processes can exchange information only through signals1. 

  signal r, s: integer;  -- Common to all processes 
... 
  P5: process 
    variable a: integer; -- Different from variable a of process P6 
  begin 
    a := s + 1; 
    r <= a; 
    a := r + 1; 
    wait on s; 
  end process P5; 
 
  P6: process 
    variable a: integer; -- Different from variable a of process P5 
  begin 
    a := r + 1; 
    s <= a; 
    wait on r; 
  end process P6;

Note: VHDL comments extend from -- to the end of the line.

The value of a VHDL signal does not change during the execution of processes2. 

Every time a signal is assigned, the assigned value is recorded by the scheduler but the current 
value of the signal remains unchanged. This is another major difference with variables that take 
their new value immediately after being assigned.

Let us look at an execution of process P5 above and assume that a=5, s=1 and r=0 when it is 
resumed by the scheduler. After executing instruction a := s + 1;, the value of variable a changes 
and becomes 2 (1+1). When executing the next instruction r <= a; it is the new value of a (2) that 
is assigned to r. But r being a signal, the current value of r is still 0. So, when executing a := r + 
1;, variable a takes (immediately) value 1 (0+1), not 3 (2+1) as the intuition would say.

When will signal r really take its new value? When the scheduler will have executed all run-able 
processes and they will all be suspended. This is also referred to as: after one delta cycle. It is 
only then that the scheduler will look at all the values that have been assigned to signals and 
actually update the values of the signals. A VHDL simulation is an alternation of execution phases 
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and signal update phases. During execution phases, the value of the signals is frozen. 
Symbolically, we say that between an execution phase and the following signal update phase a 
delta of time elapsed. This is not real time. A delta cycle has no physical duration.

Thanks to this delayed signal update mechanism, VHDL is deterministic. Processes can 
communicate only with signals and signals do not change during the execution of the processes. 
So, the order of execution of the processes does not matter: their external environment (the 
signals) does not change during the execution. Let us show this on the previous example with 
processes P5 and P6, where the initial state is P5.a=5, P6.a=10, s=17, r=0 and where the scheduler 
decides to run P5 first and P6 next. The following table shows the value of the two variables, the 
current and next values of the signals after executing each instruction of each process:

process / instruction P5.a P6.a s.current s.next r.current r.next

Initial state 5 10 17 0

P5 / a := s + 1 18 10 17 0

P5 / r <= a 18 10 17 0 18

P5 / a := r + 1 1 10 17 0 18

P5 / wait on s 1 10 17 0 18

P6 / a := r + 1 1 1 17 0 18

P6 / s <= a 1 1 17 1 0 18

P6 / wait on r 1 1 17 1 0 18

After signal update 1 1 1 18

With the same initial conditions, if the scheduler decides to run P6 first and P5 next:

process / instruction P5.a P6.a s.current s.next r.current r.next

Initial state 5 10 17 0

P6 / a := r + 1 5 1 17 0

P6 / s <= a 5 1 17 1 0

P6 / wait on r 5 1 17 1 0

P5 / a := s + 1 18 1 17 1 0

P5 / r <= a 18 1 17 1 0 18

P5 / a := r + 1 1 1 17 1 0 18
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process / instruction P5.a P6.a s.current s.next r.current r.next

P5 / wait on s 1 1 17 1 0 18

After signal update 1 1 1 18

As we can see, after the execution of our two processes, the result is the same whatever the order 
of execution.

This counter-intuitive signal assignment semantics is the reason of a second type of problems that 
VHDL beginners frequently encounter: the assignment that apparently does not work because it is 
delayed by one delta cycle. When running process P5 step-by-step in a debugger, after r has been 
assigned 18 and a has been assigned r + 1, one could expect that the value of a is 19 but the 
debugger obstinately says that r=0 and a=1...

Note: the same signal can be assigned several times during the same execution 
phase. In this case, it is the last assignment that decides the next value of the signal. 
The other assignments have no effect at all, just like if they never had been executed.

It is time to check our understanding: please go back to our very first swapping example and try to 
understand why:

  process 
  begin 
    --- 
    s <= r; 
    r <= s; 
    --- 
  end process;

actually swaps signals r and s without the need of a third temporary signal and why:

  process 
  begin 
    --- 
    r <= s; 
    s <= r; 
    --- 
  end process;

would be strictly equivalent. Try to understand also why, if s is an integer signal and its current 
value is 15, and we execute:

  process 
  begin 
    --- 
    s <= 2 * s; 
    s <= s - 5; 
    s <= s / 5; 
    print(s); 
    wait on s; 
    print(s); 
    --- 
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  end process;

the two first assignments of signal s have no effect, why s is finally assigned 3 and why the two 
printed values are 15 and 3.

Physical time

In order to model hardware it is very useful to be able to model the physical time taken by some 
operation. Here is an example of how this can be done in VHDL. The example models a 
synchronous counter and it is a full, self-contained, VHDL code that could be compiled and 
simulated:

-- File counter.vhd 
entity counter is 
end entity counter; 
 
architecture arc of counter is 
  signal clk: bit; -- Type bit has two values: '0' and '1' 
  signal c, nc: natural; -- Natural (non-negative) integers 
begin 
  P1: process 
  begin 
    clk <= '0'; 
    wait for 10 ns; -- Ten nano-seconds delay 
    clk <= '1'; 
    wait for 10 ns; -- Ten nano-seconds delay 
  end process P1; 
 
  P2: process 
  begin 
    if clk = '1' and clk'event then 
      c <= nc; 
    end if; 
    wait on clk; 
  end process P2; 
 
  P3: process 
  begin 
    nc <= c + 1 after 5 ns; -- Five nano-seconds delay 
    wait on c; 
  end process P3; 
end architecture arc;

In process P1 the wait instruction is not used to wait until the value of a signal changes, like we 
saw up to now, but to wait for a given duration. This process models a clock generator. Signal clk 
is the clock of our system, it is periodic with period 20 ns (50 MHz) and has duty cycle.

Process P2 models a register that, if a rising edge of clk just occurred, assigns the value of its 
input nc to its output c and then waits for the next value change of clk.

Process P3 models an incrementer that assigns the value of its input c, incremented by one, to its 
output nc... with a physical delay of 5 ns. It then waits until the value of its input c changes. This is 
also new. Up to now we always assigned signals with:
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  s <= value;

which, for the reasons explained in the previous sections, we can implicitly translate into:

  s <= value; -- after delta

This small digital hardware system could be represented by the following figure:

With the introduction of the physical time, and knowing that we also have a symbolic time 
measured in delta, we now have a two dimensional time that we will denote T+D where T is a 
physical time measured in nano-seconds and D a number of deltas (with no physical duration).

The complete picture

There is one important aspect of the VHDL simulation that we did not discuss yet: after an 
execution phase all processes are in suspended state. We informally stated that the scheduler then 
updates the values of the signals that have been assigned. But, in our example of a synchronous 
counter, shall it update signals clk, c and nc at the same time? What about the physical delays? 
And what happens next with all processes in suspended state and none in run-able state?

The complete (but simplified) simulation algorithm is the following:

Initialization
Set current time Tc to 0+0 (0 ns, 0 delta-cycle)•
Initialize all signals.•
Execute each process until it suspends on a wait statement.

Record the values and delays of signal assignments.○

Record the conditions for the process to resume (delay or signal change).○

•

Compute the next time Tn as the earliest of:
The resume time of processes suspended by a wait for <delay>.○

The next time at which a signal value shall change.○

•

1. 

Simulation cycle
Tc=Tn.•
Update signals that need to be.•
Put in run-able state all processes that were waiting for a value change of one of the 
signals that has been updated.

•

Put in run-able state all processes that were suspended by a wait for <delay> •

2. 
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statement and for which the resume time is Tc.
Execute all run-able processes until they suspend.

Record the values and delays of signal assignments.○

Record the conditions for the process to resume (delay or signal change).○

•

Compute the next time Tn as the earliest of:
The resume time of processes suspended by a wait for <delay>.○

The next time at which a signal value shall change.○

•

If Tn is infinity, stop simulation. Else, start a new simulation cycle.•

Manual simulation

To conclude, let us now manually exercise the simplified simulation algorithm on the synchronous 
counter presented above. We arbitrary decide that, when several processes are run-able, the 
order will be P3>P2>P1. The following tables represent the evolution of the state of the system 
during the initialization and the first simulation cycles. Each signal has its own column in which the 
current value is indicated. When a signal assignment is executed, the scheduled value is 
appended to the current value, e.g. a/b@T+D if the current value is a and the next value will be b at 
time T+D (physical time plus delta cycles). The 3 last columns indicate the condition to resume the 
suspended processes (name of signals that must change or time at which the process shall 
resume).

Initialization phase:

Operations Tc Tn clk c nc P1 P2 P3

Set current time 0+0

Initialize all signals 0+0 '0' 0 0

P3/nc<=c+1 after 5 ns 0+0 '0' 0 0/1@5+0

P3/wait on c 0+0 '0' 0 0/1@5+0 c

P2/if clk='1'... 0+0 '0' 0 0/1@5+0 c

P2/end if 0+0 '0' 0 0/1@5+0 c

P2/wait on clk 0+0 '0' 0 0/1@5+0 clk c

P1/clk<='0' 0+0 '0'/'0'@0+1 0 0/1@5+0 clk c

P1/wait for 10 ns 0+0 '0'/'0'@0+1 0 0/1@5+0 10+0 clk c

Compute next time 0+0 0+1 '0'/'0'@0+1 0 0/1@5+0 10+0 clk c
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Simulation cycle #1

Operations Tc Tn clk c nc P1 P2 P3

Set current time 0+1 '0'/'0'@0+1 0 0/1@5+0 10+0 clk c

Update signals 0+1 '0' 0 0/1@5+0 10+0 clk c

Compute next time 0+1 5+0 '0' 0 0/1@5+0 10+0 clk c

Note: during the first simulation cycle there is no execution phase because none of our 
3 processes has its resume condition satisfied. P2 is waiting for a value change of clk 
and there has been a transaction on clk, but as the old and new values are the same, 
this is not a value change.

Simulation cycle #2

Operations Tc Tn clk c nc P1 P2 P3

Set current time 5+0 '0' 0 0/1@5+0 10+0 clk c

Update signals 5+0 '0' 0 1 10+0 clk c

Compute next time 5+0 10+0 '0' 0 1 10+0 clk c

Note: again, there is no execution phase. nc changed but no process is waiting on nc.

Simulation cycle #3

Operations Tc Tn clk c nc P1 P2 P3

Set current time 10+0 '0' 0 1 10+0 clk c

Update signals 10+0 '0' 0 1 10+0 clk c

P1/clk<='1' 10+0 '0'/'1'@10+1 0 1 clk c

P1/wait for 10 ns 10+0 '0'/'1'@10+1 0 1 20+0 clk c

Compute next time 10+0 10+1 '0'/'1'@10+1 0 1 20+0 clk c

Simulation cycle #4
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Operations Tc Tn clk c nc P1 P2 P3

Set current time 10+1 '0'/'1'@10+1 0 1 20+0 clk c

Update signals 10+1 '1' 0 1 20+0 clk c

P2/if clk='1'... 10+1 '1' 0 1 20+0 c

P2/c<=nc 10+1 '1' 0/1@10+2 1 20+0 c

P2/end if 10+1 '1' 0/1@10+2 1 20+0 c

P2/wait on clk 10+1 '1' 0/1@10+2 1 20+0 clk c

Compute next time 10+1 10+2 '1' 0/1@10+2 1 20+0 clk c

Simulation cycle #5

Operations Tc Tn clk c nc P1 P2 P3

Set current time 10+2 '1' 0/1@10+2 1 20+0 clk c

Update signals 10+2 '1' 1 1 20+0 clk c

P3/nc<=c+1 after 5 ns 10+2 '1' 1 1/2@15+0 20+0 clk

P3/wait on c 10+2 '1' 1 1/2@15+0 20+0 clk c

Compute next time 10+2 15+0 '1' 1 1/2@15+0 20+0 clk c

Note: one could think that the nc update would be scheduled at 15+2, while we 
scheduled it at 15+0. When adding a non-zero physical delay (here 5 ns) to a current 
time (10+2), the delta cycles vanish. Indeed, delta cycles are useful only to distinguish 
different simulation times T+0, T+1... with the same physical time T. As soon as the 
physical time changes, the delta cycles can be reset.

Simulation cycle #6

Operations Tc Tn clk c nc P1 P2 P3

Set current time 15+0 '1' 1 1/2@15+0 20+0 clk c

Update signals 15+0 '1' 1 2 20+0 clk c

Compute next time 15+0 20+0 '1' 1 2 20+0 clk c

Note: again, there is no execution phase. nc changed but no process is waiting on nc.
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Simulation cycle #7

Operations Tc Tn clk c nc P1 P2 P3

Set current time 20+0 '1' 1 2 20+0 clk c

Update signals 20+0 '1' 1 2 20+0 clk c

P1/clk<='0' 20+0 '1'/'0'@20+1 1 2 clk c

P1/wait for 10 ns 20+0 '1'/'0'@20+1 1 2 30+0 clk c

Compute next time 20+0 20+1 '1'/'0'@20+1 1 2 30+0 clk c

Simulation cycle #8

Operations Tc Tn clk c nc P1 P2 P3

Set current time 20+1 '1'/'0'@20+1 1 2 30+0 clk c

Update signals 20+1 '0' 1 2 30+0 clk c

P2/if clk='1'... 20+1 '0' 1 2 30+0 c

P2/end if 20+1 '0' 1 2 30+0 c

P2/wait on clk 20+1 '0' 1 2 30+0 clk c

Compute next time 20+1 30+0 '0' 1 2 30+0 clk c

Simulation cycle #9

Operations Tc Tn clk c nc P1 P2 P3

Set current time 30+0 '0' 1 2 30+0 clk c

Update signals 30+0 '0' 1 2 30+0 clk c

P1/clk<='1' 30+0 '0'/'1'@30+1 1 2 clk c

P1/wait for 10 ns 30+0 '0'/'1'@30+1 1 2 40+0 clk c

Compute next time 30+0 30+1 '0'/'1'@30+1 1 2 40+0 clk c

Simulation cycle #10
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Operations Tc Tn clk c nc P1 P2 P3

Set current time 30+1 '0'/'1'@30+1 1 2 40+0 clk c

Update signals 30+1 '1' 1 2 40+0 clk c

P2/if clk='1'... 30+1 '1' 1 2 40+0 c

P2/c<=nc 30+1 '1' 1/2@30+2 2 40+0 c

P2/end if 30+1 '1' 1/2@30+2 2 40+0 c

P2/wait on clk 30+1 '1' 1/2@30+2 2 40+0 clk c

Compute next time 30+1 30+2 '1' 1/2@30+2 2 40+0 clk c

Simulation cycle #11

Operations Tc Tn clk c nc P1 P2 P3

Set current time 30+2 '1' 1/2@30+2 2 40+0 clk c

Update signals 30+2 '1' 2 2 40+0 clk c

P3/nc<=c+1 after 5 ns 30+2 '1' 2 2/3@35+0 40+0 clk

P3/wait on c 30+2 '1' 2 2/3@35+0 40+0 clk c

Compute next time 30+2 35+0 '1' 2 2/3@35+0 40+0 clk c

Read Getting started with vhdl online: https://riptutorial.com/vhdl/topic/3803/getting-started-with-
vhdl
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Chapter 2: Comments

Introduction

Any decent programming language supports comments. In VHDL they are especially important 
because understanding a VHDL code, even moderately sophisticated, is frequently challenging.

Examples

Single line comments

A single line comment starts with two hyphens (--) and extends up to the end of the line. Example 
:

-- This process models the state register 
process(clock, aresetn) 
begin 
  if aresetn = '0' then         -- Active low, asynchronous reset 
    state <= IDLE; 
  elsif rising_edge(clock) then -- Synchronized on the rising edge of the clock 
    state <= next_state; 
  end if; 
end process;

Delimited comments

Starting with VHDL 2008, a comment can also extend on several lines. Multi-lines comments start 
with /* and end with */. Example :

/* This process models the state register. 
   It has an active low, asynchronous reset 
   and is synchronized on the rising edge 
   of the clock. */ 
process(clock, aresetn) 
begin 
  if aresetn = '0' then 
    state <= IDLE; 
  elsif rising_edge(clock) then 
    state <= next_state; 
  end if; 
end process;

Delimited comments can also be used on less than a line:

-- Finally, we decided to skip the reset... 
process(clock/*, aresetn*/) 
begin 
  /*if aresetn = '0' then 
    state <= IDLE; 
  els*/if rising_edge(clock) then 
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    state <= next_state; 
  end if; 
end process;

Nested comments

Starting a new comment (single line or delimited) inside a comment (single line or delimited) has 
no effect and is ignored. Examples:

-- This is a single-line comment. This second -- has no special meaning. 
 
-- This is a single-line comment. This /* has no special meaning. 
 
/* This is not a 
single-line comment. 
And this -- has no 
special meaning. */ 
 
/* This is not a 
single-line comment. 
And this second /* has no 
special meaning. */

Read Comments online: https://riptutorial.com/vhdl/topic/9292/comments
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Chapter 3: D-Flip-Flops (DFF) and latches

Remarks

D-Flip-Flops (DFF) and latches are memory elements. A DFF samples its input on one or the other 
edge of its clock (not both) while a latch is transparent on one level of its enable and memorizing 
on the other. The following figure illustrates the difference:

Modelling DFFs or latches in VHDL is easy but there are a few important aspects that must be 
taken into account:

The differences between VHDL models of DFFs and latches.•

How to describe the edges of a signal.•

How to describe synchronous or asynchronous set or resets.•

Examples

D-Flip-Flops (DFF)

In all examples:

clk is the clock,•
d is the input,•
q is the output,•
srst is an active high synchronous reset,•
srstn is an active low synchronous reset,•
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arst is an active high asynchronous reset,•
arstn is an active low asynchronous reset,•
sset is an active high synchronous set,•
ssetn is an active low synchronous set,•
aset is an active high asynchronous set,•
asetn is an active low asynchronous set•

All signals are of type ieee.std_logic_1164.std_ulogic. The syntax used is the one that leads to 
correct synthesis results with all logic synthesizers. Please see the Clock edge detection example 
for a discussion about alternate syntax.

Rising edge clock

process(clk) 
begin 
  if rising_edge(clk) then 
    q <= d; 
  end if; 
end process;

Falling edge clock

process(clk) 
begin 
  if falling_edge(clk) then 
    q <= d; 
  end if; 
end process;

Rising edge clock, synchronous active high 
reset

process(clk) 
begin 
  if rising_edge(clk) then 
    if srst = '1' then 
      q <= '0'; 
    else 
      q <= d; 
    end if; 
  end if; 
end process;

Rising edge clock, asynchronous active high 
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reset

process(clk, arst) 
begin 
  if arst = '1' then 
    q <= '0'; 
  elsif rising_edge(clk) then 
    q <= d; 
  end if; 
end process;

Falling edge clock, asynchronous active low 
reset, synchronous active high set

process(clk, arstn) 
begin 
  if arstn = '0' then 
    q <= '0'; 
  elsif falling_edge(clk) then 
    if sset = '1' then 
      q <= '1'; 
    else 
      q <= d; 
    end if; 
  end if; 
end process;

Rising edge clock, asynchronous active high 
reset, asynchronous active low set

Note: set has higher priority than reset

process(clk, arst, asetn) 
begin 
  if asetn = '0' then 
    q <= '1'; 
  elsif arst = '1' then 
    q <= '0'; 
  elsif rising_edge(clk) then 
    q <= d; 
  end if; 
end process;

Latches

In all examples:
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en is the enable signal,•
d is the input,•
q is the output,•
srst is an active high synchronous reset,•
srstn is an active low synchronous reset,•
arst is an active high asynchronous reset,•
arstn is an active low asynchronous reset,•
sset is an active high synchronous set,•
ssetn is an active low synchronous set,•
aset is an active high asynchronous set,•
asetn is an active low asynchronous set•

All signals are of type ieee.std_logic_1164.std_ulogic. The syntax used is the one that leads to 
correct synthesis results with all logic synthesizers. Please see the Clock edge detection example 
for a discussion about alternate syntax.

Active high enable

process(en, d) 
begin 
  if en = '1' then 
    q <= d; 
  end if; 
end process;

Active low enable

process(en, d) 
begin 
  if en = '0' then 
    q <= d; 
  end if; 
end process;

Active high enable, synchronous active high 
reset

process(en, d) 
begin 
  if en = '1' then 
    if srst = '1' then 
      q <= '0'; 
    else 
      q <= d; 
    end if; 
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  end if; 
end process;

Active high enable, asynchronous active high 
reset

process(en, d, arst) 
begin 
  if arst = '1' then 
    q <= '0'; 
  elsif en = '1' then 
    q <= d; 
  end if; 
end process;

Active low enable, asynchronous active low 
reset, synchronous active high set

process(en, d, arstn) 
begin 
  if arstn = '0' then 
    q <= '0'; 
  elsif en = '0' then 
    if sset = '1' then 
      q <= '1'; 
    else 
      q <= d; 
    end if; 
  end if; 
end process;

Active high enable, asynchronous active high 
reset, asynchronous active low set

Note: set has higher priority than reset

process(en, d, arst, asetn) 
begin 
  if asetn = '0' then 
    q <= '1'; 
  elsif arst = '1' then 
    q <= '0'; 
  elsif en = '1' then 
    q <= d; 
  end if; 
end process;
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Clock edge detection

The short story

Whith VHDL 2008 and if the type of the clock is bit, boolean, ieee.std_logic_1164.std_ulogic or 
ieee.std_logic_1164.std_logic, a clock edge detection can be coded for rising edge

if rising_edge(clock) then•
if clock'event and clock = '1' then -- type bit, std_ulogic or std_logic•
if clock'event and clock then -- type boolean•

and for falling edge

if falling_edge(clock) then•
if clock'event and clock = '0' then -- type bit, std_ulogic or std_logic•
if clock'event and not clock then -- type boolean•

This will behave as expected, both for simulation and synthesis.

Note: the definition of a rising edge on a signal of type std_ulogic is a bit more complex 
than the simple if clock'event and clock = '1' then. The standard rising_edge function, 
for instance, has a different definition. Even if it will probably make no difference for 
synthesis, it could make one for simulation.

The use of the rising_edge and falling_edge standard functions is strongly encouraged. With 
previous versions of VHDL the use of these functions may require to explicitly declare the use of 
standard packages (e.g. ieee.numeric_bit for type bit) or even to define them in a custom 
package.

Note: do not use the rising_edge and falling_edge standard functions to detect edges of 
non-clock signals. Some synthesizers could conclude that the signal is a clock. Hint: 
detecting an edge on a non-clock signal can frequently be done by sampling the signal 
in a shift register and comparing the sampled values at different stages of the shift 
register.

The long story

Properly describing the detection of the edges of a clock signal is essential when modelling D-Flip-
Flops (DFF). An edge is, by definition, a transition from one particular value to another. For 
instance, we can defined the rising edge of a signal of type bit (the standard VHDL enumerated 
type that takes two values: '0' and '1') as the transition from '0' to '1'. For type boolean we can 
define it as a transition from false to true.

Frequently, more complex types are used. The ieee.std_logic_1164.std_ulogic type, for instance, 
is also an enumerated type, just like bit or boolean, but it has 9 values instead of 2:
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Value Meaning

'U' Uninitialized

'X' Forcing unknown

'0' Forcing low level

'1' Forcing high level

'Z' High impedance

'W' Weak unknown

'L' Weak low level

'H' Weak high level

'-' Don't care

Defining a rising edge on such a type is a bit more complex than for bit or boolean. We can, for 
instance, decide that it is a transition from '0' to '1'. But we can also decide that it is a transition 
from '0' or 'L' to '1' or 'H'.

Note: it is this second definition that the standard uses for the rising_edge(signal s: 
std_ulogic) function defined in ieee.std_logic_1164.

When discussing the various ways to detect edges, it is thus important to consider the type of the 
signal. It is also important to take the modeling goal into account: simulation only or logic 
synthesis? Let us illustrate this on a few examples:

Rising edge DFF with type bit

signal clock, d, q: bit; 
... 
P1: process(clock) 
begin 
  if clock = '1' then 
    q <= d; 
  end if; 
end process P1;

Technically, on a pure simulation semantics point of view, process P1 models a rising edge 
triggered DFF. Indeed, the q <= d assignment is executed if and only if:

clock changed (this is what the sensitivity list expresses) and•
the current value of clock is '1'.•

As clock is of type bit and type bit has only values '0' and '1', this is exactly what we defined as a 
rising edge of a signal of type bit. Any simulator will handle this model as we expect.
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Note: For logic synthesizers, things are a bit more complex, as we will see later.

Rising edge DFF with asynchronous active high reset and 
type bit

In order to add an asynchronous active high reset to our DFF, one could try something like:

signal clock, reset, d, q: bit; 
... 
P2_BOGUS: process(clock, reset) 
begin 
  if reset = '1' then 
    q <= '0'; 
  elsif clock = '1' then 
    q <= d; 
  end if; 
end process P2_BOGUS;

But this does not work. The condition for the q <= d assignment to be executed should be: a 
rising edge of clock while reset = '0'. But what we modeled is:

clock or reset or both changed and•
reset = '0' and•
clock = '1'•

Which is not the same: if reset changes from '1' to '0' while clock = '1' the assignment will be 
executed while it is not a rising edge of clock.

In fact, there is no way to model this in VHDL without the help of a signal attribute:

P2_OK: process(clock, reset) 
begin 
  if reset = '1' then 
    q <= '0'; 
  elsif clock = '1' and clock'event then 
    q <= d; 
  end if; 
end process P2_OK;

The clock'event is the signal attribute event applied to signal clock. It evaluates as a boolean and it 
is true if and only if signal clock changed during the signal update phase that just preceded the 
current execution phase. Thanks to this, process P2_OK now perfectly models what we want in 
simulation (and synthesis).

Synthesis semantics

Many logic synthesizers identify signal edge detections based on syntactic patterns, not on the 
semantics of the VHDL model. In other words, they consider what the VHDL code looks like, not 
what behavior it models. One of the patterns they all recognize is:
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if clock = '1' and clock'event then

So, even in the example of process P1 we should use it if we want our model to be synthesizable 
by all logic synthesizers:

signal clock, d, q: bit; 
... 
P1_OK: process(clock) 
begin 
  if clock = '1' and clock'event then 
    q <= d; 
  end if; 
end process P1_OK;

The and clock'event part of the condition is completely redundant with the sensitivity list but as 
some synthesizers need it...

Rising edge DFF with asynchronous active high reset and 
type std_ulogic

In this case, expressing the rising edge of the clock and the reset condition can become 
complicated. If we retain the definition of a rising edge that we proposed above and if we consider 
that the reset is active if it is '1' or 'H', the model becomes:

library ieee; 
use ieee.std_logic_1164.all; 
... 
signal clock, reset, d, q: std_ulogic; 
... 
P4: process(clock, reset) 
begin 
  if reset = '1' or reset = 'H' then 
    q <= '0'; 
  elsif clock'event and 
        (clock'last_value = '0' or clock'last_value = 'L') and 
        (clock = '1' or clock = 'H') then 
    q <= d; 
  end if; 
end process P4;

Note: 'last_value is another signal attribute that returns the value the signal had before 
the last value change.

Helper functions

The VHDL 2008 standard offers several helper functions to simplify the detection of signal edges, 
especially with multi-valued enumerated types like std_ulogic. The std.standard package defines 
the rising_edge and falling_edge functions on types bit and boolean and the ieee.std_logic_1164 
package defines them on types std_ulogic and std_logic.
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Note: with previous versions of VHDL the use of these functions may require to 
explicitly declare the use of standard packages (e.g. ieee.numeric_bit for type bit) or 
even to define them in a user package.

Let us revisit the previous examples and use the helper functions:

signal clock, d, q: bit; 
... 
P1_OK_NEW: process(clock) 
begin 
  if rising_edge(clock) then 
    q <= d; 
  end if; 
end process P1_OK_NEW;

signal clock, d, q: bit; 
... 
P2_OK_NEW: process(clock, reset) 
begin 
  if reset = '1' then 
    q <= '0'; 
  elsif rising_edge(clock) then 
    q <= d; 
  end if; 
end process P2_OK_NEW;

library ieee; 
use ieee.std_logic_1164.all; 
... 
signal clock, reset, d, q: std_ulogic; 
... 
P4_NEW: process(clock, reset) 
begin 
  if reset = '1' then 
    q <= '0'; 
  elsif rising_edge(clock) then 
    q <= d; 
  end if; 
end process P4_NEW;

Note: in this last example we also simplified the test on the reset. Floating, high 
impedance, resets are quite rare and, in most cases, this simplified version works for 
simulation and synthesis.

Read D-Flip-Flops (DFF) and latches online: https://riptutorial.com/vhdl/topic/5983/d-flip-flops--dff--
and-latches
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Chapter 4: Digital hardware design using 
VHDL in a nutshell

Introduction

In this topic we propose a simple method to correctly design simple digital circuits with VHDL. The 
method is based on graphical block diagrams and an easy-to-remember principle:

Think hardware first, code VHDL next

It is intended for beginners in digital hardware design using VHDL, with a limited understanding of 
the synthesis semantics of the language.

Remarks

Digital hardware design using VHDL is simple, even for beginners, but there are a few important 
things to know and a small set of rules to obey. The tool used to transform a VHDL description in 
digital hardware is a logic synthesizer. The semantics of the VHDL language used by logic 
synthesizers is rather different from the simulation semantics described in the Language 
Reference Manual (LRM). Even worse: it is not standardized and varies between synthesis tools.

The proposed method introduces several important limitations for the sake of simplicity:

No level-triggered latches.•
The circuits are synchronous on the rising edge of a single clock.•
No asynchronous reset or set.•
No multiple drive on resolved signals.•

The Block diagram example, first of a series of 3, briefly presents the basics of digital hardware 
and proposes a short list of rules to design a block diagram of a digital circuit. The rules help to 
guarantee a straightforward translation to VHDL code that simulates and synthesizes as expected.

The Coding example explains the translation from a block diagram to VHDL code and illustrates it 
on a simple digital circuit.

Finally, the John Cooley’s design contest example shows how to apply the proposed method on a 
more complex example of digital circuit. It also elaborates on the introduced limitations and relaxes 
some of them.

Examples

Block diagram

Digital hardware is built from two types of hardware primitives:
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Combinatorial gates (inverters, and, or, xor, 1-bit full adders, 1-bit multiplexers...) These logic 
gates perform a simple boolean computation on their inputs and produce an output. Each 
time one of their inputs changes, they start propagating electrical signals and, after a short 
delay, the output stabilizes to the resulting value. The propagation delay is important 
because it is strongly related to the speed at which the digital circuit can run, that is, its 
maximum clock frequency.

•

Memory elements (latches, D-flip-flops, RAMs...). Contrary to the combinatorial logic gates, 
memory elements do not react immediately to the change of any of their inputs. They have 
data inputs, control inputs and data outputs. They react on a particular combination of control 
inputs, not on any change of their data inputs. The rising-edge triggered D-flip-flop (DFF), for 
instance, has a clock input and a data input. On every rising edge of the clock, the data input 
is sampled and copied to the data output that remains stable until the next rising edge of the 
clock, even if the data input changes in between.

•

A digital hardware circuit is a combination of combinatorial logic and memory elements. Memory 
elements have several roles. One of them is to allow reusing the same combinatorial logic for 
several consecutive operations on different data. Circuits using this are frequently referred to as 
sequential circuits. The figure below shows an example of a sequential circuit that accumulates 
integer values using the same combinatorial adder, thanks to a rising-edge triggered register. It is 
also our first example of a block diagram.

Pipe-lining is another common use of memory elements and the basis of many micro-processor 
architectures. It aims at increasing the clock frequency of a circuit by splitting a complex 
processing in a succession of simpler operations, and at parallelizing the execution of several 
consecutive processing:

The block diagram is a graphical representation of the digital circuit. It helps making the right 
decisions and getting a good understanding of the overall structure before coding. It is the 
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equivalent of the recommended preliminary analysis phases in many software design methods. 
Experienced designers frequently skip this design phase, at least for simple circuits. If you are a 
beginner in digital hardware design, however, and if you want to code a digital circuit in VHDL, 
adopting the 10 simple rules below to draw your block diagram should help you getting it right:

Surround your drawing with a large rectangle. This is the boundary of your circuit. Everything 
that crosses this boundary is an input or output port. The VHDL entity will describe this 
boundary.

1. 

Clearly separate edge-triggered registers (e.g. square blocks) from combinatorial logic (e.g. 
round blocks). In VHDL they will be translated into processes but of two very different kinds: 
synchronous and combinatorial.

2. 

Do not use level-triggered latches, use only rising-edge triggered registers. This constraint 
does not come from VHDL, which is perfectly usable to model latches. It is just a reasonable 
advice for beginners. Latches are less frequently needed and their use poses many 
problems which we should probably avoid, at least for our first designs.

3. 

Use the same single clock for all of your rising-edge triggered registers. There again, this 
constraint is here for the sake of simplicity. It does not come from VHDL, which is perfectly 
usable to model multi-clock systems. Name the clock clock. It comes from the outside and is 
an input of all square blocks and only them. If you wish, do not even represent the clock, it is 
the same for all square blocks and you can leave it implicit in your diagram.

4. 

Represent the communications between blocks with named and oriented arrows. For the 
block an arrow comes from, the arrow is an output. For the block an arrow goes to, the arrow 
is an input. All these arrows will become ports of the VHDL entity, if they are crossing the 
large rectangle, or signals of the VHDL architecture.

5. 

Arrows have one single origin but they can have several destinations. Indeed, if an arrow 
had several origins we would create a VHDL signal with several drivers. This is not 
completely impossible but requires special care in order to avoid short-circuits. We will thus 
avoid this for now. If an arrow has several destinations, fork the arrow as many times as 
needed. Use dots to distinguish connected and non-connected crossings.

6. 

Some arrows come from outside the large rectangle. These are the input ports of the entity. 
An input arrow cannot also be the output of any of your blocks. This is enforced by the VHDL 
language: the input ports of an entity can be read but not written. This is again to avoid short-
circuits.

7. 

Some arrows go outside. These are the output ports. In VHDL versions prior 2008 the output 
ports of an entity can be written but not read. An output arrow must thus have one single 
origin and one single destination: the outside. No forks on output arrows, an output arrow 
cannot be also the input of one of your blocks. If you want to use an output arrow as an input 
for some of your blocks, insert a new round block to split it in two parts: the internal one, with 
as many forks as you wish, and the output arrow that comes from the new block and goes 
outside. The new block will become a simple continuous assignment in VHDL. A kind of 
transparent renaming. Since VHDL 2008 ouptut ports can also be read.

8. 

All arrows that do not come or go from/to the outside are internal signals. You will declare 
them all in the VHDL architecture.

9. 

Every cycle in the diagram must comprise at least one square block. This is not due to 
VHDL. It comes from the basic principles of digital hardware design. Combinatorial loops 
shall absolutely be avoided. Except in very rare cases, they do not produce any useful result. 
And a cycle of the block diagram that would comprise only round blocks would be a 

10. 
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combinatorial loop.

Do not forget to carefully check the last rule, it is as essential as the others but it may be a bit 
more difficult to verify.

Unless you absolutely need features that we excluded for now, like latches, multiple-clocks or 
signals with multiple drivers, you should easily draw a block diagram of your circuit that complies 
with the 10 rules. If not, the problem is probably with the circuit you want, not with VHDL or the 
logic synthesizer. And it probably means that the circuit you want is not digital hardware.

Applying the 10 rules to our example of a sequential circuit would lead to a block diagram like:

The large rectangle around the diagram is crossed by 3 arrows, representing the input and 
output ports of the VHDL entity.

1. 

The block diagram has two round (combinatorial) blocks - the adder and the output renaming 
block - and one square (synchronous) block - the register.

2. 

It uses only edge-triggered registers.3. 
There is only one clock, named clock and we use only its rising edge.4. 
The block diagram has five arrows, one with a fork. They correspond to two internal signals, 
two input ports and one output port.

5. 

All arrows have one origin and one destination except the arrow named Sum that has two 
destinations.

6. 

The Data_in and Clock arrows are our two input ports. They are not output of our own blocks.7. 
The Data_out arrow is our output port. In order to be compatible with VHDL versions prior 
2008, we added an extra renaming (round) block between Sum and Data_out. So, Data_out has 
exactly one source and one destination.

8. 

Sum and Next_sum are our two internal signals.9. 
There is exactly one cycle in the graph and it comprises one square block.10. 

Our block diagram complies with the 10 rules. The Coding example will detail how to translate this 
type of block diagrams in VHDL.

Coding

This example is the second of a series of 3. If you didn't yet, please read the Block diagram 
example first.

With a block diagram that complies with the 10 rules (see the Block diagram example), the VHDL 
coding becomes straightforward:
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the large surrounding rectangle becomes the VHDL entity,•
internal arrows become VHDL signals and are declared in the architecture,•
every square block becomes a synchronous process in the architecture body,•
every round block becomes a combinatorial process in the architecture body.•

Let us illustrate this on the block diagram of a sequential circuit:

The VHDL model of a circuit comprises two compilation units:

The entity that describes the circuit's name and its interface (ports names, directions and 
types). It is a direct translation of the large surrounding rectangle of the block diagram. 
Assuming the data are integers, and the clock uses the VHDL type bit (two values only: '0' 
and '1'), the entity of our sequential circuit could be:

•

entity sequential_circuit is 
  port( 
    Data_in:  in  integer; 
    Clock:    in  bit; 
    Data_out: out integer 
  ); 
end entity sequential_circuit;

The architecture that describes the internals of the circuit (what it does). This is where the 
internal signals are declared and where all processes are instantiated. The skeleton of the 
architecture of our sequential circuit could be:

•

architecture ten_rules of sequential_circuit is 
  signal Sum, Next_sum: integer; 
begin 
  <...processes...> 
end architecture ten_rules;

We have three processes to add to the architecture body, one synchronous (square block) and 
two combinatorial (round blocks).

A synchronous process looks like this:

process(clock) 
begin 
  if rising_edge(clock) then 
    o1 <= i1; 
    ... 
    ox <= ix; 
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  end if; 
end process;

where i1, i2,..., ix are all arrows that enter the corresponding square block of the diagram and 
o1, ..., ox are all arrows that output the corresponding square block of the diagram. Absolutely 
nothing shall be changed, except the names of the signals, of course. Nothing. Not even a single 
character.

The synchronous process of our example is thus:

  process(clock) 
  begin 
    if rising_edge(clock) then 
      Sum <= Next_sum; 
    end if; 
  end process;

Which can be informally translated into: if clock changes, and only then, if the change is a rising 
edge ('0' to '1'), assign the value of signal Next_sum to signal Sum.

A combinatorial process looks like this:

process(i1, i2,... , ix) 
  variable v1: <type_of_v1>; 
  ... 
  variable vy: <type_of_vy>; 
begin 
  v1 := <default_value_for_v1>; 
  ... 
  vy := <default_value_for_vy>; 
  o1 <= <default_value_for_o1>; 
  ... 
  oz <= <default_value_for_oz>; 
  <statements> 
end process;

where i1, i2,..., in are all arrows that enter the corresponding round block of the diagram. all 
and no more. We shall not forget any arrow and we shall not add anything else to the list.

v1, ..., vy are variables that we may need to simplify the code of the process. They have exactly 
the same role as in any other imperative programing language: hold temporary values. They must 
absolutely be all assigned before being read. If we fail guaranteeing this, the process will not be 
combinatorial any more as it will model kind of memory elements to retain the value of some 
variables from one process execution to the next. This is the reason for the vi := 
<default_value_for_vi> statements at the beginning of the process. Note that the 
<default_value_for_vi> must be constants. If not, if they are expressions, we could accidentally use 
variables in the expressions and read a variable before assigning it.

o1, ..., om are all arrows that output the corresponding round block of your diagram. all and no 
more. They must absolutely be all assigned at least once during the process execution. As the 
VHDL control structures (if, case...) can very easily prevent an output signal from being assign, we 
strongly advice to assign each of them, unconditionally, with a constant value 
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<default_value_for_oi> at the beginning of the process. This way, even if an if statement masks a 
signal assignment, it will have received a value anyway.

Absolutely nothing shall be changed to this VHDL skeleton, except the names of the variables, if 
any, the names of the inputs, the names of the outputs, the values of the <default_value_for_..> 
constants and <statements>. Do not forget a single default value assignment, if you do the 
synthesis will infer unwanted memory elements (most likely latches) and the result will not be what 
you initially wanted.

In our example sequential circuit, the combinatorial adder process is:

  process(Sum, Data_in) 
  begin 
    Next_sum <= 0; 
    Next_sum <= Sum + Data_in; 
  end process;

Which can be informally translated into: if Sum or Data_in (or both) change assign the value 0 to 
signal Next_sum and then assign it again value Sum + Data_in.

As the first assignment (with the constant default value 0) is immediately followed by another 
assignment that overwrites it, we can simplify:

  process(Sum, Data_in) 
  begin 
    Next_sum <= Sum + Data_in; 
  end process;

The second combinatorial process corresponds to the round block we added on an output arrow 
with more than one destination in order to comply with VHDL versions prior 2008. Its code is 
simply:

  process(Sum) 
  begin 
    Data_out <= 0; 
    Data_out <= Sum; 
  end process;

For the same reason as with the other combinatorial process, we can simplify it as:

  process(Sum) 
  begin 
    Data_out <= Sum; 
  end process;

The complete code for the sequential circuit is:

-- File sequential_circuit.vhd 
entity sequential_circuit is 
  port( 
    Data_in:  in  integer; 
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    Clock:    in  bit; 
    Data_out: out integer 
  ); 
end entity sequential_circuit; 
 
architecture ten_rules of sequential_circuit is 
  signal Sum, Next_sum: integer; 
begin 
  process(clock) 
  begin 
    if rising_edge(clock) then 
      Sum <= Next_sum; 
    end if; 
  end process; 
 
  process(Sum, Data_in) 
  begin 
    Next_sum <= Sum + Data_in; 
  end process; 
 
  process(Sum) 
  begin 
    Data_out <= Sum; 
  end process; 
end architecture ten_rules;

Note: we could write the three processes in any order, it would not change anything to the final 
result in simulation or in synthesis. This is because the three processes are concurrent statements 
and VHDL treats them as if they were really parallel.

John Cooley’s design contest

This example is directly derived from John Cooley’s design contest at SNUG’95 (Synopsys Users 
Group meeting). The contest was intended to oppose VHDL and Verilog designers on the same 
design problem. What John had in mind was probably to determine what language was the most 
efficient. The results were that 8 out of the 9 Verilog designers managed to complete the design 
contest yet none of the 5 VHDL designers could. Hopefully, using the proposed method, we will do 
a much better job.

Specifications

Our goal is to design in plain synthesizable VHDL (entity and architecture) a synchronous up-by-3, 
down-by-5, loadable, modulus 512 counter, with carry output, borrow output and parity output. The 
counter is a 9 bits unsigned counter so it ranges between 0 and 511. The interface specification of 
the counter is given in the following table:

Name
Bit-
width

Direction Description

CLOCK 1 Input
Master clock; the counter is synchronized on the rising edge 
of CLOCK
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Name
Bit-
width

Direction Description

DI 9 Input
Data input bus; the counter is loaded with DI when UP and 
DOWN are both low

UP 1 Input
Up-by-3 count command; when UP is high and DOWN is low 
the counter increments by 3, wrapping around its maximum 
value (511)

DOWN 1 Input
Down-by-5 count command; when DOWN is high and UP is 
low the counter decrements by 5, wrapping around its 
minimum value (0)

CO 1 Output
Carry out signal; high only when counting up beyond the 
maximum value (511) and thus wrapping around

BO 1 Output
Borrow out signal; high only when counting down below the 
minimum value (0) and thus wrapping around

DO 9 Output
Output bus; the current value of the counter; when UP and 
DOWN are both high the counter retains its value

PO 1 Output
Parity out signal; high when the current value of the counter 
contains an even number of 1’s

When counting up beyond its maximum value or when counting down below its minimum value the 
counter wraps around:

Counter current 
value

UP 
DOWN

Counter next 
value

Next 
CO

Next 
BO

Next PO

x 00 DI 0 0 parity(DI)

x 11 x 0 0 parity(x)

0 ≤ x ≤ 508 10 x+3 0 0 parity(x+3)

509 10 0 1 0 1

510 10 1 1 0 0

511 10 2 1 0 0

5 ≤ x ≤ 511 01 x-5 0 0 parity(x−5)

4 01 511 0 1 0

3 01 510 0 1 1
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Counter current 
value

UP 
DOWN

Counter next 
value

Next 
CO

Next 
BO

Next PO

2 01 509 0 1 1

1 01 508 0 1 0

0 01 507 0 1 1

Block diagram

Based on these specifications we can start designing a block diagram. Let us first represent the 
interface:

Our circuit has 4 inputs (including the clock) and 4 outputs. The next step consists in deciding how 
many registers and combinatorial blocks we will use and what their roles will be. For this simple 
example we will dedicate one combinatorial block to the computation of the next value of the 
counter, the carry out and the borrow out. Another combinatorial block will be used to compute the 
next value of the parity out. The current values of the counter, the carry out and the borrow out will 
be stored in a register while the current value of the parity out will be stored in a separate register. 
The result is shown on the figure below:

Checking that the block diagram complies with our 10 design rules is quickly done:

Our external interface is properly represented by the large surrounding rectangle.1. 
Our 2 combinatorial blocks (round) and our 2 registers (square) are clearly separated.2. 
We use only rising edge triggered registers.3. 
We use only one clock.4. 
We have 4 internal arrows (signals), 4 input arrows (input ports) and 4 output arrows (output 
ports).

5. 
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None of our arrows has several origins. Three have several destinations (clock, ncnt and do).6. 
None of our 4 input arrows is an output of our internal blocks.7. 
Three of our output arrows have exactly one origin and one destination. But do has 2 
destinations: the outside and one of our combinatorial blocks. This violates rule number 8 
and must be fixed by inserting a new combinatorial block if we want to comply with VHDL 
versions prior 2008:

8. 

We have now exactly 5 internal signals (cnt, nco, nbo, ncnt and npo).9. 
There is only one cycle in the diagram, formed by cnt and ncnt. There is a square block in 
the cycle.

10. 

Coding in VHDL versions prior 2008

Translating our block diagram in VHDL is straightforward. The current value of the counter ranges 
from 0 to 511, so we will use a 9-bits bit_vector signal to represent it. The only subtlety comes 
from the need to perform bitwise (like computing the parity) and arithmetic operations on the same 
data. The standard numeric_bit package of library ieee solves this: it declares an unsigned type with 
exactly the same declaration as bit_vector and overloads the arithmetic operators such that they 
take any mixture of unsigned and integers. In order to compute the carry out and the borrow out we 
will use a 10-bits unsigned temporary value.

The library declarations and the entity:

library ieee; 
use ieee.numeric_bit.all; 
 
entity cooley is 
  port( 
        clock: in  bit; 
        up:    in  bit; 
        down:  in  bit; 
        di:    in  bit_vector(8 downto 0); 
        co:    out bit; 
        bo:    out bit; 
        po:    out bit; 
        do:    out bit_vector(8 downto 0) 
      ); 
end entity cooley;

The skeleton of the architecture is:
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architecture arc1 of cooley is 
  signal cnt:  unsigned(8 downto 0); 
  signal ncnt: unsigned(8 downto 0); 
  signal nco:  bit; 
  signal nbo:  bit; 
  signal npo:  bit; 
begin 
    <...processes...> 
end architecture arc1;

Each of our 5 blocks is modeled as a process. The synchronous processes corresponding to our 
two registers are very easy to code. We simply use the pattern proposed in the Coding example. 
The register that stores the parity out flag, for instance, is coded:

  poreg: process(clock) 
  begin 
    if rising_edge(clock) then 
      po <= npo; 
    end if; 
  end process poreg;

and the other register that stores co, bo and cnt:

  cobocntreg: process(clock) 
  begin 
    if rising_edge(clock) then 
      co  <= nco; 
      bo  <= nbo; 
      cnt <= ncnt; 
    end if; 
  end process cobocntreg;

The renaming combinatorial process is also very simple:

  rename: process(cnt) 
  begin 
    do <= (others => '0'); 
    do <= bit_vector(cnt); 
  end process rename;

The parity computation can use a variable and a simple loop:

  parity: process(ncnt) 
    variable tmp: bit; 
  begin 
    tmp := '0'; 
    npo <= '0'; 
    for i in 0 to 8 loop 
      tmp := tmp xor ncnt(i); 
    end loop; 
    npo <= not tmp; 
  end process parity;

The last combinatorial process is the most complex of all but strictly applying the proposed 
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translation method makes it easy too:

  u3d5: process(up, down, di, cnt) 
    variable tmp: unsigned(9 downto 0); 
  begin 
    tmp  := (others => '0'); 
    nco  <= '0'; 
    nbo  <= '0'; 
    ncnt <= (others => '0'); 
    if up = '0' and down = '0' then 
      ncnt <= unsigned(di); 
    elsif up = '1' and down = '1' then 
      ncnt <= cnt; 
    elsif up = '1' and down = '0' then 
      tmp   := ('0' & cnt) + 3; 
      ncnt  <= tmp(8 downto 0); 
      nco   <= tmp(9); 
    elsif up = '0' and down = '1' then 
      tmp   := ('0' & cnt) - 5; 
      ncnt  <= tmp(8 downto 0); 
      nbo   <= tmp(9); 
    end if; 
  end process u3d5;

Note that the two synchronous processes could also be merged and that one of our combinatorial 
processes can be simplified in a simple concurrent signal assignment. The complete code, with 
library and packages declarations, and with the proposed simplifications is as follows:

library ieee; 
use ieee.numeric_bit.all; 
 
entity cooley is 
  port( 
        clock: in  bit; 
        up:    in  bit; 
        down:  in  bit; 
        di:    in  bit_vector(8 downto 0); 
        co:    out bit; 
        bo:    out bit; 
        po:    out bit; 
        do:    out bit_vector(8 downto 0) 
      ); 
end entity cooley; 
 
architecture arc2 of cooley is 
  signal cnt:  unsigned(8 downto 0); 
  signal ncnt: unsigned(8 downto 0); 
  signal nco:  bit; 
  signal nbo:  bit; 
  signal npo:  bit; 
begin 
  reg: process(clock) 
  begin 
    if rising_edge(clock) then 
      co  <= nco; 
      bo  <= nbo; 
      po  <= npo; 
      cnt <= ncnt; 
    end if; 
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  end process reg; 
 
  do <= bit_vector(cnt); 
 
  parity: process(ncnt) 
    variable tmp: bit; 
  begin 
    tmp := '0'; 
    npo <= '0'; 
    for i in 0 to 8 loop 
      tmp := tmp xor ncnt(i); 
    end loop; 
    npo <= not tmp; 
  end process parity; 
 
  u3d5: process(up, down, di, cnt) 
    variable tmp: unsigned(9 downto 0); 
  begin 
    tmp  := (others => '0'); 
    nco  <= '0'; 
    nbo  <= '0'; 
    ncnt <= (others => '0'); 
    if up = '0' and down = '0' then 
      ncnt <= unsigned(di); 
    elsif up = '1' and down = '1' then 
      ncnt <= cnt; 
    elsif up = '1' and down = '0' then 
      tmp   := ('0' & cnt) + 3; 
      ncnt  <= tmp(8 downto 0); 
      nco   <= tmp(9); 
    elsif up = '0' and down = '1' then 
      tmp   := ('0' & cnt) - 5; 
      ncnt  <= tmp(8 downto 0); 
      nbo   <= tmp(9); 
    end if; 
  end process u3d5; 
end architecture arc2;

Going a bit further

The proposed method is simple and safe but it relies on several constraints that can be relaxed.

Skip the block diagram drawing

Experienced designers can skip the drawing of a block diagram for simple designs. But they still 
think hardware first. They draw in their head instead of on a sheet of paper but they somehow 
continue drawing.

Use asynchronous resets

There are circumstances where asynchronous resets (or sets) can improve the quality of a design. 
The proposed method supports only synchronous resets (that is resets that are taken into account 
on rising edges of the clock):
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  process(clock) 
  begin 
    if rising_edge(clock) then 
      if reset = '1' then 
        o <= reset_value_for_o; 
      else 
        o <= i; 
      end if; 
    end if; 
  end process;

The version with asynchronous reset modifies our template by adding the reset signal in the 
sensitivity list and by giving it the highest priority:

  process(clock, reset) 
  begin 
    if reset = '1' then 
      o <= reset_value_for_o; 
    elsif rising_edge(clock) then 
      o <= i; 
    end if; 
  end process;

Merge several simple processes

We already used this in the final version of our example. Merging several synchronous processes, 
if they all have the same clock, is trivial. Merging several combinatorial processes in one is also 
trivial and is just a simple reorganization of the block diagram.

We can also merge some combinatorial processes with synchronous processes. But in order to do 
this we must go back to our block diagram and add an eleventh rule:

Group several round blocks and at least one square block by drawing an enclosure around 
them. Also enclose the arrows that can be. Do not let an arrow cross the boundary of the 
enclosure if it does not come or go from/to outside the enclosure. Once this is done, look at 
all the output arrows of the enclosure. If any of them comes from a round block of the 
enclosure or is also an input of the enclosure, we cannot merge these processes in a 
synchronous process. Else we can.

11. 

In our counter example, for instance, we could not group the two processes in the red enclosure of 
the following figure:

https://riptutorial.com/ 51

https://i.stack.imgur.com/tH441.png


because ncnt is an output of the enclosure and its origin is a round (combinatorial) block. But we 
could group:

The internal signal npo would become useless and the resulting process would be:

  poreg: process(clock) 
    variable tmp: bit; 
  begin 
    if rising_edge(clock) then 
      tmp := '0'; 
      for i in 0 to 8 loop 
        tmp := tmp xor ncnt(i); 
      end loop; 
      po <= not tmp; 
    end if; 
  end process poreg;

which could also be merged with the other synchronous process:

  reg: process(clock) 
    variable tmp: bit; 
  begin 
    if rising_edge(clock) then 
      co  <= nco; 
      bo  <= nbo; 
      cnt <= ncnt; 
      tmp := '0'; 
      for i in 0 to 8 loop 
        tmp := tmp xor ncnt(i); 
      end loop; 
      po <= not tmp; 
    end if; 
  end process reg;

The grouping could even be:
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Leading to the much simpler architecture:

architecture arc5 of cooley is 
  signal cnt: unsigned(8 downto 0); 
begin 
  process(clock) 
    variable ncnt: unsigned(9 downto 0); 
    variable tmp:  bit; 
  begin 
    if rising_edge(clock) then 
      ncnt := '0' & cnt; 
      co   <= '0'; 
      bo   <= '0'; 
      if up = '0' and down = '0' then 
        ncnt := unsigned('0' & di); 
      elsif up = '1' and down = '0' then 
        ncnt := ncnt + 3; 
        co   <= ncnt(9); 
      elsif up = '0' and down = '1' then 
        ncnt := ncnt - 5; 
        bo   <= ncnt(9); 
      end if; 
      tmp := '0'; 
      for i in 0 to 8 loop 
        tmp := tmp xor ncnt(i); 
      end loop; 
      po  <= not tmp; 
      cnt <= ncnt(8 downto 0); 
    end if; 
  end process; 
 
  do <= bit_vector(cnt); 
end architecture arc5;

with two processes (the concurrent signal assignment of do is a shorthand for the equivalent 
process). The solution with only one process is left as an exercise. Beware, it raises interesting 
and subtle questions.

Going even further

Level-triggered latches, falling clock edges, multiple clocks (and resynchronizers between clock 
domains), multiple drivers for the same signal, etc. are not evil. They are sometimes useful. But 
learning how to use them and how to avoid the associated pitfalls goes far beyond this short 
introduction to digital hardware design with VHDL.

Coding in VHDL 2008

VHDL 2008 introduced several modifications that we can use to further simplify our code. In this 
example we can benefit from 2 modifications:

output ports can be read, we do not need the cnt signal any more,•
the unary xor operator can be used to compute the parity.•
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The VHDL 2008 code could be:

library ieee; 
use ieee.numeric_bit.all; 
 
entity cooley is 
  port( 
        clock: in  bit; 
        up:    in  bit; 
        down:  in  bit; 
        di:    in  bit_vector(8 downto 0); 
        co:    out bit; 
        bo:    out bit; 
        po:    out bit; 
        do:    out bit_vector(8 downto 0) 
      ); 
end entity cooley; 
 
architecture arc6 of cooley is 
begin 
  process(clock) 
    variable ncnt: unsigned(9 downto 0); 
  begin 
    if rising_edge(clock) then 
      ncnt := unsigned('0' & do); 
      co   <= '0'; 
      bo   <= '0'; 
      if up = '0' and down = '0' then 
        ncnt := unsigned('0' & di); 
      elsif up = '1' and down = '0' then 
        ncnt := ncnt + 3; 
        co   <= ncnt(9); 
      elsif up = '0' and down = '1' then 
        ncnt := ncnt - 5; 
        bo   <= ncnt(9); 
      end if; 
      po <= not (xor ncnt(8 downto 0)); 
      do <= bit_vector(ncnt(8 downto 0)); 
    end if; 
  end process; 
end architecture arc6;

Read Digital hardware design using VHDL in a nutshell online: 
https://riptutorial.com/vhdl/topic/5525/digital-hardware-design-using-vhdl-in-a-nutshell
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Chapter 5: Identifiers

Examples

Basic identifiers

Basic identifiers consist of letters, underscores and digits and must start with a letter. They are not 
case sensitive. Reserved words of the language cannot be basic identifiers. Examples of valid 
VHDL basic identifiers:

A_myId90 
a_MYID90 
abcDEf100_1 
ABCdef100_1

The two first are equivalent and the two last are also equivalent (case insensitivity).

Examples of invalid basic identifiers:

_not_reset   -- start with underscore 
85MHz_clock  -- start with digit 
LooP         -- reserved word of the language

Extended identifiers

VHDL extended identifiers are delimited by backslashes (\) and can contain letters, underscores, 
digits, spaces and other special characters (see the Language Reference Manual for a complete 
definition of special characters). The sequence of characters between backslashes can be 
reserved words of the VHDL language. Backslashes can be included in extended identifiers by 
doubling them (\\). Extended identifiers are case sensitive. Examples of (all different) extended 
identifiers:

\if\ 
\If\ 
\My Identifier\ 
\An \\ Identifier \\ With \\ Backslashes\ 
\&#@[]:.*\ 
\$£§{}\

Read Identifiers online: https://riptutorial.com/vhdl/topic/9540/identifiers
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Chapter 6: Literals

Introduction

This has how to specify constants, called literals in VHDL

Examples

Numeric literals

   16#A8# -- hex 
   2#100# -- binary 
   2#1000_1001_1111_0000 -- long number, adding (optional) _ (one or more) for readability 
   1234 -- decimal

Enumerated literal

type state_t is (START, READING, WRITING); -- user-defined enumerated type

Read Literals online: https://riptutorial.com/vhdl/topic/9344/literals
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Chapter 7: Memories

Introduction

This covers single port and dual port memories.

Syntax

Memory type for constant width and depth.

type MEMORY_TYPE is array (0 to DEPTH-1) of std_logic_vector(WIDTH-1 downto 0);

Memory type for variable depth and constant width.

type MEMORY_TYPE is array (natural range <>) of std_logic_vector(WIDTH-1 downto 0);

•

Examples

Shift register

A shift register of generic length. With serial in and serial out.

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
entity SHIFT_REG is 
    generic( 
        LENGTH: natural := 8 
    ); 
    port( 
        SHIFT_EN : in  std_logic; 
        SO       : out std_logic; 
        SI       : in  std_logic; 
        clk      : in  std_logic; 
        rst      : in  std_logic 
    ); 
end entity SHIFT_REG; 
 
architecture Behavioral of SHIFT_REG is 
    signal reg : std_logic_vector(LENGTH-1 downto 0) := (others => '0'); 
begin 
    main_process : process(clk) is 
    begin 
        if rising_edge(clk) then 
            if rst = '1' then 
                reg <= (others => '0'); 
            else 
                if SHIFT_EN = '1' then 
                    --Shift 
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                    reg <= reg(LENGTH-2 downto 0) & SI; 
                else 
                    reg <= reg; 
                end if; 
            end if; 
        end if; 
    end process main_process; 
 
    SO <= reg(LENGTH-1); 
end architecture Behavioral;

For Parallel out,

--In port 
DOUT: out std_logic_vector(LENGTH-1 downto 0); 
---------------------------------------------- 
--In architecture 
DOUT <= REG;

Shift register with direction control, parallel load, parallel out. (Using Variable instead of signal)

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
entity SHIFT_REG_UNIVERSAL is 
    generic( 
        LENGTH : integer := 8 
    ); 
    port( 
        DIN  : in  std_logic_vector(LENGTH - 1 downto 0); 
        DOUT : out std_logic_vector(LENGTH - 1 downto 0); 
        MODE : in  std_logic_vector(1 downto 0); 
        SI   : in  std_logic; 
        clk  : in  std_logic; 
        rst  : in  std_logic 
    ); 
end entity SHIFT_REG_UNIVERSAL; 
 
architecture RTL of SHIFT_REG_UNIVERSAL is 
begin 
    main : process(clk, rst) is 
        variable reg : std_logic_vector(LENGTH - 1 downto 0) := (others => '0'); 
    begin 
        if rst = '1' then 
            reg := (others => '0'); 
        elsif rising_edge(clk) then 
            case MODE is 
                when "00" => 
                    -- Hold Value 
                    reg := reg; 
                when "01" => 
                    -- Shift Right 
                    reg := SI & reg(LENGTH - 1 downto 1); 
                when "10" => 
                    -- Shift Left 
                    reg := reg(LENGTH - 2 downto 0) & SI; 
                when "11" => 
                    -- Parallel Load 

https://riptutorial.com/ 58



                    reg := DIN; 
                when others => 
                    null; 
            end case; 
        end if; 
        DOUT <= reg; 
    end process main; 
 
end architecture RTL;

ROM

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
entity ROM is 
    port( 
        address : in  std_logic_vector(3 downto 0); 
        dout    : out std_logic_vector(3 downto 0) 
    ); 
end entity ROM; 
 
architecture RTL of ROM is 
    type MEMORY_16_4 is array (0 to 15) of std_logic_vector(3 downto 0); 
    constant ROM_16_4 : MEMORY_16_4 := ( 
        x"0", 
        x"1", 
        x"2", 
        x"3", 
        x"4", 
        x"5", 
        x"6", 
        x"7", 
        x"8", 
        x"9", 
        x"a", 
        x"b", 
        x"c", 
        x"d", 
        x"e", 
        x"f" 
    ); 
begin 
    main : process(address) 
    begin 
        dout <= ROM_16_4(to_integer(unsigned(address))); 
    end process main; 
 
end architecture RTL;

LIFO

Last In First Out (Stack) Memory

library ieee; 
use ieee.std_logic_1164.all; 
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use ieee.numeric_std.all; 
 
entity LIFO is 
    generic( 
        WIDTH : natural := 8; 
        DEPTH : natural := 128 
    ); 
    port( 
        I_DATA  : in  std_logic_vector(WIDTH - 1 downto 0); --Input Data Line 
        O_DATA  : out std_logic_vector(WIDTH - 1 downto 0); --Output Data Line 
        I_RD_WR : in  std_logic; --Input RD/~WR signal. 1 for READ, 0 for Write 
        O_FULL  : out std_logic; --Output Full signal. 1 when memory is full. 
        O_EMPTY : out std_logic; --Output Empty signal. 1 when memory is empty. 
        clk     : in  std_logic; 
        rst     : in  std_logic 
    ); 
end entity LIFO; 
 
architecture RTL of LIFO is 
    -- Helper Function to convert Boolean to Std_logic 
    function to_std_logic(B : boolean) return std_logic is 
    begin 
        if B = false then 
            return '0'; 
        else 
            return '1'; 
        end if; 
    end function to_std_logic; 
 
    type memory_type is array (0 to DEPTH - 1) of std_logic_vector(WIDTH - 1 downto 0); 
    signal memory : memory_type; 
begin 
    main : process(clk, rst) is 
        variable stack_pointer : integer range 0 to DEPTH := 0; 
        variable EMPTY, FULL   : boolean                  := false; 
    begin 
        --Async Reset 
        if rst = '1' then 
            memory   <= (others => (others => '0')); 
            EMPTY := true; 
            FULL  := false; 
 
            stack_pointer := 0; 
        elsif rising_edge(clk) then 
            if I_RD_WR = '1' then 
                -- READ 
                if not EMPTY then 
                    O_DATA        <= memory(stack_pointer); 
                    stack_pointer := stack_pointer - 1; 
                end if; 
            else 
                if stack_pointer < 16 then 
                    stack_pointer          := stack_pointer + 1; 
                    memory(stack_pointer - 1) <= I_DATA; 
                end if; 
            end if; 
 
            -- Check for Empty 
            if stack_pointer = 0 then 
                EMPTY := true; 
            else 
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                EMPTY := false; 
            end if; 
 
            -- Check for Full 
            if stack_pointer = DEPTH then 
                FULL := true; 
            else 
                FULL := false; 
            end if; 
        end if; 
        O_FULL  <= to_std_logic(FULL); 
        O_EMPTY <= to_std_logic(EMPTY); 
    end process main; 
 
end architecture RTL;

Read Memories online: https://riptutorial.com/vhdl/topic/9521/memories
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Chapter 8: Protected types

Remarks

Prior VHDL 1993, two concurrent processes could communicate only with signals. Thanks to the 
simulation semantics of the language that updates signals only between simulation steps, the 
result of a simulation was deterministic: it did not depend on the order chosen by the simulation 
scheduler to execute the processes.

[In fact, this is not 100% true. Processes could also communicate using file input/output. But if a 
designer was compromising the determinism by using files, it could not really be a mistake.]

The language was thus safe. Except on purpose, it was almost impossible to design non-
deterministic VHDL models.

VHDL 1993 introduced shared variables and designing non-deterministic VHDL models became 
very easy.

VHDL 2000 introduced protected types and the constraint that shared variables must be of 
protected type.

In VHDL, protected types are what resemble most the concept of objects in Object Oriented (OO) 
languages. They implement the encapsulation of data structures and their methods. They also 
guarantee the exclusive and atomic access to their data members. This does not completely 
prevent non-determinism but, at least, adds exclusiveness and atomicity to the shared variables.

Protected types are very useful when designing high level VHDL models intended for simulation 
only. They have several very good properties of OO languages. Using them frequently makes the 
code more readable, maintainable and reusable.

Notes:

Some simulation tool chains, by default, only issue warnings when a shared variable is not of 
a protected type.

•

Some synthesis tools do not support protected types.•
Some synthesis tools have a limited support of shared variables.•
One could think that shared variables are not usable to model hardware and shall be 
reserved for code instrumentation without side effects. But the VHDL patterns advised by 
several EDA vendors to model the memory plane of multi-ports Random Access Memories 
(RAM) use shared variables. So, yes, shared variables can be synthesizable in certain 
circumstances.

•

Examples

A pseudo-random generator
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Peudo-random generators are frequently useful when designing simulation environments. The 
following VHDL package shows how to use protected types to design a pseudo-random generator 
of boolean, bit and bit_vector. It can easily be extended to also generate random std_ulogic_vector
, signed, unsigned. Extending it to generate random integers with arbitrary bounds and a uniform 
distribution is a bit more tricky but doable.

The package declaration

A protected type has a declaration where all public subprogram accessors are declared. For our 
random generator we will make public one seed initialization procedure and three impure functions 
returning a random boolean, bit or bit_vector. Note that the functions cannot be pure as different 
calls of any of them, with the same parameters, can return different values.

-- file rnd_pkg.vhd 
package rnd_pkg is 
    type rnd_generator is protected 
        procedure init(seed: bit_vector); 
        impure function get_boolean return boolean; 
        impure function get_bit return bit; 
        impure function get_bit_vector(size: positive) return bit_vector; 
    end protected rnd_generator; 
end package rnd_pkg;

The package body

The protected type body defines the inner data structures (members) and the subprogram bodies. 
Our random generator is based on a 128-bits Linear Feedback Shift Register (LFSR) with four 
taps. The state variable stores the current state of the LFSR. A private throw procedure shifts the 
LFSR every time the generator is used.

-- file rnd_pkg.vhd 
package body rnd_pkg is 
    type rnd_generator is protected body 
        constant len: positive := 128; 
        constant default_seed: bit_vector(1 to len) := X"8bf052e898d987c7c31fc71c1fc063bc"; 
        type tap_array is array(natural range <>) of positive range 1 to len; 
        constant taps: tap_array(0 to 3) := (128, 126, 101, 99); 
 
        variable state: bit_vector(1 to len) := default_seed; 
 
        procedure throw(n: positive := 1) is 
            variable tmp: bit; 
        begin 
            for i in 1 to n loop 
                tmp := '1'; 
                for j in taps'range loop 
                    tmp := tmp xnor state(taps(j)); 
                end loop; 
                state := tmp & state(1 to len - 1); 
            end loop; 
        end procedure throw; 
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        procedure init(seed: bit_vector) is 
            constant n:   natural            := seed'length; 
            constant tmp: bit_vector(1 to n) := seed; 
            constant m:   natural            := minimum(n, len); 
        begin 
            state         := (others => '0'); 
            state(1 to m) := tmp(1 to m); 
        end procedure init; 
 
        impure function get_boolean return boolean is 
            constant res: boolean := state(len) = '1'; 
        begin 
            throw; 
            return res; 
        end function get_boolean; 
 
        impure function get_bit return bit is 
            constant res: bit := state(len); 
        begin 
            throw; 
            return res; 
        end function get_bit; 
 
        impure function get_bit_vector(size: positive) return bit_vector is 
            variable res: bit_vector(1 to size); 
        begin 
            if size <= len then 
                res := state(len + 1 - size to len); 
                throw(size); 
            else 
                res(1 to len) := state; 
                throw(len); 
                res(len + 1 to size) := get_bit_vector(size - len); 
            end if; 
            return res; 
        end function get_bit_vector; 
    end protected body rnd_generator; 
end package body rnd_pkg;

The random generator can then be used in a OO style as in:

-- file rnd_sim.vhd 
use std.env.all; 
use std.textio.all; 
use work.rnd_pkg.all; 
 
entity rnd_sim is 
end entity rnd_sim; 
 
architecture sim of rnd_sim is 
    shared variable rnd: rnd_generator; 
begin 
    process 
        variable l: line; 
    begin 
        rnd.init(X"fe39_3d9f_24bb_5bdc_a7d0_2572_cbff_0117"); 
        for i in 1 to 10 loop 
            write(l, rnd.get_boolean); 
            write(l, HT); 
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            write(l, rnd.get_bit); 
            write(l, HT); 
            write(l, rnd.get_bit_vector(10)); 
            writeline(output, l); 
        end loop; 
        finish; 
    end process; 
end architecture sim;

$ mkdir gh_work 
$ ghdl -a --std=08 --workdir=gh_work rnd_pkg.vhd rnd_sim.vhd 
$ ghdl -r --std=08 --workdir=gh_work rnd_sim 
TRUE    1    0001000101 
FALSE   0    1111111100 
TRUE    1    0010110010 
TRUE    1    0010010101 
FALSE   0    0111110100 
FALSE   1    1101110010 
TRUE    1    1011010110 
TRUE    1    0010010010 
TRUE    1    1101100111 
TRUE    1    0011100100 
simulation finished @0ms

Read Protected types online: https://riptutorial.com/vhdl/topic/6362/protected-types
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Chapter 9: Recursivity

Introduction

Recursivity is a programming method where sub-programs call themselves. It is very convenient to 
solve some kinds of problems in an elegant and generic way. VHDL supports recursion. Most logic 
synthesizers also support it. In some cases the inferred hardware is even better (faster, same 
size) than with the equivalent loop-based description.

Examples

Computing the Hamming weight of a vector

-- loop-based version 
function hw_loop(v: std_logic_vector) return natural is 
  variable h: natural; 
begin 
  h := 0; 
  for i in v'range loop 
    if v(i) = '1' then 
      h := h + 1; 
    end if; 
  end loop; 
  return h; 
end function hw_loop; 
 
-- recursive version 
function hw_tree(v: std_logic_vector) return natural is 
  constant size: natural := v'length; 
  constant vv: std_logic_vector(size - 1 downto 0) := v; 
  variable h: natural; 
begin 
  h := 0; 
  if size = 1 and vv(0) = '1' then 
    h := 1; 
  elsif size > 1 then 
    h := hw_tree(vv(size - 1 downto size / 2)) + hw_tree(vv(size / 2 - 1 downto 0)); 
  end if; 
  return h; 
end function hw_tree;

Read Recursivity online: https://riptutorial.com/vhdl/topic/10775/recursivity
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Chapter 10: Resolution functions, unresolved 
and resolved types

Introduction

VHDL types can be unresolved or resolved. The bit type declared by the std.standard package, 
for instance, is unresolved while the std_logic type declared by the ieee.std_logic_1164 package is 
resolved.

A signal which type is unresolved cannot be driven (assigned) by more than one VHDL process 
while a signal which type is resolved can.

Remarks

The use of resolved types should be reserved to situations where the intention is really to model a 
hardware wire (or set of wires) driven by more than one hardware circuit. A typical case where it is 
needed is the bi-directional data bus of a memory: when the memory is written it is the writing 
device that drives the bus while when the memory is read it is the memory that drives the bus.

Using resolved types in other situations, while a frequently encountered practice, is a bad idea 
because it suppresses very useful compilation errors when unwanted multiple drive situations are 
accidentally created.

The ieee.numeric_std package declares the signed and unsigned vector types and overloads the 
arithmetic operators on them. These types are frequently used when arithmetic and bit-wise 
operations are needed on the same data. The signed and unsigned types are resolved. Prior 
VHDL2008, using ieee.numeric_std and its types thus implied that accidental multiple drive 
situations would not raise compilation errors. VHDL2008 adds new type declarations to 
ieee.numeric_std: unresolved_signed and unresolved_unsigned (aliases u_signed and u_unsigned). 
These new types should be preferred in all cases where multiple drive situations are not desired.

Examples

Two processes driving the same signal of type `bit`

The following VHDL model drives signal s from two different processes. As the type of s is bit, an 
unresolved type, this is not allowed.

-- File md.vhd 
entity md is 
end entity md; 
 
architecture arc of md is 
 
  signal s: bit; 
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begin 
 
  p1: process 
  begin 
    s <= '0'; 
    wait; 
  end process p1; 
 
  p2: process 
  begin 
    s <= '0'; 
    wait; 
  end process p2; 
 
end architecture arc;

Compiling, elaborating and trying to simulate, e.g. with GHDL, raise an error:

ghdl -a md.vhd 
ghdl -e md 
./md 
for signal: .md(arc).s 
./md:error: several sources for unresolved signal 
./md:error: error during elaboration

Note that the error is raised even if, as in our example, all drivers agree on the driving value.

Resolution functions

A signal which type is resolved has an associated resolution function. It can be driven by more 
than one VHDL process. The resolution function is called to compute the resulting value whenever 
a driver assigns a new value.

A resolution function is a pure function that takes one parameter and returns a value of the type to 
resolve. The parameter is a one-dimensional, unconstrained array of elements of the type to 
resolve. For the type bit, for instance, the parameter can be of type bit_vector. During simulation 
the resolution function is called when needed to compute the resulting value to apply to a multiply 
driven signal. It is passed an array of all values driven by all sources and returns the resulting 
value.

The following code shows the declaration of a resolution function for type bit that behaves like a 
wired and. It also shows how to declare a resolved subtype of type bit and how it can be used.

-- File md.vhd 
entity md is 
end entity md; 
 
architecture arc of md is 
 
  function and_resolve_bit(d: bit_vector) return bit is 
    variable r: bit := '1'; 
  begin 
    for i in d'range loop 
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      if d(i) = '0' then 
        r := '0'; 
      end if; 
    end loop; 
    return r; 
  end function and_resolve_bit; 
 
  subtype res_bit is and_resolve_bit bit; 
 
  signal s: res_bit; 
 
begin 
 
  p1: process 
  begin 
    s <= '0', '1' after 1 ns, '0' after 2 ns, '1' after 3 ns; 
    wait; 
  end process p1; 
 
  p2: process 
  begin 
    s <= '0', '1' after 2 ns; 
    wait; 
  end process p2; 
 
  p3: process(s) 
  begin 
    report bit'image(s); -- show value changes 
  end process p3; 
 
end architecture arc;

Compiling, elaborating and simulating, e.g. with GHDL, does not raise an error:

ghdl -a md.vhd 
ghdl -e md 
./md 
md.vhd:39:5:@0ms:(report note): '0' 
md.vhd:39:5:@3ns:(report note): '1'

A one-bit communication protocol

Some very simple and low cost hardware devices, like sensors, use a one-bit communication 
protocol. A single bi-directional data line connects the device to a kind of micro-controller. It is 
frequently pulled up by a pull-up resistor. The communicating devices drive the line low for a pre-
defined duration to send an information to the other. The figure below illustrates this:

This example shows how to model this using the ieee.std_logic_1164.std_logic resolved type.
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-- File md.vhd 
library ieee; 
use ieee.std_logic_1164.all; 
 
entity one_bit_protocol is 
end entity one_bit_protocol; 
 
architecture arc of one_bit_protocol is 
 
  component uc is 
    port( 
      data_in: in  std_ulogic; 
      set_low: out std_ulogic 
    ); 
  end component uc; 
 
  component sensor is 
    port( 
      data_in: in  std_ulogic; 
      set_low: out std_ulogic 
    ); 
  end component sensor; 
 
  signal data:           std_logic;  -- The bi-directional data line 
  signal set_low_uc:     std_ulogic; 
  signal set_low_sensor: std_ulogic; 
 
begin 
 
  -- Micro-controller 
  uc0: uc port map( 
    data_in => data, 
    set_low => set_low_uc 
  ); 
 
  -- Sensor 
  sensor0: sensor port map( 
    data_in => data, 
    set_low => set_low_sensor 
  ); 
 
  data <= 'H'; -- Pull-up resistor 
 
  -- Micro-controller 3-states buffer 
  data <= '0' when set_low_uc = '1' else 'Z'; 
 
  -- Sensor 3-states buffer 
  data <= '0' when set_low_sensor = '1' else 'Z'; 
 
end architecture arc;

Read Resolution functions, unresolved and resolved types online: 
https://riptutorial.com/vhdl/topic/9534/resolution-functions--unresolved-and-resolved-types
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Chapter 11: Static Timing Analysis - what 
does it mean when a design fails timing?

Examples

What is timing?

The concept of timing is related more to the physics of flip flops than VHDL, but is an important 
concept that any designer using VHDL to create hardware should know.

When designing digital hardware, we are typically creating synchronous logic. This means our 
data travels from flip-flop to flip-flop, possibly with some combinatorial logic between them. The 
most basic diagram of synchronous logic that incorporates a combinatorial function is shown 

below:

One Important design goal is deterministic operation. In this case, that means if flop A's Q 
output was presenting logic 1 when the clock edge occurred, we expect flop B's Q output to start 
presenting logic 0 every time without exception.

With ideal flip-flops, as typically described with VHDL (ex. B <= not A when rising_edge(clk);) 
deterministic operation is assumed. Behavioral VHDL simulations usually assume ideal flip-flops 
that always act deterministically. With real flip-flops, this is not so simple and we must obey setup 
and hold requirements pertaining to when the D input of a flop changes in order to guarantee 
reliable operation.

The setup time specifies how long the D input must remain unchanged before the arrival of the 
clock edge. The hold time specifies how long the D input must remain unchanged after the arrival 
of the clock edge.

The numerical values are based on the underlying physics of a flip flop and vary significantly with 
process (imperfections in the silicon from the creation of the hardware), voltage (levels of logic '0' 
and '1'), and temperature. Typically the values used for calculations are the worst case (longest 
requirement) so we can guarantee functionality in any chip and environment. Chips are 
manufactured with permissible ranges for temperature power supply in part to limit the worst case 
that needs to be considered.

Violating setup and hold times can result in a variety of non-deterministic behavior, including the 
wrong logic value appearing at Q, an intermediate voltage appearing at Q (may be interpreted as a 
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0 or 1 by the next logic element), and having the Q output oscillate. Because all the numbers used 
are worst case values, moderate violations will typically result in the normal, deterministic result on 
a specific piece of hardware, but an implementation that has any timing failure is not safe to 
distribute on multiple devices because a case where the actual values approach the worst case 
values will eventually occur.

Typical requirements for flip-flops in a modern FPGA are 60 pico-seconds setup time, with a 
matching 60 ps hold requirement. Although the specifics of implementation are given in an FPGA 
context, almost all of this material applies to ASIC design as well.

There are several other delays and time values that need to be considered to determine whether 
timing was met. These include:

Routing Delay - the time it takes for electrical signals to travel along the wires between logic 
elements

•

Logic Delay - the time it takes for the input to the intermediate combinational logic to affect 
the output. Also commonly referred to as gate delay.

•

Clock-to-out Delay - another physical property of the flip-flop, this is the time it takes for the 
Q output to change after the clock edge occurs.

•

Clock Period - the ideal time between two edges of the clock. A typical period for a modern 
FPGA that meets timing easily is 5 nano-seconds, but the actual period used is chosen by 
the designer and can be moderately shorter or drastically longer.

•

Clock Skew - the difference in routing delays of clock source to flop A and the clock source 
to flop B

•

Clock Jitter/Uncertainty - a function of electrical noise and imperfect oscillators. This is the 
maximum deviation the clock period can have from the ideal, incorporating both frequency 
error (ex. oscillator runs 1% too fast causing the 5ns ideal period to become 4.95ns with 
50ps uncertainty) and peak-to-peak (ex. the average period is 5ns but 1/1000 cycles has a 
period of 4.9ns with 100ps of jitter)

•

Checking whether a circuit implementation meets timing is calculated in two steps with two sets of 
values for the delays since the worst case delays for the hold requirement are the best case 
delays for setup requirement.

The hold check is verifying that the new value of A's Q output on clock cycle x doesn't arrive so 
early that it disrupts B's Q output on clock cycle x, and thus is not a function of clock period as we 
are looking at the same clock edge at both flops. When a hold check fails, it is relatively easy to fix 
because the solution is to add delay. Implementation tools can increase the delay as simply as 
adding more wire length in the route.

In order to meet the hold requirement, the shortest possible clock-to-out, logic, and routing delays 
must cumulatively be longer than the hold requirement where the hold requirement is modified by 
the clock skew.

The setup check is verifying that the new value of A's Q output on clock cycle x arrives in time for 
B's Q output to consider it on clock cycle x+1, and is thus a function of the period. A failure of the 
setup check requires delay to be removed or the requirement (clock period) to be increased. 
Implementation tools cannot change the clock period (that is up to the designer), and there is only 
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so much delay that can be removed without changing any functionality, so tools are not always 
able to change the placement and routing of circuit elements in order to pass the setup check.

In order to meet the setup requirement, the longest possible clock-to-out, logic, and routing delays 
must be cumulatively be shorter than the clock period (modified by clock skew and 
jitter/uncertainty) less the setup requirement.

Because the period of the clock (typically provided from off-chip via the clock input pins) must be 
known to calculate whether the setup check was met, all implementation tools will need at least 
one timing constraint provided by the designer indicating the period of the clock. 
Jitter/uncertainty is assumed to be 0 or a small default value, and the other values are always 
internally known by the tools for the target FPGA. If a clock period is not provided, most FPGA 
tools will verify the hold check then find the fastest clock that still allows all paths to meet setup, 
although it will spend minimal time optimizing slow routes to improve that fastest allowable clock 
since the actual speed needed is unknown.

If the design has the required period constraints and non-synchronous logic is properly excluded 
from timing analysis (not covered in this document), but the design still fails timing there are a 
few options:

The simplest option that doesn't affect functionality at all is to adjust the directives given to 
the tool in hopes that trying different optimization strategies will produce a result that meets 
timing. This is not reliably successful, but can often find a solution for borderline cases.

•

The designer can always reduce clock frequency (increase the period) to meet setup 
checks, but that has its own functional trade offs, namely that your system has reduced data 
throughput proportional to the clock speed reduction.

•

Designs can sometimes be refactored to do the same thing with simpler logic, or to do a 
different thing with an equally acceptable end result to reduce combinatorial delays, making 
setup checks easier.

•

It is also common practice to change the described design (in the VHDL) to the same logical 
operations with the same throughput but more latency by using more flip-flops and splitting 
the combinatorial logic across multiple clock cycles. This is known as pipelining and leads 
to reduced combinatorial delays (and removes the routing delay between what was 
previously multiple layers of combinatorial logic). Some designs lend themselves well to 
pipelining, although it can be non-obvious if a long logic path is a monolithic operation, while 
other designs (such as those that incorporate a great deal of feedback) will not function at 
all with the additional latency that pipelining entails.

•

Read Static Timing Analysis - what does it mean when a design fails timing? online: 
https://riptutorial.com/vhdl/topic/5936/static-timing-analysis---what-does-it-mean-when-a-design-
fails-timing-
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Chapter 12: Wait

Syntax

wait [on SIGNAL1[, SIGNAL2[...]]] [until CONDITION] [for TIMEOUT];•
wait; -- Eternal wait•
wait on s1, s2; -- Wait until signals s1 or s2 (or both) change•
wait until s1 = 15; -- Wait until signal s1 changes and its new value is 15•
wait until s1 = 15 for 10 ns; -- Wait until signal s1 changes and its new value is 15 for at most 
10 ns

•

Examples

Eternal wait

The simplest form of wait statement is simply:

wait;

Whenever a process executes this it is suspended forever. The simulation scheduler will never 
resume it again. Example:

signal end_of_simulation: boolean := false; 
... 
process 
begin 
  clock <= '0'; 
  wait for 500 ps; 
  clock <= '1'; 
  wait for 500 ps; 
  if end_of_simulation then 
    wait; 
  end if; 
end process;

Sensitivity lists and wait statements

A process with a sensitivity list cannot also contain wait statements. It is equivalent to the same 
process, without a sensitivity list and with one more last statement which is:

wait on <sensitivity_list>;

Example:

  process(clock, reset) 
  begin 
    if reset = '1' then 
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      q <= '0'; 
    elsif rising_edge(clock) then 
      q <= d; 
    end if; 
  end process;

is equivalent to:

  process 
  begin 
    if reset = '1' then 
      q <= '0'; 
    elsif rising_edge(clock) then 
      q <= d; 
    end if; 
    wait on clock, reset; 
  end process;

VHDL2008 introduced the all keyword in sensitivity lists. It is equivalent to all signals that are read 
somewhere in the process. It is especially handy to avoid incomplete sensitivity lists when 
designing combinatorial processes for synthesis. Example of incomplete sensitivity list:

  process(a, b) 
  begin 
    if ci = '0' then 
      s  <= a xor b; 
      co <= a and b; 
    else 
      s  <= a xnor b; 
      co <= a or b; 
    end if; 
  end process;

the ci signal is not part of the sensitivity list and this is very likely a coding error that will lead to 
simulation mismatches before and after synthesis. The correct code is:

  process(a, b, ci) 
  begin 
    if ci = '0' then 
      s  <= a xor b; 
      co <= a and b; 
    else 
      s  <= a xnor b; 
      co <= a or b; 
    end if; 
  end process;

In VHDL2008 the all keyword simplifies this and reduces the risk:

  process(all) 
  begin 
    if ci = '0' then 
      s  <= a xor b; 
      co <= a and b; 
    else 
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      s  <= a xnor b; 
      co <= a or b; 
    end if; 
  end process;

Wait until condition

It is possible to omit the on <sensitivity_list> and the for <timeout> clauses, like in:

    wait until CONDITION;

which is equivalent to:

    wait on LIST until CONDITION;

where LIST is the list of all signals that appear in CONDITION. It is also equivalent to:

    loop 
      wait on LIST; 
      exit when CONDITION; 
    end loop;

An important consequence is that if the CONDITION contains no signals, then:

    wait until CONDITION;

is equivalent to:

    wait;

A classical example of this is the famous:

    wait until now = 1 sec;

that does not do what one could think: as now is a function, not a signal, executing this statement 
suspends the process forever.

Wait for a specific duration

using only the for <timeout> clause, it is possible to get an unconditional wait that lasts for a 
specific duration. This is not synthesizable (no real hardware can perform this behaviour so 
simply), but is frequently used for scheduling events and generating clocks within a testbench.

This example generates a 100 MHz, 50% duty cycle clock in the simulation testbench for driving 
the unit under test:

constant period : time := 10 ns; 
... 

https://riptutorial.com/ 76



process 
begin 
   loop 
      clk <= '0'; 
      wait for period/2; 
      clk <= '1'; 
      wait for period/2; 
   end loop; 
end process;

This example demonstrates how one might use a literal duration wait to sequence the testbench 
stimulus/analysis process:

process 
begin 
   rst <= '1'; 
   wait for 50 ns; 
   wait until rising_edge(clk); --deassert reset synchronously 
   rst <= '0'; 
   uut_input <= test_constant; 
   wait for 100 us; --allow time for the uut to process the input 
   if uut_output /= expected_output_constant then 
      assert false report "failed test" severity error; 
   else 
      assert false report "passed first stage" severity note; 
      uut_process_stage_2 <= '1'; 
   end if; 
   ... 
   wait; 
end process;

Read Wait online: https://riptutorial.com/vhdl/topic/6449/wait
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