
vim

#vim

Table of Contents

About 1

Chapter 1: Getting started with vim 2

Remarks 2

Versions 3

Examples 4

Installation 4

Installation on Linux/BSD 4

Arch and Arch-based distributions 4

Debian and Debian-based distributions 4

Gentoo and Gentoo-based distributions 4

RedHat and RedHat-based distributions 4

Fedora 4

Slackware and Slackware-based distributions 5

OpenBSD and OpenBSD-based distributions 5

FreeBSD and FreeBSD-based distributions 5

Installation on Mac OS X 5

Regular install 5

Package manager 5

Installation on Windows 5

Chocolatey 6

Building Vim from source 6

Exiting Vim 6

Explanation: 7

Interactive Vim Tutorials (such as vimtutor) 7

Saving a read-only file edited in Vim 7

Command Explanation 8

Suspending vim 8

Basics 9

What to do in case of a crash 10

Chapter 2: :global 12

Syntax 12

Remarks 12

Examples 12

Basic usage of the Global Command 12

Yank every line matching a pattern 12

Move/collect lines containing key information 12

Chapter 3: Advantages of vim 14

Examples 14

Customization 14

Lightweight 14

Chapter 4: Ask to create non-existant directories upon saving a new file 15

Introduction 15

Examples 15

Prompt to create directories with :w, or sliently create them with :w! 15

Chapter 5: Autocommands 16

Remarks 16

Examples 16

Automatically source .vimrc after saving 16

Refresh vimdiff views if a file is saved in another window 17

Chapter 6: Auto-Format Code 18

Examples 18

In normal mode: 18

Chapter 7: Buffers 19

Examples 19

Managing buffers 19

Hidden buffers 19

Switching buffer using part of the filename 19

Quickly switch to previous buffer, or to any buffer by number 20

Chapter 8: Building from vim 21

Examples 21

Starting a Build 21

Chapter 9: Command-line ranges 22

Examples 22

Absolute line numbers 22

Relative line numbers 22

Line shortcuts 22

Marks 22

Search 23

Line offsets 23

Mixed ranges 23

Chapter 10: Configuring Vim 24

Examples 24

The vimrc file 24

Which options can I use? 24

Files and directories 25

Options 26

Setting boolean options 26

Setting string options 26

Setting number options 26

Using an expression as value 26

Mappings 27

Recursive mappings 27

Non-recursive mappings 27

Executing a command from a mapping 27

Executing multiple commands from a mapping 27

Calling a function from a mapping 28

Mapping a <Plug>mapping 28

Variables 28

Commands 28

Examples 28

Functions 29

Example 29

Script functions 29

Using s:functions from mappings 29

Autocommand groups 30

Example 30

Conditionals 30

Setting Options 30

Syntax Highlighting 31

Color Schemes 31

Changing Color Schemes 31

Installing Color Schemes 31

Toggle line enumerating 32

Plugins 32

Chapter 11: Converting text files from DOS to UNIX with vi 33

Remarks 33

Examples 33

Converting a DOS Text file to a UNIX Text file 33

Using VIm's fileformat 33

Chapter 12: Differences between Neovim and Vim 35

Examples 35

Configuration Files 35

Chapter 13: Easter Eggs 36

Examples 36

Help! 36

When you're feeling down 36

The Answer 36

Looking for the Holy Grail 36

Ceci n'est pas une pipe 36

When a user is getting bored 37

Spoon 37

Knights who say Ni! 37

nunmap 37

Chapter 14: Enhanced undo and redo with a undodir 39

Examples 39

Configuring your vimrc to use a undodir 39

Chapter 15: Exiting Vim 40

Parameters 40

Remarks 40

Examples 40

Exit with save 40

Exit without save 40

Exit forcefully (without save) 40

Exit forcefully (with save) 41

Exit forcefully from all opened windows (without save) 41

if multiple files are opened 41

Chapter 16: Extending Vim 42

Remarks 42

Examples 42

How plugins work 42

The principle 42

The manual method 43

Single file plugin 43

Bundle 43

VAM 43

Vundle 44

Installing Vundle 44

Supported Plugin Formats 44

The future: packages 45

Pathogen 45

Installing Pathogen 45

Using Pathogen 45

Benefits 46

Chapter 17: Filetype plugins 47

Examples 47

Where to put custom filetype plugins? 47

Chapter 18: Find and Replace 48

Examples 48

Substitute Command 48

Replace with or without Regular Expressions 49

Chapter 19: Folding 51

Remarks 51

Examples 51

Configuring the Fold Method 51

Creating a Fold Manually 51

Opening, Closing and Toggling Folds 51

Showing the Line Containing the Cursor 52

Folding C blocks 52

Chapter 20: Get :help (using Vim's built-in manual) 53

Introduction 53

Syntax 53

Parameters 53

Examples 53

Getting started / Navigating help files 53

Searching the manual 54

Chapter 21: How to Compile Vim 55

Examples 55

Compiling on Ubuntu 55

Chapter 22: Indentation 56

Examples 56

Indent an entire file using built-in indentention engine 56

Indent or outdent lines 56

Chapter 23: Inserting text 58

Examples 58

Leaving insert mode 58

Different ways to get into insert mode 58

Insert mode shortcuts 59

Running normal commands from insert mode 59

Example 59

Insert text into multiple lines at once 60

Paste text using terminal "paste" command 60

Pasting from a register while in insert mode 61

Advanced Insertion Commands and Shortcuts 61

Disable auto-indent to paste code 62

Chapter 24: Key Mappings in Vim 63

Introduction 63

Examples 63

Basic mapping 63

map Overview 63

map Operator 63

map Command 64

Examples 64

Map leader key combination 64

Illustration of Basic mapping (Handy shortcuts). 65

Chapter 25: Macros 66

Examples 66

Recording a macro 66

Editing a vim macro 66

Recursive Macros 67

What is a macro? 67

Record and replay action (macros) 68

Chapter 26: Manipulating text 70

Remarks 70

Examples 70

Converting text case 70

In normal mode: 70

In visual mode: 70

Incrementing and decrementing numbers and alphabetical characters 70

Incrementing and decrementing numbers 70

Incrementing and decrementing alphabetical characters 71

Incrementing and decrementing numbers when alphabetical increment/decrement is enabled 71

Formatting Code 72

Using "verbs" and "nouns" for text editing 72

Chapter 27: Modes - insert, normal, visual, ex 74

Examples 74

The basics about modes 74

Normal mode (or Command mode) 74

Insert mode 74

Visual mode 74

Select mode 74

Replace mode 74

Command-line mode 75

Ex mode 75

Chapter 28: Motions and Text Objects 76

Remarks 76

Examples 76

Changing the contents of a string or parameter list 76

Chapter 29: Movement 77

Examples 77

Searching 77

Jumping to characters 77

Searching for strings 77

Basic Motion 77

Remarks 77

Arrows 78

Basic motions 78

Searching For Pattern 80

Navigating to the beginning of a specific word 81

Using Marks to Move Around 82

TLDR 82

Set a mark 82

Jump to a mark 83

Global Marks 83

Special marks 83

Jump to specific line 84

Chapter 30: Normal mode commands 86

Syntax 86

Remarks 86

Examples 86

Sorting text 86

Normal sorting 86

Reverse sorting 86

Case insensitive sorting 86

Numerical sorting 86

Remove duplicates after sorting 86

Combining options 87

Chapter 31: Normal mode commands (Editing) 88

Examples 88

Introduction - Quick Note on Normal Mode 88

Basic Undo and Redo 88

Undo 88

Redo 88

Repeat the Last Change 89

Copy, Cut and Paste 89

Registers 89

Motions 90

Copying and Cutting 90

Pasting 90

So, How Do I Perform A Really Simple Cut and Paste? 91

Completion 92

Chapter 32: Plugins 94

Examples 94

Fugitive Vim 94

NERD Tree 94

Chapter 33: Regular expressions 95

Remarks 95

Examples 95

Word 95

Chapter 34: Regular expressions in Ex Mode 96

Examples 96

Edit a regular expression in Ex mode 96

Chapter 35: Saving 99

Examples 99

Saving a buffer in a non-existent dir 99

Chapter 36: Scrolling 100

Examples 100

Scrolling downwards 100

Scrolling upwards 100

Scrolling relative to cursor position 100

Chapter 37: Searching in the current buffer 102

Examples 102

Searching for an arbitrary pattern 102

Searching for the word under the cursor 102

execute command on lines that contain text 103

Chapter 38: Solarized Vim 104

Introduction 104

Examples 104

.vimrc 104

Chapter 39: Spell checker 105

Examples 105

Spell Checking 105

Set Word List 105

Chapter 40: Split windows 106

Syntax 106

Remarks 106

Examples 106

Opening multiple files in splits from the command line 106

Horizontally 106

Vertically 106

Opening a new split window 106

Changing the size of a split or vsplit 107

Shortcuts 107

Close all splits but the current one 107

Managing Open Split Windows (Keyboard Shortcuts) 107

Move between splits 108

Sane split opening 108

Chapter 41: Substitution 109

Syntax 109

Parameters 109

Remarks 109

Example 109

Examples 109

Simple replacement 109

Quickly refactor the word under the cursor 110

Replacement with interactive approval 110

Keyboard short-cut to replace currenlty highlighted word 110

Chapter 42: The dot operator 111

Examples 111

Basic Usage 111

Set indent 111

Chapter 43: Tips and tricks to boost productivity 113

Syntax 113

Remarks 113

Examples 113

Quick "throwaway" macros 113

Using the path completion feature inside Vim 113

Turn On Relative Line Numbers 114

Viewing line numbers 115

Mappings for exiting Insert mode 115

jk 115

Caps Lock 116

Linux 116

Windows 116

macOS 116

How to know the directory and/or the path of the file you are editing 117

Search within a function block 117

Copy, move or delete found line 118

Write a file if you forget to `sudo` before starting vim 119

Automatically reload vimrc upon save 119

Command line completion 119

Chapter 44: Useful configurations that can be put in .vimrc 121

Syntax 121

Examples 121

Move up/down displayed lines when wrapping 121

Enable Mouse Interaction 121

Configure the default register to be used as system clipboard 121

Chapter 45: Using ex from the command line 123

Examples 123

Substitution from the command line 123

Chapter 46: Using Python for Vim scripting 124

Syntax 124

Examples 124

Check Python version in Vim 124

Execute Vim normal mode commands through Python statement 124

Executing multi-line Python code 124

Chapter 47: vglobal: Execute commands on lines that do not match globally 126

Introduction 126

Examples 126

:v/pattern/d 126

Chapter 48: Vim Options 128

Syntax 128

Remarks 128

Examples 128

Set 128

Indentation 128

Width 128

Spaces 128

Tabs 129

Automatic Indentation 129

Instruction descriptions 129

Invisible characters 129

Show or hide invisible characters 129

Default symbol characters 130

Customize symbols 130

Chapter 49: Vim Registers 131

Parameters 131

Examples 131

Delete a range of lines into a named register 131

Paste the filename while in insert mode using the filename register 132

Copy/paste between Vim and system clipboard 132

Append to a register 132

Chapter 50: Vim Resources 133

Remarks 133

Examples 133

Learning Vimscript the Hard Way 133

Chapter 51: Vim Text Objects 134

Examples 134

Select a word without surrounding white space 134

Select a word with surrounding white space 134

Select text inside a tag 134

Chapter 52: Vimscript 136

Remarks 136

Examples 136

Hello World 136

Using Normal Mode Commands in Vimscript 136

Chapter 53: Whitespace 137

Introduction 137

Remarks 137

Examples 137

Delete trailing spaces in a file 137

Delete blank lines in a file 137

Convert tabs to spaces and spaces to tabs 138

Credits 139

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: vim

It is an unofficial and free vim ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official vim.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/vim
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with vim

Remarks

Vim (or "Vi IMproved") is a console-based multi-mode (modal) text editor. It is widely used and
available by default on all Unix, Linux, and Apple OS X systems. Vim has a large active
community and a wide user base. The editor supports all popular programming languages, and
many plugins are available to extend its features.

Developers like the editor for its speed, many configuration options, and powerful expression
based editing. In "command" mode the editor is controlled by keyboard commands, so the user is
not distracted by a GUI or mouse pointer.

Vim is based on the earlier Unix "vi" editor created in the seventies and it has been in continuous
development since 1991. With macros and plugins the editor offers most of the features of a
modern IDE. It is also uniquely capable of processing large amounts of text with its scripting
language (vimscript) and regular expressions.

Main Topics:

installation•
editing modes•
navigation•
basic editing•
advanced editing•
configuration•
plugins•
vimscript•
macros•
community•
related projects•

https://riptutorial.com/ 2

http://www.riptutorial.com/vim/example/2965/installation
http://www.riptutorial.com/vim/topic/1117/movement
http://www.riptutorial.com/vim/example/18153/basics
http://www.riptutorial.com/vim/topic/2235/configuring-vim
http://www.riptutorial.com/vim/topic/9976/plugins
http://www.riptutorial.com/vim/topic/5136/vimscript
http://www.riptutorial.com/vim/topic/1447/macros

Versions

Version Release Date

8.0 2016-09-12

7.4 2013-08-10

7.3 2010-08-15

7.2 2008-08-09

7.1 2007-05-12

7.0 2006-05-07

6.0 2001-09-26

5.0 1998-02-19

4.0 1996-05-29

3.0 1994-08-12

2.0 1993-12-14

https://riptutorial.com/ 3

https://i.stack.imgur.com/Xk1Cb.png
https://groups.google.com/forum/#!topic/vim_announce/EKTuhjF3ET0
https://groups.google.com/forum/#!topic/vim_announce/knOQ_t_H5to
http://vimdoc.sourceforge.net/htmldoc/version7.html#version-7.3
http://vimdoc.sourceforge.net/htmldoc/version7.html#version-7.2
http://vimdoc.sourceforge.net/htmldoc/version7.html#version-7.1
http://vimdoc.sourceforge.net/htmldoc/version7.html
http://vimdoc.sourceforge.net/htmldoc/version6.html
http://vimdoc.sourceforge.net/htmldoc/version5.html
http://vimdoc.sourceforge.net/htmldoc/version4.html

Version Release Date

1.14 1991-11-02

Examples

Installation

The Vim on your machine—if there is one—is very likely to be a "small" build that lacks useful
features like clipboard support, syntax highlighting or even the ability to use plugins.

This is not a problem if all you need is a quick way to edit config files but you will soon hit a
number of walls if you intend to make Vim your main editor.

It is therefore generally recommended to install a complete build.

Installation on Linux/BSD

On those systems, the trick is simply to install the GUI version which comes with both a gvim
command for starting the GUI and a vim command for starting the TUI.

Arch and Arch-based distributions

$ sudo pacman -R vim
$ sudo pacman -S gvim

Debian and Debian-based distributions

$ sudo apt-get update
$ sudo apt-get install vim-gtk

Gentoo and Gentoo-based distributions

$ sudo emerge --sync
$ sudo emerge app-editors/gvim

RedHat and RedHat-based distributions

$ sudo yum check-update
$ sudo yum install vim-X11

Fedora

$ sudo dnf check-update
$ sudo dnf install vim-X11

https://riptutorial.com/ 4

Slackware and Slackware-based distributions

$ sudo slackpkg update
$ sudo slackpkg install-new vim-gvim

OpenBSD and OpenBSD-based distributions

$ sudo pkg_add vim-x11

FreeBSD and FreeBSD-based distributions

$ sudo pkg install editors/vim

Installation on Mac OS X

The strategy is similar to Mac OS X: we install the GUI version to get both the GUI and the TUI. In
the end, we should be able to:

double-click the MacVim icon in the Finder,•
click on the MacVim icon in the Dock,•
issue $ mvim in the shell to open the MacVim GUI,•
issue $ mvim -v in the shell to open the MacVim TUI.•

Regular install

Download and install an official snapshot like you would with any other Mac OS X application.

Place the mvim script that comes bundled with MacVim somewhere in your $PATH.

Package manager

MacPorts:

$ sudo port selfupdate
$ sudo port install macvim

Homebrew:

$ brew install macvim

To make MacVim the default console Vim:

$ brew install macvim --with-override-system-vim

Installation on Windows

https://riptutorial.com/ 5

https://github.com/macvim-dev/macvim/releases

There is no Vim on Windows systems by default. You can download and install Vim from the
Tuxproject site for more up-to-date and complete builds or you can download and install Vim from
the official Vim site.

Chocolatey

> choco install vim

Building Vim from source

If the methods above don't suit your needs it is still possible to build Vim yourself, with only the
options you need.

This topic will be discussed in its own section (currently in draft).

Exiting Vim

In order to exit Vim, first make sure you are in Normal mode by pressing Esc.

:q Enter (will prevent you from exiting if you have unsaved changes - short for :quit)•

To discard changes and exit Vim:

:q! Enter to force exit and discard changes (short for :quit!, not to be confused with :!q),•
ZQ is a shortcut that does the same as :q!,•
:cq Enter quit and return error (discard all changes so the compiler will not recompile this file)•

To save changes and exit Vim:

:wq Enter (shorthand for :write and :quit),•
:x Enter (same as :wq, but will not write if the file was not changed),•
ZZ is a shortcut that does the same as :x (Save workspace and quit the editor),•
:[range]wq! Enter (write the lines in [range])•

To close multiple buffers at once (even in multiple windows and/or tabs), append the letter a to any
of the Commands above (the ones starting with :). For example, to write and quit all windows you
can use:

:wqa Enter or•
:xa Enter — Write all changed buffers and exit Vim. If there are buffers without a file name,
which are readonly or which cannot be written for another reason, Vim will not quit

•

:xa! Enter — Write all changed buffers, even the ones that are readonly, and exit Vim. If
there are buffers without a file name or which cannot be written for another reason, Vim will
not quit

•

:qa Enter — try to quit, but stop if there are any unsaved files;•
:qa! Enter — quit without saving (discard changes in any unsaved files)•

If you have opened Vim without specifying a file and you want to save that file before exiting, you

https://riptutorial.com/ 6

https://github.com/macvim-dev/macvim/releases
http://www.vim.org/download.php#pc

will receive E32: No file name message. You can save your file and quit using:

:wq filename Enter or;•
:x filename Enter•

Explanation:

The : keystroke actually opens Command mode. The command q is an abbreviation of quit, w, of
write and x, of exit (you can also type :quit, :write and :exit if you want). Shortcuts not starting
with : such as ZZ and ZQ refer to Normal mode key mappings. You can think of them as shortcuts.

The ! keystroke is sometimes used at the end of a command to force its execution, which allows
to discard changes in the case of :q!. Placing the ! at the beginning of the command has a
different meaning. For example, one can mistype :!q instead of :q! and vim would terminate with a
127 error.

An easy way to remember this is to think of ! as a way of insisting on executing something. Just
like when you write: "I want to quit!"

Interactive Vim Tutorials (such as vimtutor)

vimtutor is an interactive tutorial covering the most basic aspects of text editing.

On UNIX-like system, you can start the tutorial with:

$ vimtutor

On Windows, “Vim tutor” can be found in the “Vim 7.x” directory under “All Programs” in the
Windows menu.

See :help vimtutor for further details.

Other interactive tutorials include these browser-based ones:

Vim Adventures – An interactive game version of vimtutor available on the web. Only the first
few levels are free.

•

Open Vim – An interactive terminal which teaches you the basic commands with feedback.•
Vim Genius – Another interactive terminal which also includes intermediate and advanced
lessons including macros and arglist.

•

Saving a read-only file edited in Vim

Sometimes, we may open a file which we do not have permission to write in Vim without using
sudo.

Use this command to save a read-only file edited in Vim.

:w !sudo tee > /dev/null %

https://riptutorial.com/ 7

https://vim-adventures.com/
http://www.openvim.com/
http://www.vimgenius.com/

Which you could map to :w!! in your .vimrc:

cmap w!! w !sudo tee > /dev/null %

You will be presented a prompt as shown in the image.

.

Press O and the file will be saved. It remains open in vi/vim for more editing or reading and you can
exit normally by typing :q! since the file is still open as read-only.

Command Explanation

:w isn't modifying your file in this case,
 but sends the current buffer contents to
 a substituted shell command
 !sudo call the shell 'sudo' command
 tee the output of the vi/vim write command is redirected
 using the 'tee' command
 > /dev/null throws away the standard output, since we don't need
 to pass it to other commands
 % expands to the path of the current file

Sources:

Adam Culp's Tech Blog•

Stackoverflow, How does the vim "write with sudo" trick work•

Suspending vim

When using vim from the command line, you can suspend vim and get back to your prompt, without
actually quitting vim. Hence you will later be able to get back your vim session from the same
prompt.

When in Normal mode (if not, press esc to get there), issue either of these commands:

:stenter

:susenter

:stopenter

:suspendenter

Alternatively, on some systems, when in Normal or Visual mode, issuing Ctrl+Z will have the same
effect.

https://riptutorial.com/ 8

http://i.stack.imgur.com/AUQss.png
http://www.geekyboy.com/archives/629
http://stackoverflow.com/a/7078429/5773806

Note: If autowrite is set, buffers with changes and filenames will be written out. Add a ! before
enter to avoid, eg. :st!enter.

Later, when you want to return to your vim session, if you haven't suspended any other jobs,
issuing the following will restore vim as your foreground job.

fgenter

Otherwise you will need to find your vim sessions's job ID by issuing jobsenter and then
foregrounding the matching jobs fg %[job ID]enter eg. fg %1enter.

Basics

Run interactive vim tutorials as many times as needed to feel comfortable with the basics.

Vim features several modes, e.g. normal mode, insert mode and command-line mode.

Normal mode is for editing and navigating text. In this mode h, j, k and l correspond to the cursor
keys ←, ↓, ↑ and →. Most commands in normal mode can be prefixed with a "count", e.g. 3j moves
down 3 lines.

Insert mode is for inserting the text directly, in this mode vim is similar to other more simple text
editors. To enter insert mode press i in normal mode. To leave it press <ESC> (escape key).

Command-line mode is for running more complex commands like saving the file and exiting vim.
Press : to start the command-line mode. To leave this mode you can also press <ESC>. To save the
changes to the file use :w (or :write). To exit vim without saving your changes use :q! (or :quit!).

These are some of the more useful commands in vim:

Command Description

i (insert) enters insert mode before the current cursor position

I enters insert mode before the first printable character of the current line

a (append) enters insert mode after the current cursor position

A enters insert mode after the last printable character of the current line

x delete character at the current cursor position

X delete character at the left to the current cursor position

w move to next word

b move to previous word

0 move to the beginning of line

$ move to the end of line

https://riptutorial.com/ 9

http://www.riptutorial.com/vim/example/5715/interactive-vim-tutorials--such-as-vimtutor-

Command Description

r
replace – enters replace mode for one character. The next character you type
will replace the character under the cursor.

R
enters replace mode indefinitely. Every character you type will replace the
character under the cursor and advance the cursor by one.

s
substitute – deletes the character at the current cursor position and then
enters insert mode

S delete the current line that the cursor is currently on and enter insert mode

<Esc>, <C-c> exit insert mode and returns to normal mode

u undo

<C-r> redo

dd, dw, dl, d$
cut the current line, from the cursor to next word, or the character, current
position to end of current line respectively, note: D is the equivalent of d$

cc, cw, cl
change the current line, from the cursor to next word, or the character,
respectively

yy, yw, yl, y$
yank ("copy") the current line, from the cursor to next word, or the character,
current position to end of current line respectively

p, P put ("paste") after, or before current position, respectively

o, O
to create a new empty line, after or before the current one and enter insert
mode

:w write the current buffer to disk

:q!, ZQ quit without writing

:x, :wq, ZZ write and quit

:help open a window with help file

:help
{subject} show help for a specific subject

qz
begin recording actions to register z, q to end recording, @z to play back the
actions. z can be any letter: q is often used for convenience. Read more:
Macros

What to do in case of a crash

https://riptutorial.com/ 10

http://www.riptutorial.com/vim/topic/1447/macros

Vim saves all your unsaved edits in a swap file, an extra file that gets deleted once the changes
are committed by saving. The name of the swap file is usually the name of the file being edited
preceded by a . and with a .swp suffix (you can see it with :sw).

So in case your vim process terminates before you've had the chance to save your edits you can
recover your work by applying the changes contained in the swap file to your current file by using
the command-line option -r. For instance if myFile is the file you were editing, use:

$ vi -r myFile

to recover the uncommitted changes.

If a swap file exists, vim should prompt you anyway for recovery options

$ vi myFile
E325: ATTENTION
Found a swap file by the name ".myFile.swp"
...
Swap file ".myFile.swp" already exists!
[O]pen Read-Only, (E)dit anyway, (R)ecover, (D)elete it, (Q)uit, (A)bort:

If you choose (R)ecover then the changes from the swp file are applied but the swap file won't be
deleted, so don't forget to delete the swap file afterwards if you're satisfied with the recovery.

Read Getting started with vim online: https://riptutorial.com/vim/topic/879/getting-started-with-vim

https://riptutorial.com/ 11

https://riptutorial.com/vim/topic/879/getting-started-with-vim

Chapter 2: :global

Syntax

:[<range>]g[lobal]/{<pattern>}/[<command>]•
:[<range>]g[lobal]!/{<pattern>}/[<command>] (inverted)•
:[<range>]v[global]/{<pattern>}/[<command>] (inverted)•

Remarks

Vim's "global" command is used to apply an ex command to every line where a regex matches.

Examples

Basic usage of the Global Command

:g/Hello/d

Will delete every line containing the text "Hello". Important note: This is not the normal mode
command d, this is the ex command :d.

You can use the global command to apply normal mode keystrokes instead of ex commands by
prepending normal or norm to the command. For example:

:g/Hello/norm dw

Will delete the first word from every line that contains the text "Hello".

The global command also supports visual mode and ranges.

Yank every line matching a pattern

The command

:g/apples/y A

will yank all lines containing the word apples into the a register, which can be pasted with "ap. Any
regular expression can be used.

Note the space before the A, and the capitalization of the register letter. If a capital letter is used as
the yank register, matches will be appended to that register. If a lowercase letter is used, only the
last match will be placed in that register.

Move/collect lines containing key information

https://riptutorial.com/ 12

http://www.riptutorial.com/vim/topic/3383/command-line-ranges

a simple yet very useful command:

:g/ending/m$

moves lines containing ending to the end of the buffer.

m means move
$ means end of buffer, while 0 means beginning of buffer.

Read :global online: https://riptutorial.com/vim/topic/3861/-global

https://riptutorial.com/ 13

https://riptutorial.com/vim/topic/3861/-global

Chapter 3: Advantages of vim

Examples

Customization

The advantage of using vim over a simple text editor like notepad or gedit is that it allows the
user to customize it's almost everything about itself. If you ever find yourself doing some kind of
action over and over again, vim has a multitude of features that will help you do this action faster
and easier.

Most of the popular IDEs such as MS Visual Studio or IntelliJ IDEA provide their users with
useful shortcuts and even some amount of customization, but they are usually related to specific
actions that are common in a particular context, whereas vim allows one to customize for different
situations, without conflicting each other. It might be comfortable to develop c++ programs in
Visual Studio and Java in IntelliJ, but you wouldn't write python code in there, and for that there is
another IDE of course, but in vim you can pretty much edit whatever language you want without
losing the convenience.

There are of course other customizable editors, and I'm not the one to say that vim is the best for
everybody. This is a question of personal preference. I don't think someone will argue that emacs
allows the level of customization inferior to that of vim's (and some would say otherwise), but you
really have to try it out for yourself, to find what suits you best.

Some people say, they don't want to spend months learning how to use an editor, just to be able
to work in it. But those who do, mostly agree, that it was worth it. For me personally it was never a
problem, learning new stuff about vim and getting more efficient with it is just fun. And there is a lot
to learn.

Lightweight

Vim is (like GNU Nano or GNU emacs) lightweight. It does not need any kind of graphical interface
(like x11, wayland &co).

This makes vim to a system maintainers best friend. You can use it using ssh and, this is really
important, on really small devices that do not have some kind of graphical interface.

Programming on and maintaining remote servers got more and more important during the last
years and using vim (or emacs) is the best way to do so.

Unlike many IDEs vim brings the capability to work with many kinds of files out of the box and
writing your own commands and syntax hl is easy.

And last but not least, a vim user should be able to use vi, that is preinstalled on most UNIX
systems.

Read Advantages of vim online: https://riptutorial.com/vim/topic/9653/advantages-of-vim

https://riptutorial.com/ 14

https://riptutorial.com/vim/topic/9653/advantages-of-vim

Chapter 4: Ask to create non-existant
directories upon saving a new file

Introduction

If you edit a new file: vim these/directories/dont/exist/newfile, you won't be able to save the file
as the directory vim is trying to save into does not exist.

Examples

Prompt to create directories with :w, or sliently create them with :w!

This code will prompt you to create the directory with :w, or just do it with :w!:

augroup vimrc-auto-mkdir
 autocmd!
 autocmd BufWritePre * call s:auto_mkdir(expand('<afile>:p:h'), v:cmdbang)
 function! s:auto_mkdir(dir, force)
 if !isdirectory(a:dir)
 \ && (a:force
 \ || input("'" . a:dir . "' does not exist. Create? [y/N]") =~? '^y\%[es]$')
 call mkdir(iconv(a:dir, &encoding, &termencoding), 'p')
 endif
 endfunction
augroup END

Read Ask to create non-existant directories upon saving a new file online:
https://riptutorial.com/vim/topic/9470/ask-to-create-non-existant-directories-upon-saving-a-new-file

https://riptutorial.com/ 15

http://travisjeffery.com/b/2011/11/saving-files-in-nonexistent-directories-with-vim/
https://riptutorial.com/vim/topic/9470/ask-to-create-non-existant-directories-upon-saving-a-new-file

Chapter 5: Autocommands

Remarks

Surround autocmd commands

autocmd is an additive command, and you probably don't want this behaviour by default.

For example, if you re-source your .vimrc a few times while editing it, vim can slow down.

Here's proof:

:autocmd BufWritePost * if &diff | diffupdate | endif " update diff after save
:autocmd BufWritePost * if &diff | diffupdate | endif " update diff after save

If you now type :autocmd BufWritePost *, you'll see both lines in the output, not just one. Both get
executed.

To avoid this behaviour, surround all your autocmds as follows:

if has ('autocmd') " Remain compatible with vi which doesn't have autocmd
 augroup MyDiffUpdate " A unique name for the group. DO NOT use the same name twice!
 autocmd! " Clears the old autocommands for this group name
 autocmd BufWritePost * if &diff | diffupdate | endif " Update diff after save
 " ... etc ...
 augroup END
endif

Examples

Automatically source .vimrc after saving

Add this to your $MYVIMRC:

" Source vim configuration file whenever it is saved
if has ('autocmd') " Remain compatible with earlier versions
 augroup Reload_Vimrc " Group name. Always use a unique name!
 autocmd! " Clear any preexisting autocommands from this group
 autocmd! BufWritePost $MYVIMRC source % | echom "Reloaded " . $MYVIMRC | redraw
 autocmd! BufWritePost $MYGVIMRC if has('gui_running') | so % | echom "Reloaded " .
$MYGVIMRC | endif | redraw
 augroup END
endif " has autocmd

Features:

echom tells the user what has happened (and also logs to :messages).•
$MYVIMRC and $MYGVIMRC handle platform-specific names for the configuration files,•
and only match the actual configuration files (ignoring copies in other directories, or a •

https://riptutorial.com/ 16

fugitive:// diff)
has() will prevent an error if using incompatible versions, such as vim-tiny.•
autocmd! avoids buildup of multiple identical autocommands if this file is sourced again. (It
clears all commands in the named group, so the group name is important.)

•

Refresh vimdiff views if a file is saved in another window

:autocmd BufWritePost * if &diff | diffupdate | endif

Read Autocommands online: https://riptutorial.com/vim/topic/4887/autocommands

https://riptutorial.com/ 17

https://riptutorial.com/vim/topic/4887/autocommands

Chapter 6: Auto-Format Code

Examples

In normal mode:

In normal mode:

gg go to top = then G

Read Auto-Format Code online: https://riptutorial.com/vim/topic/7931/auto-format-code

https://riptutorial.com/ 18

https://riptutorial.com/vim/topic/7931/auto-format-code

Chapter 7: Buffers

Examples

Managing buffers

You can use buffers to work with multiple files. When you open a file using

:e path/to/file

it opens in a new buffer (the command means edit the file). New buffer that holds a temporary
copy of the file.

You can go to previous buffer with :bp[rev] and next buffer with :bn[ext].

You can go to a particular buffer with b{n} to go to nth buffer. b2 goes to second buffer.

Use :ls or :buffers to list all buffers

Hidden buffers

Moving away from a buffer with unsaved changes will cause this error:

E37: No write since last change (add ! to override)

You can disable this by adding set hidden to your .vimrc file. With this option set your changes will
persist in the buffer, but will not be saved to disk.

Switching buffer using part of the filename

To easily select a buffer by filename, you can use:

:b [part_of_filename]<Tab><Tab><Tab>...<Enter>

The first Tab will expand the word to a full filename, and subsequent Tab presses will cycle through
the list of possible matches.

When multiple matches are available, you can see a list of matches before the word expansion by
setting this option:

:set wildmode=longest:full:list,full

This allows you to refine your word if the list of matches is too long, but it requires an extra Tab
press to perform the expansion. Add the setting to your $MYVIMRC if you want to keep it.

Some people like to kick-start this process with a keymap that first lists the buffers:

https://riptutorial.com/ 19

:nnoremap <Leader>b :set nomore <Bar> :ls <Bar> :set more <CR>:b<Space>

That makes it easy to select a buffer by its number:

:b [buffer_num]

Quickly switch to previous buffer, or to any buffer by number

<C-^> will switch to and from the previous edited file. On most keyboards <C-^> is CTRL-6.

3<C-^> will switch to buffer number 3. This is very quick, but only if you know the buffer number.

You can see the buffer numbers from :ls or from a plugin such as MiniBufExplorer.

Read Buffers online: https://riptutorial.com/vim/topic/2317/buffers

https://riptutorial.com/ 20

https://github.com/fholgado/minibufexpl.vim
https://riptutorial.com/vim/topic/2317/buffers

Chapter 8: Building from vim

Examples

Starting a Build

:mak[e][!] [arguments] will start the program referred to by the makeprg option. By default, makeprg is
set to "make," but can be configured to invoke any appropriate program.

All [arguments] (can be several) are passed to makeprg just as if it had been invoked with
:!{makeprg} [arguments].

The output of the invoked program is parsed for errors according to the 'errorformat' option. If any
errors are found, the quickfix window is opened to display them.

:cnext :cprev can be used to cycle between errors displayed in the quickfix window. :cc will jump
to the error under the cursor.

It should be noted that on systems where gnumake is installed and properly configured, there is
generally no need to define &makeprg to anything but its default value to compile mono-file projects.
Thus, in C, C++, Fortran... just type :make %< to compile the current file. According the source file is
in the current directory, :!./%< will execute it. Compilation options can be controlled through
$CFLAGS, $CXXFLAGS, $LDFLAGS, etc. Consult the documentation of make regarding implicit rules.

Read Building from vim online: https://riptutorial.com/vim/topic/3321/building-from-vim

https://riptutorial.com/ 21

https://riptutorial.com/vim/topic/3321/building-from-vim

Chapter 9: Command-line ranges

Examples

Absolute line numbers

The following command executes :command on lines 23 to 56:

:23,56command

NB: Ranges are inclusive by default.

Relative line numbers

In the following command the range starts 6 lines above the current line and ends 3 lines below:

:-6,+3command

Line shortcuts

. represents the current line but it can also be omitted entirely.•
$ represents the last line.•
% represents the whole buffer, it is a shortcut for 1,$.•

The two commands below execute :command on every file from the current line to the last line:

:.,$command
:,$command

The command below executes :command on the whole buffer:

:%command

Marks

The command below executes :command on every line from the one containing the f manual mark
to the one containing the t manual mark:

:'f,'tcommand

Automatic marks can be used too:

:'<,'>command " covers the visual selection
:'{,'}command " covers the current paragraph
:'[,']command " covers the last changed text

https://riptutorial.com/ 22

See :help mark-motions.

Search

The commands below execute :command on every line from the first matching from to the first
matching to:

:/from/,/to/command " from next 'from' to next 'to'
:?from?,/to/command " from previous 'from' to next 'to'
:?from?,?to?command " from previous 'from' to previous 'to'

See :help search-commands.

Line offsets

Line offsets can be used to adjust the start and end lines:

:/foo/-,/bar/+4command " from the line above next 'foo' to 4 lines below next 'bar'

See :help search-offset.

Mixed ranges

It's possible to combine all of the above into expressive ranges:

:1267,/foo/-2command
:'{,command
:'f,$command

Be creative and don't forget to read :help cmdline-ranges.

Read Command-line ranges online: https://riptutorial.com/vim/topic/3383/command-line-ranges

https://riptutorial.com/ 23

https://riptutorial.com/vim/topic/3383/command-line-ranges

Chapter 10: Configuring Vim

Examples

The vimrc file

The .vimrc file (pronounced Vim-wreck) is a Vim configuration file. It holds commands that will be
executed by Vim every time it starts.

By default the file is empty or non-existent; you can use it to customize your Vim environment.

To find out where Vim expects the vimrc file to be stored, open Vim and run:

:echo $MYVIMRC

Unix: on a Unix system such as Mac or Linux your vimrc will be called .vimrc and usually be
located in your home directory ($HOME/.vimrc).

Windows: on Windows it will be called _vimrc and located in your home directory (
%HOMEPATH%/_vimrc).

On startup, Vim will search in multiple places for a vimrc file. The first that exists is used, the
others are ignored. For a full reference see the :h $MYVIMRC documentation article.

Which options can I use?

If you don't know which options you should use, you may be interested in the :options command.

This will open a split with all Vim options listed and with their current value displayed. There are 26
sections to display all options you can try.

e.g.

4 displaying text

scroll number of lines to scroll for CTRL-U and CTRL-D
 (local to window)
 set scr=20
scrolloff number of screen lines to show around the cursor
 set so=5
wrap long lines wrap
 set nowrap wrap

...

On a value line (e.g. set nowrap) you can press CR to toggle the value (if it's a binary value). On an
option line (e.g. wrap long line wrap) you can press CR to access the documentation for this option.

https://riptutorial.com/ 24

Files and directories

Whatever you do to customize Vim, it should NEVER happen outside of $HOME:

on Linux, BSD and Cygwin, $HOME is usually /home/username/,•
on Mac OS X, $HOME is /Users/username/,•
on Windows, $HOME is usually C:\Users\username\.•

The canonical location for your vimrc and your vim directory is at the root of that $HOME directory:

on Unix-like systems

$HOME/.vimrc <-- the file
$HOME/.vim/ <-- the directory

•

on Windows

$HOME_vimrc <-- the file
$HOME\vimfiles\ <-- the directory

•

The layout above is guaranteed to work, now and in the future.

Vim 7.4 made it possible to keep your lovely vimrc inside your vim directory. It is really a good
idea, if only because it makes it easier to move your config around.

If you use 7.4 exclusively, the following will be enough:

on Unix-like systems

$HOME/.vim/vimrc

•

on Windows

$HOME\vimfiles\vimrc

•

If you want the benefits of a self-contained vim/ but use both 7.4 and an older version, or only an
older version, the simplest, future-proof, solution is to put this line and only this line:

runtime vimrc

in this file:

on Unix-like systems

$HOME/.vimrc

•

on Windows•

https://riptutorial.com/ 25

$HOME_vimrc

and do your configuration in $HOME/.vim/vimrc or $HOME\vimfiles\vimrc.

Options

There are three kinds of options:

boolean options,•
string options,•
number options.•

To check the value of an option,

use :set option? to check the value of an option,•
use :verbose set option? to also see where it was last set.•

Setting boolean options

set booloption " Set booloption.
set nobooloption " Unset booloption.

set booloption! " Toggle booloption.

set booloption& " Reset booloption to its default value.

Setting string options

set stroption=baz " baz

set stroption+=buzz " baz,buzz
set stroption^=fizz " fizz,baz,buzz
set stroption-=baz " fizz,buzz

set stroption= " Unset stroption.

set stroption& " Reset stroption to its default value.

Setting number options

set numoption=1 " 1

set numoption+=2 " 1 + 2 == 3
set numoption-=1 " 3 - 1 == 2
set numoption^=8 " 2 * 8 == 16

Using an expression as value

https://riptutorial.com/ 26

using concatenation:

execute "set stroption=" . my_variable

•

using :let:

let &stroption = my_variable

•

See :help :set and :help :let.

Mappings

Don't put comments after mappings, it will break things.•
Use :map <F6> to see what is mapped to <F6> and in which mode.•
Use :verbose map <F6> to also see where it was last mapped.•
:map and :map! are too generic. Use :n[nore]map for normal mode mappings, :i[nore]map for
insert mode, :x[nore]map for visual mode, etc.

•

Recursive mappings

Use recursive mappings only if you intend to use other mappings in your mappings:

nnoremap b B
nmap <key> db

In this example, b is made to work like B in normal mode. Since we use b in a recursive mapping,
pressing <key> will work like dB, not like db.

Non-recursive mappings

Use non-recursive mappings only if you intend to use default commands in your mappings, which
is almost always what you want:

nnoremap <key> db

In this example, we use b in a non-recursive mapping so pressing key will always work like db,
whether we remapped b or not.

Executing a command from a mapping

nnoremap <key> :MyCommand<CR>

Executing multiple commands from a mapping

https://riptutorial.com/ 27

nnoremap <key> :MyCommand <bar> MyOtherCommand <bar> SomeCommand<CR>

Calling a function from a mapping

nnoremap <key> :call SomeFunction()<CR>

Mapping a <Plug>mapping

map <key> <Plug>name_of_mapping

See :help map-commands, :help key-notation and :help <plug>.

see Key Mappings in Vim for futher read

Variables

Like most scripting languages, vimscript has variables.

One can define a variable with the :let command:

let variable = value

and delete it with :unlet:

unlet variable

In Vim, variables can be scoped by prepending a single letter and a colon to their name. Plugin
authors use that feature to mimic options:

let g:plugin_variable = 1

See :help internal-variables.

Commands

Don't forget the bang to allow Vim to overwrite that command next time you reload your
vimrc.

•

Custom commands must start with an uppercase character.•

Examples

command! MyCommand call SomeFunction()
command! MyOtherCommand command | Command | command

See :help user-commands.•

https://riptutorial.com/ 28

http://www.riptutorial.com/vim/topic/3535/key-mappings-in-vim

Functions

Don't forget the bang to allow Vim to overwrite that function next time you reload the script
where the function is defined.

•

Custom functions must start either with an uppercase character (global functions), or with s:
(script local functions), or they must be prefixed with the name associated to the autoload
plugin where they are defined (e.g. in {&rtp}/autoload/foo/bar.vim we could define
foo#bar#functionname()).

•

To be able to use the parameters in the function, use a:parameter_name. Variadic functions
can be defined with the ellipsis ..., to access the parameters use a:000 (list of all
parameters), or a:0 (number of parameters equal to len(a:000)), a:1 first unnamed
parameters, and so on.

•

Functions can be called like so: :call MyFunction(param1, param2)•
Every line in a function implicitly begins with a :, thus all the commands are colon commands•
To prevent the function from continuing its execution in case of error, it's best to annotate the
function signature with abort

•

Example

function! MyFunction(foo, bar, ...) abort
 return a:foo . a:bar . (a:0 > 0 ? a:1 : '')
endfunction

Script functions

If you only plan on using your function in the file where it's defined (either because you've broken a
bigger function in smaller parts, or because you'll use it in a command, a mapping, ...), you can
prefix it with s:, avoiding littering your global namespace with useless internal functions:

function! s:my_private_function() " note we don't need to capitalize the first letter this
time
 echo "Hi!"
endfunction

Using s:functions from mappings

If your script local function is going to be used in a mapping, you need to reference it using the
special <SID> prefix:

nnoremap <your-mapping-key> :call <SID>my_private_function()<CR>

See :help user-functions.

Note however, that since Vim 7, it's considered a best practice to define mappings abbreviations,
commands and menus in (ft)plugins, and defining functions in autoload plugins -- except the
functions the plugins need to use when they're loaded. This means that nowadays the need to call

https://riptutorial.com/ 29

scripts local functions from mappings is not as pertinent as what it used to be.

Autocommand groups

Autocommand groups are good for organization but they can be useful for debugging too.
Think of them as small namespaces that you can enable/disable at will.

•

Example

augroup MyGroup
 " Clear the autocmds of the current group to prevent them from piling
 " up each time you reload your vimrc.
 autocmd!

 " These autocmds are fired after the filetype of a buffer is defined to
 " 'foo'. Don't forget to use 'setlocal' (for options) and '<buffer>'
 " (for mappings) to prevent your settings to leak in other buffers with
 " a different filetype.
 autocmd FileType foo setlocal bar=baz
 autocmd FileType foo nnoremap <buffer> <key> :command<CR>

 " This autocmd calls 'MyFunction()' everytime Vim tries to create/edit
 " a buffer tied to a file in /'path/to/project/**/'.
 autocmd BufNew,BufEnter /path/to/project/**/* call MyFunction()
augroup END

See :help autocommand.

Conditionals

if v:version >= 704
 " Do something if Vim is the right version.
endif

if has('patch666')
 " Do something if Vim has the right patch-level.
endif

if has('feature')
 " Do something if Vim is built with 'feature'.
endif

See :help has-patch and :help feature-list.

Setting Options

Commonly you would use :set to set options to your liking in your .vimrc. There are many options
that can be changed.

For example, in order to use spaces for indentation:

:set expandtab

https://riptutorial.com/ 30

:set shiftwidth=4
:set softtabstop=4

Syntax Highlighting

Switch syntax highlighting on, when the terminal has colors

if &t_Co > 2 || has("gui_running")
 syntax on
end

Show trailing whitespace and tabs. Showing tabs can be especially useful when looking for errors
in Makefiles.

set list listchars=tab:\|_,trail:.
highlight SpecialKey ctermfg=DarkGray

Color Schemes

Vim comes with several pre-installed color schemes. In Linux, the color schemes that come with
Vim are stored in /usr/share/vim/vim74/colors/ (where 74 is your version number, sans periods);
MacVim stores them in /Applications/MacVim.app/Contents/Resources/vim/runtime/colors.

Changing Color Schemes

The colorscheme command switches the current color scheme.

For instance, to set the color scheme to "robokai":

:colorscheme robokai

The default color scheme is creatively named default, so, to return to it use

:colorscheme default

To view all of the currently installed color schemes, type :colorscheme followed by space and then
either tab or ctrld.

Installing Color Schemes

User-installed color schemes can be placed in ~/.vim/colors/. Once a color scheme is added to
this directory, it will appear as an option to the colorscheme command.

To find new color schemes, there are sites like vimcolors which contain a variety of color schemes.
There are also tools like vim.ink and Vivify to aid you in creating your own color schemes, or you

https://riptutorial.com/ 31

http://vimcolors.com/
http://vim.ink/
http://bytefluent.com/vivify/

can create them by hand.

Toggle line enumerating

To enable - type:

:set number or :set nu.

To disable - type:

:set nonumber or :set nonu.

To enable enumerating relative to the cursor location - type:

:set relativenumber.

To disable enumerating relative to the cursor location - type:

:set norelativenumber.

Note: To change whether the current line shows the actual line number or 0, use the :set number
and :set nonumber commands while the relativenumber attribute is active.

Plugins

Vim plugins are addons that can be used to change or enhance functionality of vim.

There is a good list of plugins at vimawesome

Read Configuring Vim online: https://riptutorial.com/vim/topic/2235/configuring-vim

https://riptutorial.com/ 32

http://vimawesome.com/
https://riptutorial.com/vim/topic/2235/configuring-vim

Chapter 11: Converting text files from DOS to
UNIX with vi

Remarks

The ^M character stands for a carriage return in Vim (<c-m> or just <CR>). Vim displays this character
when at least on line in the file uses LF line endings. In other words, when Vim consider a file to
have fileformat=unix but some lines do have carriage returns (CR), the carriage returns are
displayed as ^M.

A file that has a single line with LF line ending and several lines with CRLF line endings is most often
created by wrongly editing a file created on a MSDOS based system. For example, by creating a
file under an MSDOS operating system, copying it to a UNIX based system, and then prepending
a hash-bang sting (e.g. #!/bin/sh) using tools on the UNIX based operating system.

Examples

Converting a DOS Text file to a UNIX Text file

Quite often you have a file which was edited within DOS or Windows and you are viewing it under
UNIX. This can look like the following when you view the file with vi.

First line of file^M
Next Line^M
And another^M

If you wish to remove the ^M, it can be that you delete each ^M by hand. Alternatively, in vi after
hitting Esc you can enter the following at the command mode prompt:

:1,$s/^M//g

Where ^M is entered with Ctrl and v together and then Ctrl and m together.

This executes the command from the first line '1' to the last line '$', the command is to substitute 's'
the '^M' for nothing '' and to this globally 'g'.

Using VIm's fileformat

When Vim opens a file with <CR><NL> line endings (common on MSDOS based operating systems,
also called CRLF) it will set fileformat to dos, you can check what with:

:set fileformat?
 fileformat=dos

https://riptutorial.com/ 33

Or just

:set ff?
 fileformat=dos

To convert it to <NL> line endings (common on most UNIX based operating systems, also called LF)
you can change the fileformat setting and Vim will change the buffer.

:set ff=unix

Read Converting text files from DOS to UNIX with vi online:
https://riptutorial.com/vim/topic/3827/converting-text-files-from-dos-to-unix-with-vi

https://riptutorial.com/ 34

https://riptutorial.com/vim/topic/3827/converting-text-files-from-dos-to-unix-with-vi

Chapter 12: Differences between Neovim and
Vim

Examples

Configuration Files

In Vim, your configuration file is ~/.vimrc, with further configuration files in ~/.vim.

In Neovim, configuration files are located in ~/.config/nvim. There is also no ~/.nvimrc file. Instead,
use ~/.config/nvim/init.vim.

You can import your Vim configuration directly into Neovim using this Unix command:

ln -s ~/.vimrc ~/.config/nvim/init.vim

Read Differences between Neovim and Vim online:
https://riptutorial.com/vim/topic/7848/differences-between-neovim-and-vim

https://riptutorial.com/ 35

https://riptutorial.com/vim/topic/7848/differences-between-neovim-and-vim

Chapter 13: Easter Eggs

Examples

Help!

For the distressed user, vim provides words of wisdom.

:help!

When you're feeling down

Problem: Vim users are not always happy.

Solution: Make them happy.

7.4

:smile

Note: Requires patch version ≥7.4.1005

The Answer

Vim knows The Answer:

:help 42

Vim will open the usr_42.txt document from the manual and show the following text:

What is the meaning of life, the universe and everything? 42

Douglas Adams, the only person who knew what this question really was about is now
dead, unfortunately. So now you might wonder what the meaning of death is...

Looking for the Holy Grail

Check this out:

:help holy-grail

Ceci n'est pas une pipe

If you look for the help section of | or bar : :h bar you can see:

 bar
| To screen column [count] in the current line.

https://riptutorial.com/ 36

https://github.com/vim/vim/commit/86e179dbe75010e9545e1a2fcc92a15d57bf27fd

 exclusive motion. Ceci n'est pas une pipe.

This is a reference to the painting La trahison des images by René Magritte.

When a user is getting bored

Search for :h UserGettingBored

 UserGettingBored
UserGettingBored When the user presses the same key 42 times.
 Just kidding! :-)

Spoon

Instead of looking for the fork help, you can search for the spoon help:

:h spoon

 fork spoon
For executing external commands fork()/exec() is used when possible, otherwise
system() is used, which is a bit slower. The output of ":version" includes ...

Knights who say Ni!

Check this out:

:Ni!

Monty Python and the Holy Grail

nunmap

:help map-modes

:nunmap can also be used outside of a monastery.

https://riptutorial.com/ 37

http://i.stack.imgur.com/1ga0w.jpg
https://en.wikipedia.org/wiki/Monty_Python_and_the_Holy_Grail

Read Easter Eggs online: https://riptutorial.com/vim/topic/4656/easter-eggs

https://riptutorial.com/ 38

https://riptutorial.com/vim/topic/4656/easter-eggs

Chapter 14: Enhanced undo and redo with a
undodir

Examples

Configuring your vimrc to use a undodir

Since vim version 7.3 the feature 'persistent_undo' is supported, which makes it possible do
undo/redo changes, even after closing vim or restarting your computer.

It's possible to configure it by adding the following to your vimrc, but first create a directory, where
your undofiles should be saved. You can create the file anywhere, but I recommend using the
".vim" directory.

if has('persistent_undo') "check if your vim version supports
 set undodir=$HOME/.vim/undo "directory where the undo files will be stored
 set undofile "turn on the feature
endif

After adding this to your vimrc and sourcing the vimrc again, you can use the feature by using the
basic undo/redo commands

Read Enhanced undo and redo with a undodir online:
https://riptutorial.com/vim/topic/7875/enhanced-undo-and-redo-with-a-undodir

https://riptutorial.com/ 39

http://www.riptutorial.com/vim/example/18666/basic-undo-and-redo
https://riptutorial.com/vim/topic/7875/enhanced-undo-and-redo-with-a-undodir

Chapter 15: Exiting Vim

Parameters

Parameter Details

: Enter command-line mode

w Write

q Quit

a All

! Override

Remarks

Command-line mode is entered through normal mode. You will know you are in command-line
mode when there is a : in the bottom left corner of your terminal window.

Normal mode is the default mode of vi/vim and can be switched to by pressing the ESC.

Vi/Vim have built-in checks to prevent unsaved work from being lost and other useful features. To
bypass these checks, use the override ! in your command.

In Vi/Vim it is possible to have more than one file displayed (in different windows) at the same
time. Use a to close all the opened windows.

Examples

Exit with save

:wq

ZZ

Exit without save

:q!

Exit forcefully (without save)

:q!

ZQ

https://riptutorial.com/ 40

Exit forcefully (with save)

:wq!

Exit forcefully from all opened windows (without save)

:qa!

if multiple files are opened

:wqall

Exiting multiple files with saving contents

:qall!

Exiting multiple files without saving contents

Read Exiting Vim online: https://riptutorial.com/vim/topic/5074/exiting-vim

https://riptutorial.com/ 41

https://riptutorial.com/vim/topic/5074/exiting-vim

Chapter 16: Extending Vim

Remarks

A plugin is a script or set of scripts that changes Vim's default behavior, either by adding non-
existing features or by extending existing features.

Often added "non-existing features" include:

commenting,•
indentation detection,•
autocompletion,•
fuzzy-matching,•
support for a specific language,•
etc.•

Often extended "existing features" include:

omni-completion,•
text-objects & motions,•
yanking & putting,•
status line,•
search & replace,•
buffer/window/tab page switching,•
folding,•
etc.•

Examples

How plugins work

A plugin could present itself as a single file containing 30 lines of vimscript or as 20MB of
vimscript/python/ruby/whatever split into many files across a dozen of directories that depends on
a number of external tools.

The former is obviously easy to install and manage but the latter could pause quite a challenge.

The principle

The 'runtimepath' option tells Vim where to look for runtime scripts. The default value makes Vim
look for scripts into the following directories in order:

on UNIX-like systems

$HOME/.vim/○

$VIM/vimfiles/○

•

https://riptutorial.com/ 42

$VIMRUNTIME/○

$VIM/vimfiles/after/○

$HOME/.vim/after/○

on Windows

$HOME/vimfiles/○

$VIM/vimfiles/○

$VIMRUNTIME/○

$VIM/vimfiles/after/○

$HOME/vimfiles/after/○

•

Of the directories above, only install plugins into the ones in bold. The others will cause instability
for no good reason. Installing a plugin boils down to placing each of its components in the right
directory under $HOME/.vim/ or $HOME/vimfiles/.

The manual method

Single file plugin

Put the file under $HOME/.vim/plugin or $HOME/vimfiles/plugin

This would source the plugin on startup of Vim. Now the user could use everything defined in it. If
the plugin however needs activation, the user either has to execute the command themselves
whenever they want to use it, or add the command to .vimrc

Bundle

A bundle is a directory structure that the plugin uses. It consists of all the files of the plugin under
the appropriate sub-directories.

To install such a plugin the sub-directories should be merged with their counterparts in
$HOME/.vim/plugin. This approach however leads to mixing of the files of different plugins in the
same directories and could possibly lead to namespace problems.

Another approach is to copy the entire directory into $HOME/.vim/bundle.

When using this approach there should be at least one .vim file under the
$HOME/.vim/bundle/autoload directory. These files would be sourced by vim on startup.

Note: Depending on the operating system of the user the prefix of all paths might be
$HOME/vimfiles. For more details see How plugins work

VAM

https://github.com/MarcWeber/vim-addon-manager

https://riptutorial.com/ 43

http://www.riptutorial.com/vim/example/12577/how-plugins-work
https://github.com/MarcWeber/vim-addon-manager

Vundle

Vundle is a plugin manager for Vim.

Installing Vundle

(Full installation details can be found in the Vundle Quick Start)

Install Git and clone Vundle into ~/.vim/bundle/Vundle.vim.1.

Configure plugins by adding the following to the top of your .vimrc, adding or removing
plugins as necessary (the plugins in the list are merely for illustration purposes)

 set nocompatible " be iMproved, required
 filetype off " required

 " set the runtime path to include Vundle and initialize
 set rtp+=~/.vim/bundle/Vundle.vim
 call vundle#begin()
 " alternatively, pass a path where Vundle should install plugins
 "call vundle#begin('~/some/path/here')

 " let Vundle manage Vundle, required
 Plugin 'VundleVim/Vundle.vim'

 " All of your Plugins must be added before the following line
 call vundle#end() " required
 filetype plugin indent on " required
 " To ignore plugin indent changes, instead use:
 "filetype plugin on

 "place non-Plugin stuff after this line

2.

Install Plugins: by launching Vim and running :PluginInstall.3.

Supported Plugin Formats

The following are examples of different formats supported. Keep Plugin commands between
vundle#begin and vundle#end.

Plugin Location Usage

plugin on GitHub Plugin 'tpope/vim-fugitive'

plugin from http://vim-scripts.org/vim/scripts.html Plugin 'L9'

Git plugin not hosted on GitHub Plugin 'git://git.wincent.com/command-
t.git'

git repos on your local machine (i.e. when working Plugin
'file:///home/gmarik/path/to/plugin'

https://riptutorial.com/ 44

https://github.com/VundleVim/Vundle.vim
https://github.com/VundleVim/Vundle.vim%23quick-start
http://git-scm.com/
http://vim-scripts.org/vim/scripts.html

Plugin Location Usage

on your own plugin)

The sparkup vim script is in a subdirectory of this
repo called vim. Pass the path to set the
runtimepath properly.

Plugin 'rstacruz/sparkup', {'rtp':
'vim/'}

Install L9 and avoid a Naming conflict if you've
already installed a different version somewhere
else.

Plugin 'ascenator/L9', {'name':
'newL9'}

Working on a shared account, for example, on cluster head node can raise issues from the point
of disk usage by .vim directory. There are a couple of packages which take considerable amount
of disk space, for example YCM. So please choose your Vundle plugin directory wisely, and its very
easy to do so by setting rtp. And also if you are planning to install any vim plugin, don't directly do
git clone in the bundle directory. Use the Vundle way.

The future: packages

See :help packages.

Pathogen

vim-pathogen is a runtimepath manager created by Tim Pope to make it easy to install plugins and
runtime files in their own private directories.

Installing Pathogen

Put pathogen in ~/.vim/bundle (here with Git, but it's not mandatory):

git clone https://github.com/tpope/vim-pathogen.git

1.

Add the following lines to the top of your .vimrc:

 " enable vim-pathogen
 runtime bundle/vim-pathogen/autoload/pathogen.vim
 execute pathogen#infect()

2.

the runtime directive specifies the path to the autoload script of vim-pathogen;•
execute pathogen#infect() initiates it.•

Once initiated, Pathogen will automatically start a sweep through the folders in ~/.vim/bundle and
load the plugin from each of them.

Using Pathogen

https://riptutorial.com/ 45

https://github.com/Valloric/YouCompleteMe
https://github.com/tpope/vim-pathogen

Put the top-level directory of your plugin in ~/.vim/bundle/ to make it available next time you
start Vim.

1.

Run :Helptags to index your new plugin's documentation.2.

Benefits

Each plugin resides in its own directory under ~/.vim/bundle/.•
Your .vimrc stays clean from the configuration needed to load plugins.•

The effort needed to "manage" a plugin is thus reduced to:

put its top-level directory under ~/.vim/bundle/ to install it,•
replace its top-level directory to update it,•
delete its top-level directory to uninstall it.•

How you perform those three actions (manually, via an automation tool, with
Git/Svn/Hg/whatever…) is completely up to you.

Read Extending Vim online: https://riptutorial.com/vim/topic/3659/extending-vim

https://riptutorial.com/ 46

https://riptutorial.com/vim/topic/3659/extending-vim

Chapter 17: Filetype plugins

Examples

Where to put custom filetype plugins?

Filetype plugins for foo filetype are sourced in that order:

1. $HOME/.vim/ftplugin/foo.vim. Be careful with what you put in that file as it may be overridden by
$VIMRUNTIME/ftplugin/foo.vim -- under windows, it'll be instead $HOME/vimfiles/ftplugin/foo.vim

2. $VIMRUNTIME/ftplugin/foo.vim. Like everything under $VIMRUNTIME, this file should not be changed.

3. $HOME/.vim/after/ftplugin/foo.vim. This file comes last so it's the ideal place for your filetype-
specific settings.

Read Filetype plugins online: https://riptutorial.com/vim/topic/7734/filetype-plugins

https://riptutorial.com/ 47

https://riptutorial.com/vim/topic/7734/filetype-plugins

Chapter 18: Find and Replace

Examples

Substitute Command

This command:

:s/foo/bar/g

substitutes each occurrence of foo with bar on the current line.

fool around with a foodie

becomes

barl around with a bardie

If you leave off the last /g, it will only replace the first occurence on the line. For example,

:s/foo/bar

On the previous line would become

barl around with a foodie

This command:

:5,10s/foo/bar/g

performs the same substitution in lines 5 through 10.

This command

 :5,$s/foo/bar/g

performs the same substitution from line 5 to the end of the file.

This command:

:%s/foo/bar/g

performs the same substitution on the whole buffer.

If you are in visual mode and hit the colon, the symbol '<,'> will appear. You can then do this

https://riptutorial.com/ 48

:'<,'>s/foo/bar/g

and have the substitution occur within your visual mode selection.

This command:

:%s/foo/bar/gc

is equivalent to the command above but asks for confirmation on each occurence thanks to the /c
flag (for "confirmation").

See :help :s and :help :s_flags.

See also this section on command-line ranges.

Replace with or without Regular Expressions

This substitute command can use Regular Expressions and will match any instance of foo
followed by any(one) character since the period . in Regular Expressions matches any character,
hence the following command will match all instances of foo followed by any character in the
current line.

:s/foo./bar/g

 1 fooing fooes fool foobar foosup

will become

 1 barng bars bar barar barup

If you want to match the literal . period you can escape it in the search field with a backslash \.

:s/foo\./bar/g

 1 fooing fooes foo.l foo.bar foosup

will become

 1 fooing fooes barl barbar foosup

Or disable all pattern matching by following the s command with no.

:sno/foo./bar/g

 1 fooing fooes foo.l foo.bar foosup

will raise an error

https://riptutorial.com/ 49

http://www.riptutorial.com/vim/topic/3383/command-line-ranges
https://en.wikipedia.org/wiki/Regular_expression

 E486: Pattern not found

Read Find and Replace online: https://riptutorial.com/vim/topic/3533/find-and-replace

https://riptutorial.com/ 50

https://riptutorial.com/vim/topic/3533/find-and-replace

Chapter 19: Folding

Remarks

Folding causes multiple lines of text to be collapsed and displayed as a single line. It is useful for
hiding portions of a document considered unimportant for the current task. Folding is purely a
visual change to the document: the folded lines are still present, unchanged.

A fold is persistent. Once created, a fold can be opened and closed without needing to re-create it.
When closed, folds can be moved over or yanked and put as if they were a single line, even
though the underlying operation will operate on all of the text underneath the fold

Examples

Configuring the Fold Method

:set foldmethod={method} sets the fold method for the current window. This determines how folds
are manipulated within that window. Valid options for "method" are:

manual (folds are manually created and destroyed by the user)•
indent (folds are created for lines of equal indentation)•
marker (substring markers are used to indicate the beginning and end of a fold)•
syntax (syntax highlighting items define folds)•
expr (a Vimscript expression is evaluated per line to define its fold level)•
diff (text change isn't changed in a diff view is folded)•

The default is manual.

Creating a Fold Manually

zf{motion} creates a fold that covers the text that "motion" would cover.•
{count}zF creates a fold that covers "count" lines.•
{range}fo[ld] creates a fold for the lines in the provided range.•

All three commands are valid only when foldmethod is set to manual or marker. In the case of the
former fold method, the newly-created folds are closed immediately.

Opening, Closing and Toggling Folds

zo opens a fold underneath the cursor.•
zO opens all folds underneath the cursor, recursively.•
zc closes a fold underneath the cursor.•
zC closes all folds underneath the cursor, recursively.•
za toggles a fold under the cursor (a closed fold is opened, an opened fold is closed).•
zM closes all folds in the buffer.•

https://riptutorial.com/ 51

zR opens all folds in the buffer.•
zm closes a level of fold in the buffer.•
zr opens a level of fold in the buffer.•

Showing the Line Containing the Cursor

zv will ensure the line containing the cursor is not folded. The minimum number of folds required to
expose the cursor line will be opened.

Folding C blocks

This is our buffer:

void write_buffer(size_t size, char ** buffer)
{
 char * buf = *buffer;
 size_t iter;
 for(iter = 0; iter < size; iter++)
 {
 putc(*(buf + iter));
 }
}

The cursor is at [1][1] ([line][col]). Move the cursor to the curl bracket of the for loop:
/for<Enter>j cursor is [6][2].

Now enter zf% (create folding, move to matching bracket). You have successfully create the first
folding.

Now enter :2<Enter>_, the cursor is now at [2][1] and zf%: the complete function body is folded.

You are able to open all foldings you just created using zO and re-close them using zC.

Read Folding online: https://riptutorial.com/vim/topic/3791/folding

https://riptutorial.com/ 52

https://riptutorial.com/vim/topic/3791/folding

Chapter 20: Get :help (using Vim's built-in
manual)

Introduction

Vim's built-in manual is the authoritative source of information and documentation on every Vim
feature, including configurations, built-in functions, and even Vimscript. While not the most
beginner-friendly interface, if you know how to look through it, you can find what you need.

Start searching by executing :help, :help [subject], or :help :help.

Syntax

:h[elp] [keyword]•

Parameters

Parameters Details

keyword

Configuration, function name, or any other keyword with significance to Vim.
Keywords with a leading colon : search for Vim commands; e.g :help :split
yields the window-splitting command, and :help split yields the Vimscript
function split() .

Examples

Getting started / Navigating help files

From anywhere in Vim, execute :help :help. This will open a horizontally split window with the
manual page for the :help command. :help by itself will take you to the Table of Contents for the
manual itself.

Vim's help files are navigable like regular files (you can search for keywords within a file like
normal, with /), and additionally they are linked together by tags. Jump to the destination of a tag
with CTRL-].

Tags are words surrounded by pipe | characters. Versions 7.3 and up 'conceal' those pipe
characters (:help conceal) and highlight them.

For example, the Table of Contents page shows the following. All of the words highlighted in blue
are tags and are surrounded by pipe characters. Typing CTRL-] with the cursor on quickref will take
you to a useful page with a list of tags to useful Vim features.

https://riptutorial.com/ 53

Searching the manual

:help [subject] attempts to find the "best" match for the argument you supply. The argument "can
include wildcards like *, ? and [a-z] (any letter).

You can additionally use Vim's command-line completion with CTRL+D:
:help spli<Ctrl-D> will display a list of help topics matching the pattern spli, including split(), and
:split.

To search for Ctrl-based commands, like Ctrl-V, type:
:help ^V with a literal caret character, or even more specifically,
:help i_^V to get help on Ctrl-V in insert mode.

As you see, vim has a nomenclature for its help topics. For instance, options are quoted (see :h
'sw'), commands start with a colon (see :h :split), functions end with empty brackets (see :h
split()), insert mode mappings start with i_, command mode mappings start with c_, and so on,
except normal mode mappings that have no prefix.

Search term Help page

:help
textwidth Configuration for line-length/text-width

:help normal
:normalcommand, to execute normal-mode commands from the command-
line

:help cursor Vimscript command to move the cursor around

:help buffers Working with buffers; same as :help windows

:help :buffer The :buffer command

:help :vs Vertical splitting

Read Get :help (using Vim's built-in manual) online: https://riptutorial.com/vim/topic/8837/get--
help--using-vim-s-built-in-manual-

https://riptutorial.com/ 54

https://i.stack.imgur.com/rbEmW.png
https://riptutorial.com/vim/topic/8837/get--help--using-vim-s-built-in-manual-
https://riptutorial.com/vim/topic/8837/get--help--using-vim-s-built-in-manual-

Chapter 21: How to Compile Vim

Examples

Compiling on Ubuntu

To build vim from source on Ubuntu:

Get a copy of the source code by downloading from the official Vim repository on GitHub.1.
Get the dependencies by running $ sudo apt-get build-dep vim-gnome or similar.2.
Go to the directory of the Vim source code: cd vim/src3.
Run $./configure. You can customize the build (and enable Perl, Python, etc. language
integrations) by passing configuration options. See src/INSTALL for an overview.

4.

Run $ make.5.
Finish the installation by running $ sudo make install. As your self-compiled Vim is not
managed by the package manager, it will be placed in /usr/local/bin/vim, instead of
/usr/bin/vim. So, to run it, you either need to specify the full path, or ensure that
/usr/local/bin is before /usr/bin in your PATH (it usually is).

6.

(Optional) Remove the distribution-provided version of Vim if you had it installed already: $
sudo apt-get remove vim vim-runtime gvim.

7.

To verify the installation, you can run $ which vim which should return something like
/usr/local/bin/vim if the installation was successful.

Read How to Compile Vim online: https://riptutorial.com/vim/topic/3737/how-to-compile-vim

https://riptutorial.com/ 55

https://github.com/vim/vim
https://riptutorial.com/vim/topic/3737/how-to-compile-vim

Chapter 22: Indentation

Examples

Indent an entire file using built-in indentention engine

In command mode(Esc) enter :gg=G to use Vim's built-in indention engine.

Command Part Description

gg start of file

= indent (when equalprg is empty)

G end of file

You can set equalprg in your .vimrc to use a more sophisticated auto-formatting tool.

For example, to use clang-format for C/C++ put the following line in your .vimrc file:

autocmd FileType c,cpp setlocal equalprg=clang-format

For other file types, replace c,cpp with the filetype you want to format and clang-format with your
preferred formatting tool for that filetype.

For example:

" Use xmllint for indenting XML files. Commented out.
"autocmd FileType xml setlocal equalprg=xmllint\ --format\ --recover\ -\ 2>/dev/null
" Tidy gives more formatting options than xmllint
autocmd FileType xml setlocal equalprg=tidy\ --indent-spaces\ 4\ --indent-attributes\ yes\ --
sort-attributes\ alpha\ --drop-empty-paras\ no\ --vertical-space\ yes\ --wrap\ 80\ -i\ -xml\
2>/dev/null

Indent or outdent lines

To indent our outdent the current line in normal mode press the greater than > key or the less than
< twice accordingly. To do the same on multiple lines just add a number beforehand 6>>

Command Description

>> indent current line

<< outdent current line

6>> indent next 6 lines

https://riptutorial.com/ 56

http://www.riptutorial.com/vim/topic/2231/modes---insert--normal--visual--ex

You can also indent using motions. Here are a few useful examples.

Command Description

>gg indent from current line to first line in file

>G indent from current line to last line in file

>{ indent previous paragraph

>} indent next paragraph

In visual mode by pressing the greater than or less than key just once. Note that this causes an
exit from visual mode. Then you can use . to repeat the edit if you need to and u to undo.

Read Indentation online: https://riptutorial.com/vim/topic/6324/indentation

https://riptutorial.com/ 57

http://www.riptutorial.com/vim/example/5512/basic-motion
http://www.riptutorial.com/vim/topic/2231/modes---insert--normal--visual--ex
http://www.riptutorial.com/vim/topic/2231/modes---insert--normal--visual--ex
https://riptutorial.com/vim/topic/6324/indentation

Chapter 23: Inserting text

Examples

Leaving insert mode

Command Description

<Esc> Leaves insert mode, triggers autocommands and abbreviations

<C-[> Exact synonymous of <Esc>

<C-c> Leaves insert mode, doesn't trigger autocommands

Some people like to use a relatively uncommon pair of characters like jk as shortcut for <Esc> or
<C-[> which can be hard to reach on some keyboards:

inoremap jk <Esc>l

Different ways to get into insert mode

Command Description

a Append text following current cursor position

A Append text at the end of current line

i Insert text before the current cursor position

I Insert text before first non-blank character of current line

gI Insert text in first column of cursor line

gi Insert text at same position where it was left last time in Insert mode

O Open up a new line above the current line and add text there (CAPITAL O)

o Open up a new line below the current line and add text there (lowercase o)

s or cl Delete character under the cursor and switch to insert mode

S or cc Delete entire line and switch to Insert mode

C Delete from the cursor position to the end of the line and start insert mode

c{motion} Delete {motion} and start insert mode (see Basic Motion)

https://riptutorial.com/ 58

http://www.riptutorial.com/vim/example/5512/basic-motion

Insert mode shortcuts

Command Description

<C-w> Delete word before cursor

<C-t> Indent current line with by one shiftwidth

<C-d> Unindent current line with by one shiftwidth

<C-f> reindent the line, (move cursor to auto indent position)

<C-a> Insert previously inserted text

<C-e> Insert the character below

<C-h> Delete one character backward

<C-y> Insert the character above

<C-r>{register} Insert the content of {register}

<C-o>{normal mode command} execute {normal mode command} without leaving insert mode

<C-n> Next autocomplete option for the current word

<C-p> Previous autocomplete option for the current word

<C-v> Insert a character by its ASCII value in decimal

<C-v>x Insert a character by its ASCII value in hexadecimal

<C-v>u Insert a character by its unicode value in hexadecimal

<C-k> Enter a digraph

Running normal commands from insert mode

While in insert mode, press <C-o> to temporarily leave insert mode and execute a one-off normal
command.

Example

<C-o>2w jumps to the second word to the left and returns to insert mode.

Note: Repeating with . will only repeat the actions from returning to insert mode

This allows for some useful mappings, e.g.

https://riptutorial.com/ 59

inoremap <C-f> <Right>
inoremap <C-b> <Left>
inoremap <C-a> <C-o>^
inoremap <C-e> <C-o>$

Now ctrl+a will put the cursor to the beginning of the line and ctrl+e - to the end of line. These
mappings are used by default in readline, so might be useful for people who want consistency.

Insert text into multiple lines at once

Press Ctrl + v to enter into visual block mode.

Use ↑ / ↓ / j / k to select multiple lines.

Press Shift + i and start typing what you want.

After you press Esc, the text will be inserted into all the lines you selected.

Remember that Ctrl+c is not 100% equivalent to Esc and will not work in this situation!

There are slight variations of Shift + i that you can press while in visual block mode:

Key Description

c or s Delete selected block and enter insert mode

C Delete selected lines (from cursor until end) and enter insert mode

R Delete selected lines and enter insert mode

A Append to selected lines, with the column at the end of the first line

Also note that pressing . after a visual block operation will repeat that operation where the cursor
is!

Paste text using terminal "paste" command

If you use the paste command from your terminal emulator program, Vim will interpret the stream
of characters as if they were typed. That will cause all kind of undesirable effects, particularly bad
indendation.

To fix that, from command mode:

:set paste

Then move on to insert mode, with i, for example. Notice the mode is now -- INSERT (paste) --.
Now paste with your terminal emulator command, or with the mouse. When finished go to
command mode, with Esc and run:

https://riptutorial.com/ 60

:set nopaste

There is a simpler way, when one wants to paste just once. Put this in your .vimrc (or use the
plugin unimpaired.vim):

function! s:setup_paste() abort
 set paste
 augroup unimpaired_paste
 autocmd!
 autocmd InsertLeave *
 \ set nopaste |
 \ autocmd! unimpaired_paste
 augroup end
endfunction

nnoremap <silent> yo :call <SID>setup_paste()<CR>o
nnoremap <silent> yO :call <SID>setup_paste()<CR>O

Now one can simply press yo to paste code under the cursor, and then <Esc> to go back to
normal/nopaste mode.

Pasting from a register while in insert mode

While in insert mode, you can use <C-r> to paste from a register, which is specified by the next
keystroke. <C-r>" for example pastes from the unnamed (") register.

See :help registers.

Advanced Insertion Commands and Shortcuts

Here is a quick reference for advanced insertion, formatting, and filtering commands/shortcuts.

Command/Shortcut Result

g + ? + m Perform rot13 encoding, on movement m

n + ctrl + a +n to number under cursor

n + ctrl + x -n to number under cursor

g + q+ m Format lines of movement m to fixed width

:rce w Center lines in range r to width w

:rle i Left align lines in range r with indent i

:rri w Right align lines in range r to width w

!mc Filter lines of movement m through command c

n!!c Filter n lines through command c

https://riptutorial.com/ 61

https://github.com/tpope/vim-unimpaired

Command/Shortcut Result

:r!c Filter range r lines through command c

Disable auto-indent to paste code

When pasting text through a terminal emulator, the auto-indent feature may destroy the
indentation of the pasted text.

For example:

function () {
 echo 'foo'
 echo 'bar'
 echo 'baz'
}

will be pasted as:

function () {
 echo 'foo'
 echo 'bar'
 echo 'baz'
 }

In these cases, use the paste/nopaste option to disable / enable the auto-indent feature:

:set paste
:set nopaste

Adding to this, there is a simpler approach to the problem: Add the following line in your .vimrc:

set pastetoggle=<F3>

And if you want to paste as is from the clipboard. Just press F3 in insert mode, and paste. Press
F3 again to exit from the paste mode.

Read Inserting text online: https://riptutorial.com/vim/topic/953/inserting-text

https://riptutorial.com/ 62

https://riptutorial.com/vim/topic/953/inserting-text

Chapter 24: Key Mappings in Vim

Introduction

Updating Vim key mappings allows you to solve two kinds of problems: Re-assigning key
commands to letters that are more memorable or accessible, and creating key commands for
functions which have none. Here you will learn about the various ways to [re]map key commands,
and the context to which they apply (i.e. vim modes)

Examples

Basic mapping

map Overview

A key sequence can be re-mapped to another key sequence using one of the map variants.

As an example, the following typical map will exit Insert mode when you press jk in quick sequence:

:inoremap jk <Esc>

map Operator

There are multiple variants of :map for different modes.

Commands Modes

:map, :noremap, :unmap Normal, Visual and Operator-pending mode

:map!, :noremap!, :unmap! Insert and Command-line mode

:nmap, :nnoremap, :nunmap Normal mode

:imap, :inoremap, :iunmap Insert and Replace mode

:vmap, :vnoremap, :vunmap Visual and Select mode

:xmap, :xnoremap, :xunmap Visual mode

:smap, :snoremap, :sunmap Select mode

:cmap, :cnoremap, :cunmap Command-line mode

:omap, :onoremap, :ounmap Operator pending mode

https://riptutorial.com/ 63

Usually, you should use the :noremap variants; it makes the mapping immune to remapping and
recursion.

map Command

You can display all mappings using :map (or one of the variations above).•
To display the current mapping for a specific key sequence, use :map <key> where <key> is a
sequence of keys

•

Specials keys like Esc are mapped using special <> notation, like <Esc>. For the full list of key
codes, see http://vimdoc.sourceforge.net/htmldoc/intro.html#keycodes

•

:nmapclear - Clear all normal mode maps•
:nunmap - Unmap a normal mode map•
You can configure the maximum time between keys of a sequence by changing the timeout
and ttimeout variables

•

Examples

imap jk <Esc>: typing jk in insert mode will bring you back to normal mode•
nnoremap tt :tabnew<CR>: typing tt in normal mode will open a new tab page•
nnoremap <C-j> <C-w>j: typing <C-j> in normal mode will make you jump to the window below
and to the left

•

vmap <C-c> \cc: typing <C-c> in visual mode will execute \cc (NERDCommenter command to
comment the line). As this relies on a plugin mapping, you cannot use :vnoremap here!

•

futher reading here

Map leader key combination

The leader key could be used as a way to create a mapping with a key-binding that can be
overridden by the end user.

The leader is the \ key by default. In order to override it, the end-user would have to execute :let
g:mapleader='somekey(s)' before defining the mapping.

In a typical scenario, the mapleader is set in the .vimrc, and plugins use <Leader> in the keybinding
part of their mappings to have them customizable.

In the plugin, we would define mappings with:

:nnoremap <Leader>a somecomplexaction

This would map the somecomplexaction action to the \+a key combination.

The a action without the leader does not change.

It's also possible to use <Plug>Mappings to leave more room to customise plugins keybindings.

https://riptutorial.com/ 64

http://learnvimscriptthehardway.stevelosh.com/chapters/05.html
http://learnvimscriptthehardway.stevelosh.com/chapters/05.html
http://learnvimscriptthehardway.stevelosh.com/chapters/05.html
http://vimdoc.sourceforge.net/htmldoc/intro.html#keycodes
http://vim.wikia.com/wiki/Mapping_keys_in_Vim_-_Tutorial_(Part_1)

Illustration of Basic mapping (Handy shortcuts).

In most text editors, the standard shortcut for saving the current document is Ctrl+S (or Cmd+S on
macOS).

Vim doesn't have this feature by default but this can be mapped to make things easier. Adding the
following lines in .vimrc file will do the job.

nnoremap <c-s> :w<CR>
inoremap <c-s> <c-o>:w<CR>

The nnoremap command maps Ctrl+s to :w (write current contents to file) command whereas the
inoremap command maps the Ctrl+S to :w command and returns back to the insert mode (<c-o>
goes into normal mode for one command and returns to insert mode afterwards, without altering
cursor position which other solutions like <esc>:w<cr>a cannot ensure).

Similarly,

" This is commented, as Ctrl+Z is used in terminal emulators to suspend the ongoing
program/process.
" nnoremap <c-z> :u<CR>

" Thus, Ctrl+Z can be used in Insert mode
inoremap <c-z> <c-o>:u<CR>

" Enable Ctrl+C for copying selected text in Visual mode
vnoremap <c-c> <c-o>:y<CR>

PS: However it must be noted that Ctrl+S may not work as expected while using ssh (or PuTTY).
The solution to this is not within the scope of this document, but can be found Here.

Read Key Mappings in Vim online: https://riptutorial.com/vim/topic/3535/key-mappings-in-vim

https://riptutorial.com/ 65

https://raamdev.com/2007/recovering-from-ctrls-in-putty/
https://riptutorial.com/vim/topic/3535/key-mappings-in-vim

Chapter 25: Macros

Examples

Recording a macro

One way to create a macro is to record it.

Start recording a macro and save it to a register (in this example, we'll use a, but it can be any
register you could normally yank text to):

qa

Then run the commands you want to record in the macro (here, we'll surround the contents of a
line with tags):

I<ESC>A

When we're finished with the commands we want to record in the macro, stop the recording:

q

Now, any time we want to execute the recorded sequence of commands stored in a, use:

@a

and vim will repeat the recorded sequence.

Next time you would like to repeat the last macro that was used you can double type @:

@@

And as a extra bonus it is good to remember that if you put a number before a command it will
repeat it that many times. So, you repeat the macro saved in register a 20 times with:

20@a

Editing a vim macro

Sometimes you will make a mistake with a lengthy macro, but would rather edit it than re-record it
entirely. You can do this using the following process:

Put the macro on an empty line with "<register>p.

If your macro is saved in register a, the command is "ap.

1.

https://riptutorial.com/ 66

Edit the macro as needed.2.

Yank the macro into the correct register by moving the cursor to the beginning of the line and
using "<register>y$.

You can re-use the original register or use another one. If you want to use register b, the
command is "by$. or by using "<register>d$ (deletes the unused line)

3.

Recursive Macros

Vim macros can also be recursive. This is useful for when you need to act on every line (or other
text object) till the end of the file.

To record a recursive macro, start with an empty register. (A register can be emptied using
q<register>q.)

Choose a consistent starting point on each line to start and finish.

Before finishing recording, invoke the macro itself as the last command. (This is why the register
must be empty: so it'll do nothing, as the macro doesn't exist yet).

Example, given the text:

line 1
line 2
line 3
foo bar
more random text
.
.
.
line ???

In normal mode, with the cursor on the first line and a empty register a, one could record this
macro:

qaI"<Esc>A"<Esc>j@aq

Then with a single invocation of @a, all the lines of the file would be now inside double quotes.

What is a macro?

A macro is a series of keystrokes meant to be "played back" by Vim without any delay. Macros
can be stored in registers or variables, bound to keys, or executed on the command line.

Here is a simple macro that uppercases the third word on a line:

0wwgUiw

That macro could be recorded into register q:

https://riptutorial.com/ 67

qq start recording into register q
0wwgUiw
q stop recording

or saved directly into register q:

:let @q = '0wwgUiw'

to be played back with:

@q

But it could also be typed directly in the command-line:

:normal 0wwgUiw

for instant playback via the :normal command.

Or put into a variable:

:let myvar = '0wwgUiw'

to be played back with:

@=myvar

Or saved as a mapping:

nnoremap <key> 0wwgUiw

to be played back by pressing <key>.

If you want to store a macro for later reuse you can type in insert mode:

<C-r>q

This inserts the macro in register q (in this example: 0wwgUiw). You can use this output e.g. to
define the macro in your vimrc:

let @q='0wwgUiw'

Doing so the register q is initialized with this macro every time you start vim.

Record and replay action (macros)

with q command we could simplify a lot of tedious work in vim.

https://riptutorial.com/ 68

example 1. generate array sequence (1 to 20).

STEP 1. press i to enter insert mode, input 1

1

STEP 2. Record following action: "append the last number to the next line, and increment the
number"

type esc to exit input mode1.
type qa to enter record mode, using buffer a2.
type yy and p to copy current line and paste it as the next line3.
type ctrl + a to increment number4.
type q again to finish record5.

1
2

STEP 3. Replay action 18 times.

type 18@a to replay action 3 and action 4 in step 2.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Read Macros online: https://riptutorial.com/vim/topic/1447/macros

https://riptutorial.com/ 69

https://riptutorial.com/vim/topic/1447/macros

Chapter 26: Manipulating text

Remarks

To increment and decrement things like 11:59AM, 3rd, and XVIII, use the plugin vim-speeddating

Examples

Converting text case

In normal mode:

~ inverts the case of the character under the cursor,•
gu{motion} lowercases the text covered by {motion},•
gU{motion} uppercases the text covered by {motion}•

Example (^ marks the cursor position):

Lorem ipsum dolor sit amet.
 ^
Lorem ipSum dolor sit amet. ~
Lorem IPSUM DOLOR sit amet. gU2w
Lorem IPsum DOLOR sit amet. gue

In visual mode:

~ inverts the case of the selected text,•
u lowercases the selected text,•
U uppercases the selected text•

Example (^^^ marks the visual selection):

Lorem ipsum dolor sit amet.
 ^^^^^^^^^^^^^
Lorem ipSUM DOLOR SIT amet. ~
Lorem ipSUM DOLOR SIT amet. U
Lorem ipsum dolor sit amet. u

Incrementing and decrementing numbers and alphabetical characters

In normal mode, we can increment the nearest number on the line at or after the cursor with <C-a>
and decrement it with <C-x>. In the following examples, the cursor position is indicated by ^.

Incrementing and decrementing numbers

https://riptutorial.com/ 70

https://github.com/tpope/vim-speeddating

for i in range(11):
 ^

<C-x> decrements the number:

for i in range(10):
 ^

10<C-a> increments it by 10:

for i in range(20):
 ^

Incrementing and decrementing alphabetical characters

To make increment and decrement also work with letters, either use the ex command :set
nrformats+=alpha or add set nrformats+=alpha to your .vimrc.

Increment example:

AAD
 ^

<C-a> increments it to B:

ABD
 ^

Decrement example:

ABD
 ^

<C-x> decrements D to C:

ABC
 ^

Incrementing and decrementing numbers when alphabetical
increment/decrement is enabled

Notice that enabling increment/decrement to work with alphabetical characters means that you
have to be careful not to modify them when you really want to just modify numbers. You can either
turn off alphabetical increment/decrement by using the ex command :set nrformats-=alpha or you
can just be aware of it and be sure to move to the number before increment or decrement. Here is
the "for i in range(11):" example from above redone to work while alphabetical
increment/decrement is set:

https://riptutorial.com/ 71

http://www.riptutorial.com/vim/example/5512/basic-motion

Let's say you want to decrease 11 to 10 and alphabetical increment/decrement is active.

for i in range(11):
 ^

Since alphabetical increment/decrement is active, to avoid modifying the character under the
cursor, first move forward to the first 1 using the normal mode movement command f1 (that is
lowercase f followed by the number 1, not to be confused with a function key):

for i in range(11):
 ^

Now, since the cursor is on the number, you can decrement it with <C-x>. Upon decrement, the
cursor is repositioned to the last digit of the numeral:

for i in range(10):
 ^

Formatting Code

In normal mode:

gg go to top

= then G

Using "verbs" and "nouns" for text editing

One of the ways to think about the commands that should be executed, to edit a text in a certain
manner, is as entire sentences.

A command is an action performed on an object. Therefore it has a verb:

:normal i " insert
:normal a " append
:normal c " overwrite
:normal y " yank (copy)
:normal d " delete

Some of these words work with an object like d, c, y. Such objects can be word, line, sentence,
paragraph, tag. One can use these in combination:

:normal dw " deletes the text from the position of the cursor to the end of the next word
:normal cw " deletes the text from the cursor to the end of the next word and
 " enters insert mode

Also one could use a modifier to specify precisely where should the action be executed:

:normal diw " delete inside word. I.e. delete the word in which is the cursor.

https://riptutorial.com/ 72

:normal ciw " removes the word, the cursor points at and enters insert mode
:normal ci" " removes everything between the opening and closing quotes and
 " enters insert mode
:normal cap " change the current paragraph
:normal ct8 " remove everything until the next number 8 and enter insert mode
:normal cf8 " like above but remove also the number
:normal c/goal " remove everything until the word 'goal' and enter insert mode
:normal ci{ " change everything inside the curly braces

More resources:

Learn to speak vim — verbs, nouns, and modifiers!

Learning Vim in 2014: Vim as Language

VimSpeak editing using Speech Grammar

Read Manipulating text online: https://riptutorial.com/vim/topic/1707/manipulating-text

https://riptutorial.com/ 73

https://yanpritzker.com/learn-to-speak-vim-verbs-nouns-and-modifiers-d7bfed1f6b2d#.c50ws56cu
https://benmccormick.org/2014/07/02/learning-vim-in-2014-vim-as-language/
https://www.youtube.com/watch?v=TEBMlXRjhZY
https://riptutorial.com/vim/topic/1707/manipulating-text

Chapter 27: Modes - insert, normal, visual, ex

Examples

The basics about modes

vim is a modal editor. This means that at any time inside a vim session, the user is going to be in
one of the modes of operation. Each one of offers a different set commands, operations, key
bindings...

Normal mode (or Command mode)

The mode vim starts in.•
From other modes, usually accessible by Esc.•
Has most of the navigation and text manipulation commands.•

See :help normal-mode.

Insert mode

Commonly accessed by: a, i, A, I, c, s.•
For inserting text.•

See :help insert-mode.

Visual mode

Commonly accessed by: v (characterwise), V (linewise), <C-v> (blockwise).•
Basically, for text selection; most normal commands are available, plus extra ones to act on
the selected text.

•

See :help visual-mode.

Select mode

Accessible from insert mode with <C-g>.•
Similar to visual mode but with a lot less available commands.•
Contrary to insert mode, it is possible to type right away.•
Rarely used.•

See :help select-mode.

Replace mode

https://riptutorial.com/ 74

Accessible from normal mode with R.•
Allows to overwrite existing text.•

See :help replace-mode.

Command-line mode

See :help command-line-mode.

Ex mode

See :help Ex-mode.

Read Modes - insert, normal, visual, ex online: https://riptutorial.com/vim/topic/2231/modes---
insert--normal--visual--ex

https://riptutorial.com/ 75

https://riptutorial.com/vim/topic/2231/modes---insert--normal--visual--ex
https://riptutorial.com/vim/topic/2231/modes---insert--normal--visual--ex

Chapter 28: Motions and Text Objects

Remarks

A text object in Vim is another way to specify a chunk of text to operate on. They can be used with
operators or in visual mode, instead of motions.

Examples

Changing the contents of a string or parameter list

Let's say you have this line of code:

printf("Hello, world!\n");

Now say you want to change the text to "Program exiting."

Command Buffer Mnemonic

ci" printf("¦"); change in the ".

Program exiting.\n<esc> printf("Program exiting.\n");

Read Motions and Text Objects online: https://riptutorial.com/vim/topic/4107/motions-and-text-
objects

https://riptutorial.com/ 76

https://riptutorial.com/vim/topic/4107/motions-and-text-objects
https://riptutorial.com/vim/topic/4107/motions-and-text-objects

Chapter 29: Movement

Examples

Searching

Jumping to characters

f{char} - move to the next occurrence of {char} to the right of the cursor on the same line

F{char} - move to the next occurrence of {char} to the left of the cursor on the same line

t{char} - move to the left of the next occurrence of {char} to the right of the cursor on the same
line

T{char} - move to the right of next occurrence of {char} to the left of the cursor on the same line

Jump forward / backward between the 'results' via ; and ,.

Further you can search for whole words via /<searchterm>Enter.

Searching for strings

* - move to the next occurrence of the word under the cursor

- move to the previous occurrence of the word under the cursor

/searchtermEnter brings you to next match (forward-search). If you use ? instead of /, searching
goes backwards.

Jump between the matches via n (next) and N (previous).

To view/edit your previous searches, type / and hit the up arrow key.

Helpful are also these settings: (note :se is equal to :set)

:se hls HighLightSearch, highlights all search matches; use :noh for temporarily turning off
the search/mark highlighting (:set noh or :set nohls turns off.)

•

:se is or :set incs turns Incremental Search on, cursor jumps to the next match
automatically. (:se nois turns off.)

•

:se ic IgnoreCase, turns case sensitivity off. (:se noic turns on again.)•
:se scs SmartCaSe, can be used when IgnoreCase is set; makes case (in)sensitivity smart!
e.g. /the will search for the, The, ThE, etc. while /The only will look for The.

•

Basic Motion

https://riptutorial.com/ 77

Remarks

Every motion can be used after an operator command, so the command operates on the text
comprised by the movement's reach.

•

Just like operator commands, motions can include a count, so you can move by 2words, for
example.

•

Arrows

In Vim, normal arrow/cursor keys (←↓↑→) work as expected. However, for touch-typers, it's easier to
use the hjkl alternative keys. On a typical keyboard, they're located next to each other on the
same row, and easily accessible using right hand. The mnemonic technique to remember which is
which among them goes like this:

h/l — those are located "most to the left/right" among the four letters on the keyboard, so
they are equivalent to "going left/right" respectively;

•

j — lowercase "j" has its tail going "down" below typical letters, like a small arrow - so it's
equivalent to "going down";

•

k — conversely, lowercase "k" has its "ascender" going "up" above typical letters, like a small
pointer - so it's equivalent to "going up".

•

Basic motions

All commands below should be done in normal mode.

Command Description

h or left go [count] characters to the left

j or down go [count] characters below

k or up go [count] characters above

l or right go [count] characters to the right

gg go the first line, or [count]'th line, if given

H go to the first line in the visible screen

M go to the middle line in the visible screen

L go to the last line in the visible screen

G go the last line, or [count]'th line, if given

https://riptutorial.com/ 78

Command Description

Home or 0 go to first character of the line

^ go to first non-blank character of the line

+ go down one line to first non-blank character

- go up one line to first non-blank character

$ or End go to the end of the line (if [count] is given, go [count - 1] lines down)

|
go to the [count]'th character or go to the beginning of the line if count not
specified

f{char} go to [count]'th occurrence of {char} to the right inclusive

F{char} go to [count]'th occurrence of {char} to the left inclusive

t{char} go to [count]'th occurrence of {char} to the right exclusive

T{char} go to [count]'th occurrence of {char} to the left exclusive

; repeat latest f, t, F or T [count] times

, repeat latest f, t, F or T, in the opposite direction, [count] times

w go to the beginning of the next word

b go to the beginning of the previous word

e go to the ending of the next word

ge go to the ending of the previous word

% go to matching pairs, e.g (), [], {}, /* */ or #if, #ifdef, #else, #elif, #endif

{ } previous/next paragraph

[{]} beginning/ending of block

'{char} Go to mark (mark with m{char})

<C-B><C-F> previous/next page

<C-O><C-I> Go back or foward in the "jump list" (requires jumplist feature, see :help jumps)

Note: b, e, and w consider a word to be letters, numbers, and underscores by default (this can be
configured with the iskeyword setting). Each of these can also be capitalized, causing them to skip
over anything that isn't whitespace as well.

https://riptutorial.com/ 79

Note: Vim recognizes two kinds of movement: operator movement (:help movement) and jumps (
:help jumplist). Movements like those executed with g (gg, G, g,) count as jumps, as do changes.
Changes get their own jumplist, which is navigable as mentioned above via g, and g; (see :help
changelist). Jumps are not treated as motion commands by Vim

When moving up or down across lines, the cursor retains its column as would be expected. If the
new line is too short the cursor moves to the end of the new line. If the column is beyond the end
of the line, the cursor is displayed at the end of the line. The initial column number is still retained
until an action is taken to alter it (such as editing text or explicitly moving column).

If a line's length exceeds the width of the screen, the text is wrapped (under default settings, this
behaviour can be configured). To move through lines as displayed on screen, rather than lines
within the file, add g in front of the usual command. For example, gj will move the cursor to the
position displayed one line below its current position, even if this is in the same line of the file.

Searching For Pattern

Vim supports the use of regular expressions when searching through a file.

The character to indicate that you wish to perform a search is /.

The simplest search you can perform is the following

/if

This will search the entire file for all instances of if. However, our search if is actually a regular
expression that will match any occurrence of the word if including those inside of other words.

For instance, our search would say all of the following words match our search: if, spiffy, endif,
etc.

We can do more complicated searches by using more complicated regular expressions.

If our search was:

/\<if\>

then our search would only return exact matches to the full word if. The above spiffy and endif
would not be returned by the search, only if.

We can also use ranges. Given a file:

hello1
hello2
hello3
hello4

If we want to search for those lines containing "hello" followed by a digit between 1 and 3 we
would say:

https://riptutorial.com/ 80

/hello[1-3]

Another example:

/(?:\d*\.)?\d+

would find all of the integer and decimals numbers in the file.

Navigating to the beginning of a specific word

When editing text, a common task is to navigate to a particular word on the screen. In these
examples we explore how we can navigate to the word updated. For the sake of consistency
across the examples, we aim to land on the first letter of the word.

Mid-screen jump
M$B

This approach is quick, using only 3 keystrokes. The disadvantage however, is that it is not very
general, as it's not common for our target line to happen to lie right on the middle of the screen.
Still, it is a useful motion when making less granular movements.

Using a count
3jfu;;

At first glance, this may appear to be a step back from the first approach because of the number of
keystrokes. But since we use a count here instead of M, it is more flexible. We can quickly identify
the correct count to use if relativenumber is enabled. To move to the target word, using f in
combination with ; can be surprisingly effective - and certainly better than repeatedly pressing w. If
you overshoot your target with ;, you can go backwards with ,.

https://riptutorial.com/ 81

http://i.stack.imgur.com/O095L.gif
http://i.stack.imgur.com/GmzyL.gif
http://www.riptutorial.com/vim/example/11634/turn-on-relative-line-numbers

Explicit search
/upEnternn

Navigating via / can be very powerful. We can often jump directly to our target word by typing it
out. Here we type out only the first two characters in the hope that it uniquely matches our word.
Unfortunately, there are multiple matches, but we can quickly jump to the next match with n.

Implicit search
/ySpaceEnterw

In some cases, it may be more efficient to jump near our target rather than aiming to go directly to
it. Here we observe that there is an infrequently occurring letter, y, right next to the target. We can
add a Space to our search term to decrease the chances that we hit some other y character along
the way. This can also be used to great effect with f{char}, as in the example Using a count.

Using Marks to Move Around

Marks are like bookmarks; they help you find places you've already been.

TLDR

Set them in normal mode with m{a-zA-Z}, and jump to them in normal or visual mode with '{a-zA-Z}
(single quote) or `{a-zA-Z} (backtick). Lowercase letters are for marks within a buffer, and capital
letters and digits are global. See your currently set marks with :marks, and for more info see :help
mark.

Set a mark

Vim's built-in help says:

https://riptutorial.com/ 82

http://i.stack.imgur.com/Qq1Xa.gif
http://i.stack.imgur.com/EarRy.gif

m{a-zA-Z} Set mark {a-zA-Z} at cursor position (does not move
 the cursor, this is not a motion command).

The mark will keep track of which line and column it was placed at. There is no visual confirmation
that a mark was set, or if a mark had a previous value and has been overwritten.

Jump to a mark

Vim's built-in help says:

Jumping to a mark can be done in two ways:
1. With ` (backtick): The cursor is positioned at the specified location
 and the motion is exclusive.
2. With ' (single quote): The cursor is positioned on the first non-blank
 character in the line of the specified location and
 the motion is linewise.

Backtick uses the column position, while Single-quote does not. The difference between simply
allows you to ignore the column position of your mark if you want.

You can jump between non-global marks in visual mode in addition to normal mode, to allow for
selecting text based on marks.

Global Marks

Global marks (capital letters) allow for jumping between files. What that means is if, for example,
mark A is set in foo.txt, then from bar.txt (anywhere in my filesystem), if I jump to mark A, my
current buffer will be replaced with foo.txt. Vim will prompt to save changes.

Jumping to a mark in another file is not considered to be a movement, and visual selections
(among other things) will not work like jumping to marks within a buffer.

To go back to the previous file (bar.txt in this case), use :b[uffer] # (that is, :b# or :buffer#).

Note:

Special marks

There are certain marks that Vim sets automatically (which you are able to overwrite yourself, but
probably won't need to).

For example (paraphrased from Vim's help):

`[` and `]`: jump to the first or last character of the previously changed or
 yanked text. {not in Vi}

https://riptutorial.com/ 83

`<` and `>`: jump to the first or last line (with `'`) or character (with
 <code>`</code>) of the last selected Visual area in the current
 buffer. For block mode it may also be the last character in the
 first line (to be able to define the block). {not in Vi}.

More, from Vim's built-in help:

'' `` To the position before the latest jump, or where the
 last "m'" or "m`" command was given. Not set when the
 :keepjumps command modifier was used.
 Also see restore-position.

'" `" To the cursor position when last exiting the current
 buffer. Defaults to the first character of the first
 line. See last-position-jump for how to use this
 for each opened file.
 Only one position is remembered per buffer, not one
 for each window. As long as the buffer is visible in
 a window the position won't be changed.
 {not in Vi}.

'. `. To the position where the last change was made. The
 position is at or near where the change started.
 Sometimes a command is executed as several changes,
 then the position can be near the end of what the
 command changed. For example when inserting a word,
 the position will be on the last character.
 {not in Vi}

'" `" To the cursor position when last exiting the current
 buffer. Defaults to the first character of the first
 line. See last-position-jump for how to use this
 for each opened file.
 Only one position is remembered per buffer, not one
 for each window. As long as the buffer is visible in
 a window the position won't be changed.
 {not in Vi}.

'^ `^ To the position where the cursor was the last time
 when Insert mode was stopped. This is used by the
 gi command. Not set when the :keepjumps command
 modifier was used. {not in Vi}

Additionally, the characters (,),{, and } are marks which jump to the same position as would their
normal-mode commands – that is, '} does the same thing in normal mode as }.

Jump to specific line

To jump to a specific line with colon number. To jump to the first line of a file use

:1

To jump to line 23

:23

https://riptutorial.com/ 84

Read Movement online: https://riptutorial.com/vim/topic/1117/movement

https://riptutorial.com/ 85

https://riptutorial.com/vim/topic/1117/movement

Chapter 30: Normal mode commands

Syntax

:[range]sor[t][!] [b][f][i][n][o][r][u][x] [/{pattern}/]•

Note: Options [n][f][x][o][b] are mutually exclusive.•

Remarks

See sorting in the vim manual for the canonical explanation

Examples

Sorting text

Normal sorting

Highlight the text to sort, and the type:

:sort

If you don't highlight text or specify a range, the whole buffer is sorted.

Reverse sorting
:sort!

Case insensitive sorting
:sort i

Numerical sorting

Sort by the first number to appear on each line:

:sort n

Remove duplicates after sorting
:sort u

https://riptutorial.com/ 86

http://vimhelp.appspot.com/change.txt.html#sorting

(u stands for unique)

Combining options

To get a reverse case-insensitive sort with duplicates removed:

:sort! iu

Read Normal mode commands online: https://riptutorial.com/vim/topic/6005/normal-mode-
commands

https://riptutorial.com/ 87

https://riptutorial.com/vim/topic/6005/normal-mode-commands
https://riptutorial.com/vim/topic/6005/normal-mode-commands

Chapter 31: Normal mode commands
(Editing)

Examples

Introduction - Quick Note on Normal Mode

In Normal Mode, commands can be entered by direct key combinations (typing u to undo the last
change, for example). These commands often have equivalents in 'ex' mode, accessed by typing
a colon :, which drops you into a single-line buffer at the bottom of the Vim window.

In 'ex' mode, after typing the colon you type a command name or its abbreviation followed by Enter
to execute the command. So, :undoEnter accomplishes the same thing as directly typing u in
Normal Mode.

You can see that the direct commands will often be faster (once learned) than the 'ex' commands
for simple editing, but for completeness, wherever possible in the documentation that follows, if
both are available for use then both will be shown.

Most of these commands can also be preceded with a count by prefixing or interspersing a
number - typing 3dd in Normal Mode, for example, deletes three lines (beginning from the current
cursor position).

Basic Undo and Redo

Undo

Command : Description

u u,undo Undo the most recent change

5u Undo the five most recent changes (use any number)

Please be aware that in Vim, the 'most recent change' varies according to the mode you are in. If
you enter Insert Mode (i) and type out an entire paragraph before dropping back to Normal Mode (
Esc), that entire paragraph is considered the most recent change.

Redo

Command : Description

Ctrl-R red,redo Redo the most recent undone change

2Ctrl-R Redo the two most recent undone changes (use any number)

https://riptutorial.com/ 88

There is one other way to undo and redo changes in Vim that is handled a bit differently. When
you undo a change with u, you traverse back up the nodes on a 'tree' of your changes, and
pressing Ctrl-R walks back down those nodes in order. (The undo tree is a separate topic and is
too complex to cover here.)

You can also use U (that is, uppercase) to remove all the latest changes on a single line (the line
where your last changes were made). This does not traverse the nodes of the tree in the same
way as u. Using U actually counts as a change itself - another node forward on the tree - so that if
you press U a second time immediately after the first it will act as a Redo command.

Each has its uses, but u / :undo should cover most simple cases.

Repeat the Last Change

The Repeat command, executed with the dot or period key (.), is more useful than it first appears.
Once learned, you will find yourself using it often.

Command : Description

. Repeat the last change

10. Repeat the last change 10 times

So then, for a very simple example, if you make a change to line 1 by typing iIEsc, with the
following result:

1 I made a mistake
2 made a mistake
3 made a mistake

Your cursor will be at position 1 of line 1, and all you need to do to fix the next two lines is press j.
twice - that is, j to move down a line and . to repeat the last change, which was the addition of the
I. No need to jump back into Insert Mode twice to fix those lines.

It becomes much more powerful when used to repeat macros.

Copy, Cut and Paste

In Vim, these operations are handled differently from what you might be used to in almost any
other modern editor or word processor (Ctrl-C, Ctrl-X, Ctrl-V). To understand, you need to know a
little about registers and motions.

Note: this section will not cover Visual Mode copying and cutting or range yanking as these are
beyond the scope of both Normal Mode and basic editing.

Registers

Vim uses the concept of registers to handle moving text around within the program itself. Windows

https://riptutorial.com/ 89

http://www.riptutorial.com/vim/topic/1447/macros

has a single clipboard for this purpose, which is analogous to a single register in Vim. When
copying, cutting, and pasting in Vim, there are ways to use a similarly simple editing workflow
(where you don't have to think about registers), but there are also much more complex
possibilities.

A register is targeted for the input/output of a command by prefixing the command with " and a
lowercase letter name.

Motions

A motion in Vim is any command that moves the cursor position elsewhere. When copying,
cutting, and pasting in Normal Mode, the possibilities of text selection for movement are only
limited by your knowledge of motions. A few will be illustrated below.

Copying and Cutting

The basic commands copy and cut operations are built on are y ('yank', for copy) and d ('delete',
for cut). You'll see the similarities in the following table.

Command : Description

y{motion} Copy ('yank') text indicated by the motion into the default register

yy Copy the current line into the default register, linewise

Y Copy the current line into the default register (synonym for yy)

"ayiw Copy the word the cursor is on into register 'a'

20"byy Copy twenty lines, beginning from the cursor, into register 'b'

d{motion} Cut ('delete') text indicated by the motion into the default register

dd Cut the current line into the default register, linewise

D
Cut from the cursor to end of line into the default register (NOT a synonym
for dd)

"adiw Cut the word the cursor is on into register 'a'

20"bdd Cut twenty lines, beginning from the cursor, into register 'b'

Note: when something is copied or cut linewise, the paste behavior shown below will place text
either before or after the current line (rather than the cursor). Examples follow to clarify.

Pasting

https://riptutorial.com/ 90

There are several ways to paste in Vim, depending on what you are trying to accomplish.

Command : Description

p Paste whatever is in the default register after the cursor

P Paste whatever is in the default register before the cursor

"ap Paste the contents of register 'a' after the cursor

"cP Paste the contents of register 'c' before the cursor

So, How Do I Perform A Really Simple Cut and Paste?

If I have the following text:

1 This line should be second
2 This line should be first

I can do the simplest cut-and-paste by placing my cursor somewhere on line 1 and typing ddp.
Here are the results:

1 This line should be first
2 This line should be second

What happened? dd 'Cuts' the first line (linewise) into the default register - which will only contain
one thing at a time, like the Windows clipboard - and p pastes the line after the current one, which
has just changed due to the dd command.

Here's a not-quite-as-simple example. I need to move a couple of words around. (This is contrived
and unnecessary, but you can apply this principle to larger chunks of code.)

1 These words order out are of

I can repeat w to get to the 'o' at the front of 'order' (or b if I just typed it and realized my mistake).

Then "adaw to put 'order ' in register 'a'.

Then w to get to the 'a' in 'are'.

Following this, I would type "bdaw to put 'are ' into register 'b'. Now I have this displayed:

1 These words out of

To be clear, now 'order ' is in register 'a' and 'are ' is in register 'b', like two separate clipboards.

To arrange the words correctly, I type b to get to the 'o' in 'out', and then "bP to put 'are ' from
register 'b' in front of 'out':

https://riptutorial.com/ 91

1 These words are out of

Now I type A to get to the end of the line, followed by SpaceEsc (assuming there was no space after
'of') and "ap to put 'order' where it belongs.

1 These words are out of order

Completion

Completion can be used to match words used in a document. When typing a word, Ctrlp or Ctrln
will match previous or next similar words in the document.

This can even be combined with Ctrl-X mode to complete entire lines. For instance type
something like:

This is an example sentence.

then go to the next line and begin typing the same sentence:

Thi

and then hit Ctrlp which will result in:

This

Now still in insert mode, hit Ctrlx Ctrlp and then next word will be completed resulting in:

This is

Continue hitting Ctrlx Ctrlp until the entire line is completed.

If you know you want to complete an entire line type this:

This is an example sentence.

then on the next line type:

Thi

and hit x Ctrll to complete the line.

If the completion being done is a filename Ctrlx Ctrlf can be used to complete that directory.
Type:

~/Deskt

then hit Ctrlx Ctrlf and:

https://riptutorial.com/ 92

~/Desktop

will be completed (if at that location). Ctrlx Ctrlf can then be repeatedly used to list the files in the
Desktop.

Read Normal mode commands (Editing) online: https://riptutorial.com/vim/topic/5250/normal-
mode-commands--editing-

https://riptutorial.com/ 93

https://riptutorial.com/vim/topic/5250/normal-mode-commands--editing-
https://riptutorial.com/vim/topic/5250/normal-mode-commands--editing-

Chapter 32: Plugins

Examples

Fugitive Vim

Fugitive Vim is a plugin by Tim Pope that provides access to git commands that you can execute
without leaving vim.

Some common commands include:

:Gedit - edit a file in the index and write it to stage the the changes
:Gstatus - equivalent of git status
:Gblame - brings up vertical split of output from git blame
:Gmove - for git mv
:Gremove - for git rm
:Git - run any command

It also adds items to the statusline like indicating the current branch.

Please see their GitHub for more details and installation instructions.

NERD Tree

NERD TREE is a plugin by scrooloose that allows you to explore the file system while using vim.
You can open files and directories via a tree system that you can manipulate with the keyboard or
the mouse.

Add this to your .vimrc to start NERDTree automatically when vim starts up:

autocmd vimenter * NERDTree

To automatically close NERDTree if it's the only window left add this to your .vimrc:

autocmd bufenter * if (winnr("$") == 1 && exists("b:NERDTree") && b:NERDTree.isTabTree()) | q
| endif

It's recommended to map a key combination to the NERDTreeToggle command. Add this to your
.vimrc (this example uses Ctrl + N)

map <C-n> :NERDTreeToggle<CR>

Full details and installation instructions can be view on their Github.

Read Plugins online: https://riptutorial.com/vim/topic/9976/plugins

https://riptutorial.com/ 94

https://github.com/tpope/vim-fugitive
https://github.com/scrooloose/nerdtree
https://riptutorial.com/vim/topic/9976/plugins

Chapter 33: Regular expressions

Remarks

execute :h pattern to see a lot of regex related information

Examples

Word

Vim has special operators to match word beginning, word, end, and so forth.\< represents the
beginning of a word and \> represents the end of a word.

Searching for /\<foo\> in the following text will only return the last foo.

football is not foolish foo

Read Regular expressions online: https://riptutorial.com/vim/topic/6533/regular-expressions

https://riptutorial.com/ 95

https://riptutorial.com/vim/topic/6533/regular-expressions

Chapter 34: Regular expressions in Ex Mode

Examples

Edit a regular expression in Ex mode

Suppose you are searching for a Title Case pattern in a large text file and you want to edit a
incorrect regular expression:

First, go into Ex mode by typing q:1.
You will now see all the commands that you typed in commandline mode, press j to go the
regular expression you want to edit (/\v[A-Z]\w+\s[A-Z]\w+)

2.

Once done, press ESC to go to normal mode3.
Then press Enter to run the search patten4.

Here is a screen shot demonstrating a Title Case search

https://riptutorial.com/ 96

Read Regular expressions in Ex Mode online:

https://riptutorial.com/ 97

http://i.stack.imgur.com/KE4wK.png
http://i.stack.imgur.com/H7J89.png

https://riptutorial.com/vim/topic/6472/regular-expressions-in-ex-mode

https://riptutorial.com/ 98

https://riptutorial.com/vim/topic/6472/regular-expressions-in-ex-mode

Chapter 35: Saving

Examples

Saving a buffer in a non-existent dir

:!mkdir -p %:h

to create the missing directories, then

:w

Read Saving online: https://riptutorial.com/vim/topic/6440/saving

https://riptutorial.com/ 99

https://riptutorial.com/vim/topic/6440/saving

Chapter 36: Scrolling

Examples

Scrolling downwards

Command Description

Ctrl+E Scroll one line down.

Ctrl+D Scroll half a screen down (configurable using the scroll option).

Ctrl+F Scroll a full screen down.

z+ Draw the first line below the window at the top of the window.

Scrolling upwards

Command Description

Ctrl+Y Scroll one line up.

Ctrl+U Scroll half a screen up (configurable using the scroll option).

Ctrl+B Scroll a full screen up.

z^ Draw the first line above the window at the bottom of the window.

Scrolling relative to cursor position

Command Description

z
Redraw current line at the top of the window and put the cursor on the first non-
blank character on the line.

zt Like z but leave the cursor in the same column.

z.
Redraw current line at the center of the window and put the cursor on the first
non-blank character on the line.

zz Like z. but leave the cursor in the same column.

z-
Redraw current line at the bottom of the window and put the cursor on the first
non-blank character on the line.

zb Like z- but leave the cursor in the same column.

https://riptutorial.com/ 100

Read Scrolling online: https://riptutorial.com/vim/topic/3000/scrolling

https://riptutorial.com/ 101

https://riptutorial.com/vim/topic/3000/scrolling

Chapter 37: Searching in the current buffer

Examples

Searching for an arbitrary pattern

Vim's standard search commands are / for forward search and ? for backward search.

To start a search from normal mode:

press /,1.
type your pattern,2.
press <CR> to perform the search.3.

Examples:

/foobar<CR> search forward for foobar
?foo\/bar<CR> search backward for foo/bar

n and N can be used to jump to the next and previous occurence:

Pressing n after a forward search positions the cursor on the next occurence, forwards.•

Pressing N after a forward search positions the cursor on the next occurence, backwards.•

Pressing n after a backward search positions the cursor on the next occurence, backwards.•

Pressing N after a backward search positions the cursor on the next occurence, forwards.•

Searching for the word under the cursor

In normal mode, move the cursor to any word then press * to search forwards for the next
occurrence of the word under the cursor, or press # to search backwards.

* or # search for the exact word under the cursor: searching for big would only find big and not
bigger.

Under the hood, Vim uses a simple search with word boundaries atoms:

/\<big\> for *,•
?\<big\> for #.•

g* or g# don't search for the exact word under the cursor: searching for big would find bigger.

Under the hood, Vim uses a simple search without word boundaries atoms:

/\<big\> for *,•
?\<big\> for #.•

https://riptutorial.com/ 102

execute command on lines that contain text

The :global command already has its own topic: The global command

Read Searching in the current buffer online: https://riptutorial.com/vim/topic/3269/searching-in-the-
current-buffer

https://riptutorial.com/ 103

http://www.riptutorial.com/vim/topic/3861/-global
https://riptutorial.com/vim/topic/3269/searching-in-the-current-buffer
https://riptutorial.com/vim/topic/3269/searching-in-the-current-buffer

Chapter 38: Solarized Vim

Introduction

Spending most of the time on terminal can be a big deal for eyes. Wisely choosing color scheme
can benefit your eyes in many ways. Recently I ran into Solarized ColorScheme for Vim. Adding this
small plugin can make a big difference on text appearance on terminal. Many thanks to Ethan
Schoonover for developing this package. The howtos are explained pretty well here. Enjoy!

Examples

.vimrc

Solarized has two options - light and dark mode.

Light Mode:

syntax enable
set background=light
colorscheme solarized

Dark Mode:

syntax enable
set background=dark
colorscheme solarized

Read Solarized Vim online: https://riptutorial.com/vim/topic/9500/solarized-vim

https://riptutorial.com/ 104

http://ethanschoonover.com/solarized/vim-colors-solarized
https://github.com/altercation/vim-colors-solarized
http://ethanschoonover.com/solarized/img/screen-haskell-light.png
http://ethanschoonover.com/solarized/img/screen-haskell-dark.png
https://riptutorial.com/vim/topic/9500/solarized-vim

Chapter 39: Spell checker

Examples

Spell Checking

To turn on the vim spell checker run :set spell. To turn it off run :set nospell. If you always want
the spell checker to be on, add set spell to your vimrc. You can turn spelling on only for certain
filetypes using an auto command.

Once the spell checker is on, misspelled words will be highlighted. Type]s to move to the next
misspelled word and [s to move to the previous one. To see a list of corrected spellings, place the
cursor on a misspelled word and type z=. You can type the number of the word you wish to replace
the misspelled word with and hit <enter> to replace it, or you can just hit enter to leave the word
unchanged.

With the cursor on a misspelled word, you can also type <number>z= to change to the <number>th
correction without viewing the list. Typically you will use 1z= if you think vim's first guess is likely to
be the correct word.

Set Word List

To set the word list that vim will use for spell checking set the spelllang option. For example

:set spelllang=en # set to English, usually this is the default
:set spelllang=en_us # set to U.S. English
:set spelllang=en_uk # set to U.K. English spellings
:set spelllang=es # set to Spanish

If you want to set the spelllang and turn on spell checking in one command, you can do:

:setlocal spell spelllang=en

Read Spell checker online: https://riptutorial.com/vim/topic/3653/spell-checker

https://riptutorial.com/ 105

https://riptutorial.com/vim/topic/3653/spell-checker

Chapter 40: Split windows

Syntax

:split <file>•
:vsplit <file>•
:sp <- shorthand for split•
:vsp <- shorthand for vsplit•

Remarks

When called from the command line, multiple files can be provided in the argument and vim will
create one split for each file. When called from ex mode, only one file can be opened per
invocation of the command.

Examples

Opening multiple files in splits from the command line

Horizontally

vim -o file1.txt file2.txt

Vertically

vim -O file1.txt file2.txt

You may optionally specify the number of splits to open. The following example opens two
horizontal splits and loads file3.txt in a buffer:

vim -o2 file1.txt file2.txt file3.txt

Opening a new split window

You can open a new split within Vim with the following commands, in normal mode:

Horizontally:

:split <file name>
:new

Vertically:

:vsplit <file name>

https://riptutorial.com/ 106

:vnew

split will open the file in a new split at the top or left of your screen (or current split.) :sp and :vs
are convenient shortcuts.

new will open an empty split

Changing the size of a split or vsplit

You may sometimes want to change the size of a split or vsplit.

To change the size of the currently active split, use :resize <new size>. :resize 30 for example
would make the split 30 lines tall.

To change the size of the currently active vsplit, use :vertical resize <new size>. :vertical resize
80 for example would make the vsplit 80 characters wide.

Shortcuts

Ctrl + w and + increase the size of the splited window•
Ctrl + w and - decrease the size of the splited window•
Ctrl + w and = set an equal size to the splited windows•

Close all splits but the current one

Normal mode
Ctrl-wo

Ex mode

:only

or short

:on

Managing Open Split Windows (Keyboard Shortcuts)

After you have opened a split window in vim (as demonstrated by many examples under this tag)
then you will likely want to control windows quickly. Here is how to control split windows using
keyboard shortcuts.

Move to split Above/Below:

Ctrl + w and k•
Ctrl + w and j•

https://riptutorial.com/ 107

Move to split Left/Right:

Ctrl + w and h•
Ctrl + w and l•

Move to split Above/Below (wrap):

Ctrl + w and w•

Create new empty window:

Ctrl + w and n -or- :new•

Create new split horizontal/vertical:

Ctrl+W, S (upper case)•
Ctrl+W, v (lower case)•

Make the currently active split the one on screen:

Ctrl + w and o -or- :on•

Move between splits

To move to split on left, use <C-w><C-h>
To move to split below, use <C-w><C-j>
To move to split on right, use <C-w><C-k>
To move to split above, use <C-w><C-l>

Sane split opening

It's a better experience to open split below and on right

set it using

set splitbelow
set splitright

Read Split windows online: https://riptutorial.com/vim/topic/1705/split-windows

https://riptutorial.com/ 108

https://riptutorial.com/vim/topic/1705/split-windows

Chapter 41: Substitution

Syntax

s/<pattern>/<pattern>/optional-flags•
<pattern> is a Regex•

Parameters

Flag Meaning

& Keep the flags from the previous substitute.

c Prompt to confirm each substitution.

e Do not report errors.

g Replace all occurrences in the line.

i Case-insensitive matching.

I Case-sensitive matching.

n Report the number of matches, do not actually substitute.

Remarks

Use set gdefault to avoid having to specify the 'g' flag on every substitute.

Example

When gdefault is set, running :s/foo/bar on the line foo baz foo will yield bar baz bar instead of bar
baz foo.

Examples

Simple replacement

:s/foo/bar Replace the first instance of foo with bar on the current line.

:s/foo/bar/g Replace every instance of foo with bar on the current line.

:%s/foo/bar/g Replace foo with bar throughout the entire file.

https://riptutorial.com/ 109

Quickly refactor the word under the cursor

* on the word you want to substitute.1.

:%s//replacement/g, leaving the find pattern empty.2.

Replacement with interactive approval

:s/foo/bar/c Marks the first instance of foo on the line and asks for confirmation for substitution
with bar

:%s/foo/bar/gc Marks consecutively every match of foo in the file and asks for confirmation for
substitution with bar

Keyboard short-cut to replace currenlty highlighted word

For example, with following nmap:

nmap <expr> <S-F6> ':%s/' . @/ . '//gc<LEFT><LEFT><LEFT>'

select a word with *, type Shift-F6, type in a replacement and hit Enter to rename all occurrences
interactively.

Read Substitution online: https://riptutorial.com/vim/topic/3384/substitution

https://riptutorial.com/ 110

https://riptutorial.com/vim/topic/3384/substitution

Chapter 42: The dot operator

Examples

Basic Usage

The dot operator repeats the last action performed, for instance:

file test.tx

helo, World!
helo, David!

(cursor at [1][1])
Now perform a cwHello<Esc> (Change Word helo to Hello)
Now the buffer looks like that:

Hello, World!
helo, David!

(cursor at [1][5])
After typing j_ the cursor is at [2][1].

Now enter the . and the last action is performed again:

Hello, World!
Hello, David!

(cursor at [2][5])

Set indent

This is very useful when setting indent of your code

if condition1
if condition2
some commands here
endif
endif

move your cursor to the 2nd line, then >>, the code will indent to right.

Now you can repeat your action by continue to 3rd line, then hit . twice, the result will be

if condition1
 if condition2
 # some commands here
endif

https://riptutorial.com/ 111

endif

Read The dot operator online: https://riptutorial.com/vim/topic/3665/the-dot-operator

https://riptutorial.com/ 112

https://riptutorial.com/vim/topic/3665/the-dot-operator

Chapter 43: Tips and tricks to boost
productivity

Syntax

:set relativenumber•
:set number•
:set nonumber / :set nonu•
:pwd•

Remarks

This automatic reload will only happen if you edit your vimrc in a version full version of vim which
supports autocmd.

Examples

Quick "throwaway" macros

Add this to your vimrc:

nnoremap Q @q

To start recording the "throwaway" macro, use qq. To finish recording hit q (in normal mode for
both).

To execute the recorded macro, use Q.

This is useful for macros that you need to repeat many times in a row but won't be likely to use
again afterward.

Using the path completion feature inside Vim

This is very common, you memorize a path to a file or folder, you open up Vim and try to write
what you've just memorized, but you are not 100% sure it's correct, so you close the editor and
start over.

When you want the path completion feature, and you have a file /home/ubuntu/my_folder/my_file
and you are editing another file referencing to the path of the previous one:

Enter insert mode: insert or do it the way you want. Next, write /h. When the cursor is under h,
press Ctrlx and then Ctrlf so the editor will complete it to /home/ because the pattern /h is unique

Now, suppose you have two folders inside /home/ubuntu/ called my_folder_1 my_folder_2

https://riptutorial.com/ 113

and you want the path /home/ubuntu/my_folder_2

as usual:

Enter insert mode

write /h and press Ctrlx and then Ctrlf . Now you have /home/ Next add u after /home/ and press
Ctrlx and then Ctrlf . Now, you have /home/ubuntu/ because that path is unique. Now, write my
after /home/ubuntu/ and press Ctrlx and then Ctrlf . The editor will complete your word until
my_folder_ and you will see the directory tree so use the arrow keys to choose the one you want.

Turn On Relative Line Numbers

To delete some lines of text when you don't know exact number of lines to delete, you try 10dd , 5dd
, 3dd until you remove all the lines.

Relative line numbers solves this problem, suppose we have a file containing :

sometimes, you see a block of
text. You want to remove
it but you
cannot directly get the
exact number of
lines to delete
so you try
10d , 5d
3d until
you
remove all the block.

Enter NORMAL mode: Esc

Now, execute :set relativenumber. Once done the file will be displayed as:

3 sometimes, you see a block of
2 text. You want to remove
1 it but you
0 cannot directly get the
1 exact number of
2 lines to delete
3 so you try
4 10d , 5d
5 3d until
6 you
7 remove all the block.

where 0 is the line number for the current line and it also shows the real line number in front of
relative number, so now you don't have to estimate the numbers of lines from the current line to
cut or delete or worse count them one by one.

You can now execute your usual command like 6dd and you are sure about the number of lines.

You can also use the short form of the same command :set rnu to turn on relative numbers and

https://riptutorial.com/ 114

:set nornu to turn off the same.

If you also :set number or have :set number already on, you'll get the line number of the line in
which the cursor is at.

3 sometimes, you see a block of
2 text. You want to remove
1 it but you
4 cannot directly get the
1 exact number of
2 lines to delete
3 so you try
4 10d , 5d
5 3d until
6 you
7 remove all the block.

Viewing line numbers

To view line numbers from Default view enter

:set number

To hide line numbers

:set nonumber

There is also a shortcut for above. nu is same as number.

:set nonu

To hide line numbers, we can also use

:set nu!

Mappings for exiting Insert mode

A lot of Vim users find the Esc too hard to reach, and end up finding another mapping that's easy to
reach from the home row. Note that Ctrl-[may be equivalent to Esc on an English keyboard, and
is much easier to reach.

jk

inoremap jk <ESC>

This one is really easy to trigger; just smash your first two fingers on the home row at the same
time. It's also hard to trigger accidentally since "jk" never appears in any English word, and if
you're in normal mode it doesn't do anything. If you don't type "blackjack" too much, then consider

https://riptutorial.com/ 115

also adding inoremap kj <ESC> so you don't need to worry about timing of the two keys.

Caps Lock

Linux

On Linux, you can use xmodmap to make Caps Lock do the same thing as Esc. Put this in a file:

!! No clear Lock
clear lock
!! make caps lock an escape key
keycode 0x42 = Escape

Then run xmodmap file. This remaps Caps Lock to Esc.

Windows

On Windows you can use SharpKey or AutoHotkey.

macOS

If you have macOS 10.12.1 or later, you can remap Caps Lock to Escape using System
Preferences. Select Keyboard, go to the Keyboard tab, and click Modifier Keys.

https://riptutorial.com/ 116

https://sharpkeys.codeplex.com/
https://www.autohotkey.com/

How to know the directory and/or the path of the file you are editing

To know the path of the directory your file is in you can use:

Esc to enter command mode

:pwd

This will print the path to the directory at the bottom of the editor, like this

I'm a ninja

Now, if you want to know the file name you are editing relatively to the vim working directory, you

Esc to enter command mode CTRLG

I'm a ninja

Finally to get the absolute path to the file you are editing, use

Esc to enter command mode,

1 and then CTRLG

I'm a ninja

Search within a function block

To search for text foo within a {} block surrounding the cursor use the following command (<ESC>

https://riptutorial.com/ 117

https://i.stack.imgur.com/JsGip.png

- escape key, <CR> - enter key) :

vi{<ESC>/\%Vfoo<CR>

now you can jump between the matches within the block by pressing n and p. If you have hlsearch
option enabled this will highlight all the matches. \%V is a special search pattern part, that tells vim
to search only in the visually selected area. You can also make a mapping like this:

:vnoremap g/ <ESC>/\%V

After this the above command is shortened to the following:

vi{g/foo<CR>

Another useful trick is to print all the lines containing the pattern:

vi{
:'<,'>g/foo/#

The '<,'> range is inserted automatically.

See :help range and :help :g.

Copy, move or delete found line

A lot of users find themselves in a situation where they just want to copy, move or delete a line
quickly and return to where they were.

Usually, if you'd want to move a line which contains the word lot below the current line you'd type
something like:

/lot<Esc>dd<C-o>p

But to boost productivity you can use this shortcut in these cases:

" It's recommended to turn on incremental search when doing so
set incsearch

" copy the found line
cnoremap $t <CR>:t''<CR>
" move the found line
cnoremap $m <CR>:m''<CR>
" delete the found line
cnoremap $d <CR>:d<CR>``

So a search like this:

/lot$m

https://riptutorial.com/ 118

would move the line which contains lot below the line your cursor was on when you started the
search.

Write a file if you forget to `sudo` before starting vim

This command will save the open file with sudo rights

:w !sudo tee % >/dev/null

You can also map w!! to write out a file as root

:cnoremap w!! w !sudo tee % >/dev/null

Automatically reload vimrc upon save

To automatically reload vimrc upon save, add the following to your vimrc:

if has('autocmd') " ignore this section if your vim does not support autocommands
 augroup reload_vimrc
 autocmd!
 autocmd! BufWritePost $MYVIMRC,$MYGVIMRC nested source %
 augroup END
endif

and then for the last time, type:

:so $MYVIMRC

The next time you save your vimrc, it will be automatically reloaded.

nested is useful if you're using vim-airline. The process of loading airline triggers some
autocommands, but since you're in the process of executing an autocommand they get skipped.
nested allows triggering nested autocommands and allows airline to load properly.

Command line completion

set wildmenu to turn on completion suggestions for command line.
Execute the following

set wildmenu
set wildmode=list:longest,full

Now if you do say, :colortab,

You'll get

256-jungle Benokai BlackSea C64 CandyPaper Chasing_Logic ChocolateLiquor
:color 0x7A69_dark

https://riptutorial.com/ 119

Read Tips and tricks to boost productivity online: https://riptutorial.com/vim/topic/3382/tips-and-
tricks-to-boost-productivity

https://riptutorial.com/ 120

https://riptutorial.com/vim/topic/3382/tips-and-tricks-to-boost-productivity
https://riptutorial.com/vim/topic/3382/tips-and-tricks-to-boost-productivity

Chapter 44: Useful configurations that can be
put in .vimrc

Syntax

set mouse=a•
set wrap•
nmap j gj•
nmap k gk•

Examples

Move up/down displayed lines when wrapping

Usually, J and K move up and down file lines. But when you have wrapping on, you may want
them to move up and down the displayed lines instead.

set wrap " if you haven't already set it
nmap j gj
nmap k gk

Enable Mouse Interaction

set mouse=a

This will enable mouse interaction in the vim editor. The mouse can

change the current cursor's position•
select text•

Configure the default register to be used as system clipboard

set clipboard=unnamed

This makes it possible to copy/paste between Vim and the system clipboard without specifying any
special register.

yy yanks the current line into the system clipboard

p pastes the content of the system clipboard into Vim

This only works if your Vim installation has clipboard support. Run the following command in the
terminal to check if the clipboard option is available: vim --version | grep clipboard

https://riptutorial.com/ 121

Read Useful configurations that can be put in .vimrc online:
https://riptutorial.com/vim/topic/6560/useful-configurations-that-can-be-put-in--vimrc

https://riptutorial.com/ 122

https://riptutorial.com/vim/topic/6560/useful-configurations-that-can-be-put-in--vimrc

Chapter 45: Using ex from the command line

Examples

Substitution from the command line

If you would like to use vim in a manner similar to sed, you may use the -c flag to run an ex
command from the command line. This command will run automatically before presenting the file
to you. For example, to replace foo with bar:

vim file.txt -c "s/foo/bar"

This will open up the file with all instances of foo replaced with bar. If you would to like to make
changes to the file without having to manually save, you can run multiple ex commands, and have
the last command write and quit. For example:

vim file.txt -c "s/foo/bar" -c "wq"

Important note:

You can not run multiple ex commands separated by a bar |. For example

vim file.txt -c "s/foobar | wq"

Is not correct; however, it CAN be done if you use ex.

ex -c ":%s/this/that/g | wq" file.txt

Read Using ex from the command line online: https://riptutorial.com/vim/topic/6819/using-ex-from-
the-command-line

https://riptutorial.com/ 123

https://riptutorial.com/vim/topic/6819/using-ex-from-the-command-line
https://riptutorial.com/vim/topic/6819/using-ex-from-the-command-line

Chapter 46: Using Python for Vim scripting

Syntax

:[range]py[thon] {statement}•

Examples

Check Python version in Vim

Vim has its own built-in Python interpreter. Thus it could use a different version of the default
interpreter for the operating system.

To check with which version of Python Vim was compiled, type the following command:

:python import sys; print(sys.version)

This imports the sys module and prints its version property, containing the version of the currently
used Python interpreter.

Execute Vim normal mode commands through Python statement

To be able to use vim commands in Python, the vim module should be imported.

:python import vim

After having this module imported, the user has access to the command function:

:python vim.command("normal iText to insert")

This command would execute i in normal mode then type Text to insert and fall back to normal
mode.

Executing multi-line Python code

Every Python statement in Vim should be prefixed with the :python command, to instruct Vim that
the next command is not Vimscript but Python.

To avoid typing this command on each line, when executing multi-line Python code, it is possible
to instruct Vim to interpret the code between two marker expressions as Python.

To achieve this, use:

:python << {marker_name}
a = "Hello World"

https://riptutorial.com/ 124

print(a)
{marker_name}

where {marker_name} is the word you want to use to designate the end of the python block.

E.g.:

:python << endpython
surname = "Doe"
forename = "Jane"
print("Hello, %s %s" % (forename, surname))
endpython

would print:

Hello, Jane Doe

Read Using Python for Vim scripting online: https://riptutorial.com/vim/topic/5604/using-python-for-
vim-scripting

https://riptutorial.com/ 125

https://riptutorial.com/vim/topic/5604/using-python-for-vim-scripting
https://riptutorial.com/vim/topic/5604/using-python-for-vim-scripting

Chapter 47: vglobal: Execute commands on
lines that do not match globally

Introduction

:vglobal or :v is the opposite of :global or :g that operates on lines not matching the specified
pattern (inverse).

Examples

:v/pattern/d

Example:

> cat example.txt
 TODO: complete this
 NOT this
 NOT that
 TODO: Complete that

Open the example.txt using vim and type :v/TODO/d in the Ex mode. This will delete all lines that do
not contain the TODO pattern.

https://riptutorial.com/ 126

https://i.stack.imgur.com/TEpu0.png

Read vglobal: Execute commands on lines that do not match globally online:
https://riptutorial.com/vim/topic/9867/vglobal--execute-commands-on-lines-that-do-not-match-
globally

https://riptutorial.com/ 127

https://i.stack.imgur.com/JtPQJ.png
https://riptutorial.com/vim/topic/9867/vglobal--execute-commands-on-lines-that-do-not-match-globally
https://riptutorial.com/vim/topic/9867/vglobal--execute-commands-on-lines-that-do-not-match-globally

Chapter 48: Vim Options

Syntax

:set [no](option|shortcut)•
:set (option|shortcut)=value•
:set (option|shortcut)(?|&)•
do not use : in the vimrc file•

Remarks

See vimcast 1 video

See vimcast 1 transcript

Examples

Set

To set the options - use :set instruction. Example:

:set ts=4
:set shiftwidth=4
:set expandtab
:set autoindent

To view the current value of the option - type :set {option}?. Example:

:set ts?

To reset the value of the option to its default - type :set {option}&. Example:

:set ts&

Indentation

Width

To make indentations 4 spaces wide:

:set shiftwidth=4

https://riptutorial.com/ 128

http://vimcasts.org/episodes/show-invisibles/
http://vimcasts.org/transcripts/1/en/

Spaces

To use spaces as indents, 4 spaces wide:

:set expandtab
:set softtabstop=4

softtabstop and sts are equivalent:

:set sts=4

Tabs

To use tabs as indents, 4 spaces wide:

:set noexpandtab
:set tabstop=4

tabstop and ts are equivalent:

:set ts=4

Automatic Indentation

:set autoindent

Instruction descriptions

Instruction Description Default

tabstop width of tab character 8

expandtab causes spaces to be use instead of tab character off

softabstop tune the whitespace 0

shiftwidth determines whitespace amount when in normal mode 8

Invisible characters

https://riptutorial.com/ 129

http://www.riptutorial.com/vim/example/7295/the-basics-about-modes

Show or hide invisible characters

To show invisible characters:

:set list

To hide invisible characters:

:set nolist

To toggle between showing and hiding invisible characters:

:set list!

Default symbol characters

Symbol Character

^I Tab

$ New Line

Customize symbols

To set the tab character to **> ** and the new line character to ¬

set listchars=tab:>\ ,eol:¬

To set the spaces to _

set listchars=spaces

To see a list of character options

:help listchars

Read Vim Options online: https://riptutorial.com/vim/topic/2407/vim-options

https://riptutorial.com/ 130

https://riptutorial.com/vim/topic/2407/vim-options

Chapter 49: Vim Registers

Parameters

Functionality Registers

default register ""

history registers "[1-9]

yank register "0

named registers
"[a-z], "[A-Z] same as "[a-z] but
appends

recall current search pattern "/

small deletes (diw, cit, ...) "-

expression registers for simple math "=

black hole register to eliminate large chunks of deleted
text from mem

"_

last command ":

last inserted text ".

filename "%

clipboard "*

selected text "+

dropped text "~

Examples

Delete a range of lines into a named register

In Normal, type the following to delete a range of lines into a named register

:10,20d a

This will delete lines 10,20 in register "a. We can verify this by typing

https://riptutorial.com/ 131

:reg

This will show the text that was delete in register "a.

To paste the contents in "a, just type

"ap

Paste the filename while in insert mode using the filename register

In Insert mode, press <C-r> and then % to insert the filename.

This technique is applicable to all registers.

For e.g. if in insert mode, you want to paste the current search pattern, you can type <C-r> and
then /.

Copy/paste between Vim and system clipboard

Use the quotestar register to copy/paste between Vim and system clipboard

"*yy copies the current line into the system clipboard

"*p pastes the content of the system clipboard into Vim

Append to a register

Yank all lines containing TODO into a register by using append operation

:global/TODO/yank A

Here, we are searching for a TODO keyword globally, yanking all lines into register a (A register
appends all lines to a register).

NOTE: It is in general a good practice to clear a register before performing the append operation.

To clear a register, in the normal mode, type qaq. Confirm that the a register is empty by typing
:reg and observing that a register is empty.

Read Vim Registers online: https://riptutorial.com/vim/topic/4278/vim-registers

https://riptutorial.com/ 132

https://riptutorial.com/vim/topic/4278/vim-registers

Chapter 50: Vim Resources

Remarks

This Topic is about Source Code mirrors, Books, Vim-Wikis. It is NOT about Blog entries,
Wikipedia, Tutorials. The resources should not be opinion based.

Examples

Learning Vimscript the Hard Way

A book explaining how Vimscript works, full of examples. It can be found on
http://learnvimscriptthehardway.stevelosh.com/

Read Vim Resources online: https://riptutorial.com/vim/topic/6383/vim-resources

https://riptutorial.com/ 133

http://learnvimscriptthehardway.stevelosh.com/
https://riptutorial.com/vim/topic/6383/vim-resources

Chapter 51: Vim Text Objects

Examples

Select a word without surrounding white space

Suppose we want to select a word without surrounding white spaces, use the text object iw for
inner word using visual mode:

Got to normal mode by pressing ESC1.

Type viw at the beginning of a word2.

This will select the inner word3.

Select a word with surrounding white space

Suppose we want to select a word with a surrounding white space, use the text object aw for
around a word using visual mode:

Got to normal mode by pressing ESC1.

Type vaw at the beginning of a word2.

This will select the word with white space3.

Select text inside a tag

We can select a text within an html or xml tag by using visual selection v and text object it .

Go to normal mode py pressing ESC1.
Type vit from anywhere within the html or xml section2.
This will visually select all text inside the tag3.

https://riptutorial.com/ 134

http://i.stack.imgur.com/hQf4X.png
http://i.stack.imgur.com/UUq8i.png

All other text objects can also be used to operate on the text inside the tag

cit - delete text inside the tag and place in insert mode1.
dit - delete text inside the tag and remain in normal mode2.
cat - delete around tag and place in insert mode3.
dat - delete text around the tag and remain in normal mode4.

Read Vim Text Objects online: https://riptutorial.com/vim/topic/4050/vim-text-objects

https://riptutorial.com/ 135

https://i.stack.imgur.com/dZtfw.png
https://riptutorial.com/vim/topic/4050/vim-text-objects

Chapter 52: Vimscript

Remarks

The commands in a Vimscript file are executed in command mode by default. Therefore all non-
command mode directives should be prefixed.

Examples

Hello World

When attempting to print something for debugging in vimscript, it is tempting to simply do the
following.

echo "Hello World!"

However, in the context of a complex plugin, there are often many other things happening right
after you attempt to print your message, so it is important to add sleep after your message so you
can actually see it before it disappears.

echo "Hello World!"
sleep 5

Using Normal Mode Commands in Vimscript

Since a Vimscript file is a collection of Command mode actions, the user needs to specify that the
desired actions should be executed in normal mode.

Therefore executing a normal mode command like i, a, d etc. in Vimscript is done by prepending
the command with normal:

Going to the bottom of the file and selecting the last 5 rows:

normal GV5k

Here the G instructs vim to change the cursor position to the last row, the V to go to linewise visual
mode , and the 5k to go 5 rows up.

Inserting your name at the end of the row:

normal ABoris

where the A puts the editor in insert mode at the end of the row and the rest is the text to insert.

Read Vimscript online: https://riptutorial.com/vim/topic/5136/vimscript

https://riptutorial.com/ 136

https://riptutorial.com/vim/topic/5136/vimscript

Chapter 53: Whitespace

Introduction

Here is how you can clean up whitespace.

Remarks

See vimcast 4 transcript

Examples

Delete trailing spaces in a file

You can delete trailing spaces with the following command.

:%s/\s\+$//e

This command is explained as follows:

enter Command mode with :•
do this to the entire file with % (default would be for the current line)•
substitute action s•
/ start of the search pattern•
\s whitespace character•
\+ escaped + sign, one or more spaces should be matched•
before the line end $•
/ end of the search pattern, beginning of replacement pattern•
/ end of the replacement pattern. Basically, replace with nothing.•
e suppress error messages if no match found•

Delete blank lines in a file

You can delete all blank lines in a file with the following command: :g/^$/d

This command is explained as follows:

enter Command mode with :•
g is a global command that should occur on the entire file•
/ start of the search pattern•
the search pattern of blank line is ^g•
/end of the search pattern•
Ex command d deletes a line•

https://riptutorial.com/ 137

http://vimcasts.org/transcripts/4/en/

Convert tabs to spaces and spaces to tabs

You can convert tabs to spaces by doing the following:

First check that expandtab is switched off

:set noexpandtab

Then

:retab!

which replaces spaces of a certain length with tabs

If you enable expandtab again :set expandtab then and run the :retab! command then all the tabs
becomes spaces.

If you want to do this for selected text then first select the text in visual mode.

Read Whitespace online: https://riptutorial.com/vim/topic/8288/whitespace

https://riptutorial.com/ 138

http://www.riptutorial.com/vim/topic/6324/indentation
http://www.riptutorial.com/vim/topic/6324/indentation
http://www.riptutorial.com/vim/topic/2231/modes---insert--normal--visual--ex
https://riptutorial.com/vim/topic/8288/whitespace

Credits

S.
No

Chapters Contributors

1
Getting started with
vim

A. Raza, akavel, Ashok, carrdelling, Christian Rondeau,
Community, Cows quack, Daniel, Daniel Käfer, Daniel
Margosian, Deborah V, depperm, ericdwang, ExistMe,
GiftZwergrapper, gmoshkin, HerrSerker, James, Js Lim,
KerDam, LittleByBlue, liuyang1, LotoLo, Marek Skiba, Mattias,
Miljen Mikic, mnoronha, Nasreddine, Nhan, Nick Weseman,
pktangyue, redBit Device, Romain Vincent, romainl, ropata,
Rory O'Kane, Sardathrion, sascha, SeekAndDestroy, sjas, sudo
bangbang, Sumner Evans, tbodt, Tejus Prasad, TheMole, timss,
Tom Gijselinck, Tom Lord, user2314737, user45891, Vin,
Vishnu Kumar, vvnraman, Wieland, Wojciech Kazior, zarak, Zaz

2 :global cmlaverdiere, DJMcMayhem, LittleByBlue, tbodt, Vin

3 Advantages of vim gmoshkin, LittleByBlue

4

Ask to create non-
existant directories
upon saving a new
file

Tom Hale

5 Autocommands joeytwiddle, tbodt, Tom Hale

6 Auto-Format Code Philip Kirkbride

7 Buffers Chris Jones, eli, joeytwiddle, sudo bangbang

8 Building from vim grochmal, Josh Petrie, LittleByBlue, Luc Hermitte

9
Command-line
ranges

RamenChef, romainl

10 Configuring Vim

Aaron Thoma, bn., Christian Rondeau, Cometsong, Cows
quack, Daniel, Johnathan Andersen, KerDam, Luc Hermitte,
lwassink, mezzode, nobe4, romainl, SnoringFrog, sudo
bangbang, Sumner Evans, timss, Wojciech Kazior, Yosh

11
Converting text files
from DOS to UNIX
with vi

grochmal, LazyBrush

Differences between 12 still_dreaming_1, tbodt

https://riptutorial.com/ 139

https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/98528/akavel
https://riptutorial.com/contributor/6389787/ashok
https://riptutorial.com/contributor/6014153/carrdelling
https://riptutorial.com/contributor/154480/christian-rondeau
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/4936954/cows-quack
https://riptutorial.com/contributor/973447/daniel
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/4133231/daniel-margosian
https://riptutorial.com/contributor/4133231/daniel-margosian
https://riptutorial.com/contributor/5013044/deborah-v
https://riptutorial.com/contributor/3462319/depperm
https://riptutorial.com/contributor/1944947/ericdwang
https://riptutorial.com/contributor/161312/existme
https://riptutorial.com/contributor/5773806/giftzwergrapper
https://riptutorial.com/contributor/3093427/gmoshkin
https://riptutorial.com/contributor/476951/herrserker
https://riptutorial.com/contributor/359034/james
https://riptutorial.com/contributor/898931/js-lim
https://riptutorial.com/contributor/6028477/kerdam
https://riptutorial.com/contributor/3266704/littlebyblue
https://riptutorial.com/contributor/1032171/liuyang1
https://riptutorial.com/contributor/3726844/lotolo
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/1230908/mattias
https://riptutorial.com/contributor/1460628/miljen-mikic
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/162671/nasreddine
https://riptutorial.com/contributor/2571493/nhan
https://riptutorial.com/contributor/7906399/nick-weseman
https://riptutorial.com/contributor/1076889/pktangyue
https://riptutorial.com/contributor/7599641/redbit-device
https://riptutorial.com/contributor/6219628/romain-vincent
https://riptutorial.com/contributor/546861/romainl
https://riptutorial.com/contributor/148889/ropata
https://riptutorial.com/contributor/578288/rory-o-kane
https://riptutorial.com/contributor/232794/sardathrion
https://riptutorial.com/contributor/237312/sascha
https://riptutorial.com/contributor/1153801/seekanddestroy
https://riptutorial.com/contributor/805284/sjas
https://riptutorial.com/contributor/3951782/sudo-bangbang
https://riptutorial.com/contributor/3951782/sudo-bangbang
https://riptutorial.com/contributor/2319844/sumner-evans
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/3409405/tejus-prasad
https://riptutorial.com/contributor/6722260/themole
https://riptutorial.com/contributor/1076493/timss
https://riptutorial.com/contributor/4667966/tom-gijselinck
https://riptutorial.com/contributor/1954610/tom-lord
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/4005233/user45891
https://riptutorial.com/contributor/6804033/vin
https://riptutorial.com/contributor/739451/vishnu-kumar
https://riptutorial.com/contributor/1044750/vvnraman
https://riptutorial.com/contributor/307681/wieland
https://riptutorial.com/contributor/6787033/wojciech-kazior
https://riptutorial.com/contributor/5912399/zarak
https://riptutorial.com/contributor/405550/zaz
https://riptutorial.com/contributor/2517527/cmlaverdiere
https://riptutorial.com/contributor/3524982/djmcmayhem
https://riptutorial.com/contributor/3266704/littlebyblue
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/6804033/vin
https://riptutorial.com/contributor/3093427/gmoshkin
https://riptutorial.com/contributor/3266704/littlebyblue
https://riptutorial.com/contributor/5353461/tom-hale
https://riptutorial.com/contributor/99777/joeytwiddle
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/5353461/tom-hale
https://riptutorial.com/contributor/773263/philip-kirkbride
https://riptutorial.com/contributor/6636920/chris-jones
https://riptutorial.com/contributor/4940240/eli
https://riptutorial.com/contributor/99777/joeytwiddle
https://riptutorial.com/contributor/3951782/sudo-bangbang
https://riptutorial.com/contributor/6327365/grochmal
https://riptutorial.com/contributor/197015/josh-petrie
https://riptutorial.com/contributor/3266704/littlebyblue
https://riptutorial.com/contributor/15934/luc-hermitte
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/546861/romainl
https://riptutorial.com/contributor/234309/aaron-thoma
https://riptutorial.com/contributor/89339/bn-
https://riptutorial.com/contributor/154480/christian-rondeau
https://riptutorial.com/contributor/1600630/cometsong
https://riptutorial.com/contributor/4936954/cows-quack
https://riptutorial.com/contributor/4936954/cows-quack
https://riptutorial.com/contributor/973447/daniel
https://riptutorial.com/contributor/5683064/johnathan-andersen
https://riptutorial.com/contributor/6028477/kerdam
https://riptutorial.com/contributor/15934/luc-hermitte
https://riptutorial.com/contributor/2923846/lwassink
https://riptutorial.com/contributor/6102253/mezzode
https://riptutorial.com/contributor/2558252/nobe4
https://riptutorial.com/contributor/546861/romainl
https://riptutorial.com/contributor/919057/snoringfrog
https://riptutorial.com/contributor/3951782/sudo-bangbang
https://riptutorial.com/contributor/3951782/sudo-bangbang
https://riptutorial.com/contributor/2319844/sumner-evans
https://riptutorial.com/contributor/1076493/timss
https://riptutorial.com/contributor/6787033/wojciech-kazior
https://riptutorial.com/contributor/3026489/yosh
https://riptutorial.com/contributor/6327365/grochmal
https://riptutorial.com/contributor/1374268/lazybrush
https://riptutorial.com/contributor/172274/still-dreaming-1
https://riptutorial.com/contributor/1455016/tbodt

Neovim and Vim

13 Easter Eggs

Aaron Thoma, Andrea Romagnoli, Christian Rondeau,
cmlaverdiere, Daniel Käfer, Gerard Roche, LittleByBlue,
Mateusz Piotrowski, Mattias, mcarton, nobe4, NonlinearFruit,
sudo bangbang, tbodt, Tejus Prasad

14
Enhanced undo and
redo with a undodir

GiftZwergrapper

15 Exiting Vim
Arulpandiyan Vadivel, asclepix, AWippler, Nick Weseman,
Yosef Nasr

16 Extending Vim
baptistemm, LittleByBlue, Nikola Geneshki, romainl,
satyanarayan rao, Sumner Evans, void

17 Filetype plugins Luc Hermitte, romainl

18 Find and Replace
DJMcMayhem, Kara, naveen.panwar, ncmathsadist, romainl,
sudo bangbang, zzz

19 Folding Josh Petrie, LittleByBlue, sudo bangbang

20
Get :help (using
Vim's built-in
manual)

Aidan Miles, Luc Hermitte

21 How to Compile Vim Ingo Karkat, Josh Petrie, romainl

22 Indentation dallyingllama, Daniel, RamenChef, toto21

23 Inserting text

Batsu, Boysenb3rry, Christopher Bottoms, cmlaverdiere, codefly
, DJMcMayhem, Eric Bouchut, GiftZwergrapper, gmoshkin,
Johnathan Andersen, Kent, lazysoundsystem, Mahmood, omul,
Promarbler, RamenChef, rodrigo, romainl, satyanarayan rao,
Scroff, SnoringFrog, sudo bangbang, Sundeep, timss, Tom Lord
, UNagaswamy, Xavier Nicollet

24 Key Mappings in Vim
Christian Rondeau, Ingo Karkat, KerDam, Luc Hermitte, madD7,
New Alexandria, Nikola Geneshki, RamenChef, romainl

25 Macros
Johan, Johnathan Andersen, lazysoundsystem, LittleByBlue,
Oliver Wespi, rjmill, romainl, TheMole, Victor Schröder, vielmetti
, Wenzhong

26 Manipulating text
Chris Nager, Christopher Bottoms, LittleByBlue, Nikola
Geneshki, Philip Kirkbride, romainl, till, Tom Hale, zarak

27
Modes - insert,
normal, visual, ex

rgoliveira, romainl

https://riptutorial.com/ 140

https://riptutorial.com/contributor/234309/aaron-thoma
https://riptutorial.com/contributor/1392008/andrea-romagnoli
https://riptutorial.com/contributor/154480/christian-rondeau
https://riptutorial.com/contributor/2517527/cmlaverdiere
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/934739/gerard-roche
https://riptutorial.com/contributor/3266704/littlebyblue
https://riptutorial.com/contributor/4694621/mateusz-piotrowski
https://riptutorial.com/contributor/1230908/mattias
https://riptutorial.com/contributor/2733851/mcarton
https://riptutorial.com/contributor/2558252/nobe4
https://riptutorial.com/contributor/4769802/nonlinearfruit
https://riptutorial.com/contributor/3951782/sudo-bangbang
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/3409405/tejus-prasad
https://riptutorial.com/contributor/5773806/giftzwergrapper
https://riptutorial.com/contributor/7110155/arulpandiyan-vadivel
https://riptutorial.com/contributor/718925/asclepix
https://riptutorial.com/contributor/2161848/awippler
https://riptutorial.com/contributor/7906399/nick-weseman
https://riptutorial.com/contributor/6464839/yosef-nasr
https://riptutorial.com/contributor/338011/baptistemm
https://riptutorial.com/contributor/3266704/littlebyblue
https://riptutorial.com/contributor/1513988/nikola-geneshki
https://riptutorial.com/contributor/546861/romainl
https://riptutorial.com/contributor/4333838/satyanarayan-rao
https://riptutorial.com/contributor/2319844/sumner-evans
https://riptutorial.com/contributor/1029287/void
https://riptutorial.com/contributor/15934/luc-hermitte
https://riptutorial.com/contributor/546861/romainl
https://riptutorial.com/contributor/3524982/djmcmayhem
https://riptutorial.com/contributor/881229/kara
https://riptutorial.com/contributor/1729636/naveen-panwar
https://riptutorial.com/contributor/467379/ncmathsadist
https://riptutorial.com/contributor/546861/romainl
https://riptutorial.com/contributor/3951782/sudo-bangbang
https://riptutorial.com/contributor/976125/zzz
https://riptutorial.com/contributor/197015/josh-petrie
https://riptutorial.com/contributor/3266704/littlebyblue
https://riptutorial.com/contributor/3951782/sudo-bangbang
https://riptutorial.com/contributor/2648054/aidan-miles
https://riptutorial.com/contributor/15934/luc-hermitte
https://riptutorial.com/contributor/813602/ingo-karkat
https://riptutorial.com/contributor/197015/josh-petrie
https://riptutorial.com/contributor/546861/romainl
https://riptutorial.com/contributor/7296577/dallyingllama
https://riptutorial.com/contributor/973447/daniel
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4306855/toto21
https://riptutorial.com/contributor/1029516/batsu
https://riptutorial.com/contributor/6049524/boysenb3rry
https://riptutorial.com/contributor/215487/christopher-bottoms
https://riptutorial.com/contributor/2517527/cmlaverdiere
https://riptutorial.com/contributor/86848/codefly
https://riptutorial.com/contributor/3524982/djmcmayhem
https://riptutorial.com/contributor/386517/eric-bouchut
https://riptutorial.com/contributor/5773806/giftzwergrapper
https://riptutorial.com/contributor/3093427/gmoshkin
https://riptutorial.com/contributor/5683064/johnathan-andersen
https://riptutorial.com/contributor/164835/kent
https://riptutorial.com/contributor/103577/lazysoundsystem
https://riptutorial.com/contributor/69232/mahmood
https://riptutorial.com/contributor/7093783/omul
https://riptutorial.com/contributor/6673405/promarbler
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/865874/rodrigo
https://riptutorial.com/contributor/546861/romainl
https://riptutorial.com/contributor/4333838/satyanarayan-rao
https://riptutorial.com/contributor/1393621/scroff
https://riptutorial.com/contributor/919057/snoringfrog
https://riptutorial.com/contributor/3951782/sudo-bangbang
https://riptutorial.com/contributor/4082052/sundeep
https://riptutorial.com/contributor/1076493/timss
https://riptutorial.com/contributor/1954610/tom-lord
https://riptutorial.com/contributor/1588032/unagaswamy
https://riptutorial.com/contributor/995368/xavier-nicollet
https://riptutorial.com/contributor/154480/christian-rondeau
https://riptutorial.com/contributor/813602/ingo-karkat
https://riptutorial.com/contributor/6028477/kerdam
https://riptutorial.com/contributor/15934/luc-hermitte
https://riptutorial.com/contributor/2541267/madd7
https://riptutorial.com/contributor/263858/new-alexandria
https://riptutorial.com/contributor/1513988/nikola-geneshki
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/546861/romainl
https://riptutorial.com/contributor/51425/johan
https://riptutorial.com/contributor/5683064/johnathan-andersen
https://riptutorial.com/contributor/103577/lazysoundsystem
https://riptutorial.com/contributor/3266704/littlebyblue
https://riptutorial.com/contributor/6761196/oliver-wespi
https://riptutorial.com/contributor/5673456/rjmill
https://riptutorial.com/contributor/546861/romainl
https://riptutorial.com/contributor/6722260/themole
https://riptutorial.com/contributor/1240001/victor-schroder
https://riptutorial.com/contributor/2832874/vielmetti
https://riptutorial.com/contributor/6191533/wenzhong
https://riptutorial.com/contributor/1655926/chris-nager
https://riptutorial.com/contributor/215487/christopher-bottoms
https://riptutorial.com/contributor/3266704/littlebyblue
https://riptutorial.com/contributor/1513988/nikola-geneshki
https://riptutorial.com/contributor/1513988/nikola-geneshki
https://riptutorial.com/contributor/773263/philip-kirkbride
https://riptutorial.com/contributor/546861/romainl
https://riptutorial.com/contributor/148337/till
https://riptutorial.com/contributor/5353461/tom-hale
https://riptutorial.com/contributor/5912399/zarak
https://riptutorial.com/contributor/4176370/rgoliveira
https://riptutorial.com/contributor/546861/romainl

28
Motions and Text
Objects

tbodt

29 Movement

Aidan Miles, akavel, Boysenb3rry, Caek, Chris H, Cows quack,
depperm, fedorqui, Georgi Dimitrov, gmoshkin, JacobLeach,
jamessan, KerDam, Madis Pukkonen, Noam Hacker, rgoliveira,
sjas, SnoringFrog, Sundeep, timss, Tyler, Vin, Wazam, zarak

30
Normal mode
commands

Tom Hale

31
Normal mode
commands (Editing)

A. Raza, rodericktech, romainl, The Nightman

32 Plugins Nick Weseman

33 Regular expressions 4444, sudo bangbang

34
Regular expressions
in Ex Mode

UNagaswamy

35 Saving abidibo

36 Scrolling Delapouite, evuez

37
Searching in the
current buffer

Abdelaziz Dabebi, DJMcMayhem, LittleByBlue, romainl

38 Solarized Vim Luc Hermitte, Nick Weseman, satyanarayan rao

39 Spell checker andipla, Johnathan Andersen, lwassink

40 Split windows
beardc, Boysenb3rry, Downgoat, Goluxas, grenangen,
HerrSerker, Johnathan Andersen, KerDam, madD7, Sachin
Divekar, sudo bangbang, timss, Victor Schröder, zarak

41 Substitution cmlaverdiere, LittleByBlue, Nikola Geneshki, Timur

42 The dot operator Js Lim, LittleByBlue

43
Tips and tricks to
boost productivity

Abdelaziz Dabebi, adelarsq, Chris Midgley, depperm, GanitK,
gath, gmoshkin, Hotschke, KerDam, LittleByBlue, LotoLo, mash,
naveen.panwar, RamenChef, rjmill, romainl, Simone Bronzini,
souparno majumder, Stryker, sudo bangbang, tbodt, Tom Hale

44
Useful configurations
that can be put in
.vimrc

Cows quack, maniacmic, Tomh

Using ex from the 45 DJMcMayhem, Matt Clark

https://riptutorial.com/ 141

https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/2648054/aidan-miles
https://riptutorial.com/contributor/98528/akavel
https://riptutorial.com/contributor/6049524/boysenb3rry
https://riptutorial.com/contributor/3988574/caek
https://riptutorial.com/contributor/5166781/chris-h
https://riptutorial.com/contributor/4936954/cows-quack
https://riptutorial.com/contributor/3462319/depperm
https://riptutorial.com/contributor/1983854/fedorqui
https://riptutorial.com/contributor/4392665/georgi-dimitrov
https://riptutorial.com/contributor/3093427/gmoshkin
https://riptutorial.com/contributor/2921948/jacobleach
https://riptutorial.com/contributor/198244/jamessan
https://riptutorial.com/contributor/6028477/kerdam
https://riptutorial.com/contributor/1339452/madis-pukkonen
https://riptutorial.com/contributor/4926817/noam-hacker
https://riptutorial.com/contributor/4176370/rgoliveira
https://riptutorial.com/contributor/805284/sjas
https://riptutorial.com/contributor/919057/snoringfrog
https://riptutorial.com/contributor/4082052/sundeep
https://riptutorial.com/contributor/1076493/timss
https://riptutorial.com/contributor/3911459/tyler
https://riptutorial.com/contributor/6804033/vin
https://riptutorial.com/contributor/7345321/wazam
https://riptutorial.com/contributor/5912399/zarak
https://riptutorial.com/contributor/5353461/tom-hale
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/5747661/rodericktech
https://riptutorial.com/contributor/546861/romainl
https://riptutorial.com/contributor/3633487/the-nightman
https://riptutorial.com/contributor/7906399/nick-weseman
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/3951782/sudo-bangbang
https://riptutorial.com/contributor/1588032/unagaswamy
https://riptutorial.com/contributor/863063/abidibo
https://riptutorial.com/contributor/232943/delapouite
https://riptutorial.com/contributor/653378/evuez
https://riptutorial.com/contributor/3342127/abdelaziz-dabebi
https://riptutorial.com/contributor/3524982/djmcmayhem
https://riptutorial.com/contributor/3266704/littlebyblue
https://riptutorial.com/contributor/546861/romainl
https://riptutorial.com/contributor/15934/luc-hermitte
https://riptutorial.com/contributor/7906399/nick-weseman
https://riptutorial.com/contributor/4333838/satyanarayan-rao
https://riptutorial.com/contributor/5118212/andipla
https://riptutorial.com/contributor/5683064/johnathan-andersen
https://riptutorial.com/contributor/2923846/lwassink
https://riptutorial.com/contributor/386279/beardc
https://riptutorial.com/contributor/6049524/boysenb3rry
https://riptutorial.com/contributor/1620622/downgoat
https://riptutorial.com/contributor/2576630/goluxas
https://riptutorial.com/contributor/774709/grenangen
https://riptutorial.com/contributor/476951/herrserker
https://riptutorial.com/contributor/5683064/johnathan-andersen
https://riptutorial.com/contributor/6028477/kerdam
https://riptutorial.com/contributor/2541267/madd7
https://riptutorial.com/contributor/1088314/sachin-divekar
https://riptutorial.com/contributor/1088314/sachin-divekar
https://riptutorial.com/contributor/3951782/sudo-bangbang
https://riptutorial.com/contributor/1076493/timss
https://riptutorial.com/contributor/1240001/victor-schroder
https://riptutorial.com/contributor/5912399/zarak
https://riptutorial.com/contributor/2517527/cmlaverdiere
https://riptutorial.com/contributor/3266704/littlebyblue
https://riptutorial.com/contributor/1513988/nikola-geneshki
https://riptutorial.com/contributor/302343/timur
https://riptutorial.com/contributor/898931/js-lim
https://riptutorial.com/contributor/3266704/littlebyblue
https://riptutorial.com/contributor/3342127/abdelaziz-dabebi
https://riptutorial.com/contributor/442923/adelarsq
https://riptutorial.com/contributor/2591803/chris-midgley
https://riptutorial.com/contributor/3462319/depperm
https://riptutorial.com/contributor/1992276/ganitk
https://riptutorial.com/contributor/26143/gath
https://riptutorial.com/contributor/3093427/gmoshkin
https://riptutorial.com/contributor/1057593/hotschke
https://riptutorial.com/contributor/6028477/kerdam
https://riptutorial.com/contributor/3266704/littlebyblue
https://riptutorial.com/contributor/3726844/lotolo
https://riptutorial.com/contributor/6572285/mash
https://riptutorial.com/contributor/1729636/naveen-panwar
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5673456/rjmill
https://riptutorial.com/contributor/546861/romainl
https://riptutorial.com/contributor/3495539/simone-bronzini
https://riptutorial.com/contributor/2481350/souparno-majumder
https://riptutorial.com/contributor/1406420/stryker
https://riptutorial.com/contributor/3951782/sudo-bangbang
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/5353461/tom-hale
https://riptutorial.com/contributor/4936954/cows-quack
https://riptutorial.com/contributor/4261642/maniacmic
https://riptutorial.com/contributor/369180/tomh
https://riptutorial.com/contributor/3524982/djmcmayhem
https://riptutorial.com/contributor/1790644/matt-clark

command line

46
Using Python for Vim
scripting

Nikola Geneshki

47

vglobal: Execute
commands on lines
that do not match
globally

UNagaswamy

48 Vim Options dallyingllama, LittleByBlue, mezzode, Wojciech Kazior, Yosh

49 Vim Registers maniacmic, romainl, UNagaswamy

50 Vim Resources Nikola Geneshki

51 Vim Text Objects UNagaswamy

52 Vimscript merlin2011, Nikola Geneshki

53 Whitespace dallyingllama

https://riptutorial.com/ 142

https://riptutorial.com/contributor/1513988/nikola-geneshki
https://riptutorial.com/contributor/1588032/unagaswamy
https://riptutorial.com/contributor/7296577/dallyingllama
https://riptutorial.com/contributor/3266704/littlebyblue
https://riptutorial.com/contributor/6102253/mezzode
https://riptutorial.com/contributor/6787033/wojciech-kazior
https://riptutorial.com/contributor/3026489/yosh
https://riptutorial.com/contributor/4261642/maniacmic
https://riptutorial.com/contributor/546861/romainl
https://riptutorial.com/contributor/1588032/unagaswamy
https://riptutorial.com/contributor/1513988/nikola-geneshki
https://riptutorial.com/contributor/1588032/unagaswamy
https://riptutorial.com/contributor/391161/merlin2011
https://riptutorial.com/contributor/1513988/nikola-geneshki
https://riptutorial.com/contributor/7296577/dallyingllama

	About
	Chapter 1: Getting started with vim
	Remarks
	Versions
	Examples
	Installation

	Installation on Linux/BSD
	Arch and Arch-based distributions
	Debian and Debian-based distributions
	Gentoo and Gentoo-based distributions
	RedHat and RedHat-based distributions
	Fedora
	Slackware and Slackware-based distributions
	OpenBSD and OpenBSD-based distributions
	FreeBSD and FreeBSD-based distributions

	Installation on Mac OS X
	Regular install
	Package manager

	Installation on Windows
	Chocolatey

	Building Vim from source
	Exiting Vim

	Explanation:
	Interactive Vim Tutorials (such as vimtutor)
	Saving a read-only file edited in Vim

	Command Explanation
	Suspending vim
	Basics
	What to do in case of a crash

	Chapter 2: :global
	Syntax
	Remarks
	Examples
	Basic usage of the Global Command
	Yank every line matching a pattern
	Move/collect lines containing key information

	Chapter 3: Advantages of vim
	Examples
	Customization
	Lightweight

	Chapter 4: Ask to create non-existant directories upon saving a new file
	Introduction
	Examples
	Prompt to create directories with :w, or sliently create them with :w!

	Chapter 5: Autocommands
	Remarks
	Examples
	Automatically source .vimrc after saving
	Refresh vimdiff views if a file is saved in another window

	Chapter 6: Auto-Format Code
	Examples
	In normal mode:

	Chapter 7: Buffers
	Examples
	Managing buffers
	Hidden buffers
	Switching buffer using part of the filename
	Quickly switch to previous buffer, or to any buffer by number

	Chapter 8: Building from vim
	Examples
	Starting a Build

	Chapter 9: Command-line ranges
	Examples
	Absolute line numbers
	Relative line numbers
	Line shortcuts
	Marks
	Search
	Line offsets
	Mixed ranges

	Chapter 10: Configuring Vim
	Examples
	The vimrc file
	Which options can I use?
	Files and directories
	Options

	Setting boolean options
	Setting string options
	Setting number options
	Using an expression as value
	Mappings

	Recursive mappings
	Non-recursive mappings
	Executing a command from a mapping
	Executing multiple commands from a mapping
	Calling a function from a mapping
	Mapping a <Plug>mapping
	Variables
	Commands

	Examples
	Functions

	Example
	Script functions
	Using s:functions from mappings
	Autocommand groups

	Example
	Conditionals
	Setting Options
	Syntax Highlighting
	Color Schemes

	Changing Color Schemes
	Installing Color Schemes
	Toggle line enumerating
	Plugins

	Chapter 11: Converting text files from DOS to UNIX with vi
	Remarks
	Examples
	Converting a DOS Text file to a UNIX Text file
	Using VIm's fileformat

	Chapter 12: Differences between Neovim and Vim
	Examples
	Configuration Files

	Chapter 13: Easter Eggs
	Examples
	Help!
	When you're feeling down
	The Answer
	Looking for the Holy Grail
	Ceci n'est pas une pipe
	When a user is getting bored
	Spoon
	Knights who say Ni!
	nunmap

	Chapter 14: Enhanced undo and redo with a undodir
	Examples
	Configuring your vimrc to use a undodir

	Chapter 15: Exiting Vim
	Parameters
	Remarks
	Examples
	Exit with save
	Exit without save
	Exit forcefully (without save)
	Exit forcefully (with save)
	Exit forcefully from all opened windows (without save)
	if multiple files are opened

	Chapter 16: Extending Vim
	Remarks
	Examples
	How plugins work

	The principle
	The manual method

	Single file plugin
	Bundle
	VAM
	Vundle

	Installing Vundle
	Supported Plugin Formats
	The future: packages
	Pathogen

	Installing Pathogen
	Using Pathogen
	Benefits
	Chapter 17: Filetype plugins
	Examples
	Where to put custom filetype plugins?

	Chapter 18: Find and Replace
	Examples
	Substitute Command
	Replace with or without Regular Expressions

	Chapter 19: Folding
	Remarks
	Examples
	Configuring the Fold Method
	Creating a Fold Manually
	Opening, Closing and Toggling Folds
	Showing the Line Containing the Cursor
	Folding C blocks

	Chapter 20: Get :help (using Vim's built-in manual)
	Introduction
	Syntax
	Parameters
	Examples
	Getting started / Navigating help files
	Searching the manual

	Chapter 21: How to Compile Vim
	Examples
	Compiling on Ubuntu

	Chapter 22: Indentation
	Examples
	Indent an entire file using built-in indentention engine
	Indent or outdent lines

	Chapter 23: Inserting text
	Examples
	Leaving insert mode
	Different ways to get into insert mode
	Insert mode shortcuts
	Running normal commands from insert mode

	Example
	Insert text into multiple lines at once
	Paste text using terminal "paste" command
	Pasting from a register while in insert mode
	Advanced Insertion Commands and Shortcuts
	Disable auto-indent to paste code

	Chapter 24: Key Mappings in Vim
	Introduction
	Examples
	Basic mapping

	map Overview
	map Operator
	map Command
	Examples
	Map leader key combination
	Illustration of Basic mapping (Handy shortcuts).

	Chapter 25: Macros
	Examples
	Recording a macro
	Editing a vim macro
	Recursive Macros
	What is a macro?
	Record and replay action (macros)

	Chapter 26: Manipulating text
	Remarks
	Examples
	Converting text case

	In normal mode:
	In visual mode:
	Incrementing and decrementing numbers and alphabetical characters
	Incrementing and decrementing numbers
	Incrementing and decrementing alphabetical characters
	Incrementing and decrementing numbers when alphabetical increment/decrement is enabled
	Formatting Code
	Using "verbs" and "nouns" for text editing

	Chapter 27: Modes - insert, normal, visual, ex
	Examples
	The basics about modes

	Normal mode (or Command mode)
	Insert mode
	Visual mode
	Select mode
	Replace mode
	Command-line mode
	Ex mode

	Chapter 28: Motions and Text Objects
	Remarks
	Examples
	Changing the contents of a string or parameter list

	Chapter 29: Movement
	Examples
	Searching

	Jumping to characters
	Searching for strings
	Basic Motion

	Remarks
	Arrows
	Basic motions
	Searching For Pattern
	Navigating to the beginning of a specific word
	Using Marks to Move Around

	TLDR
	Set a mark
	Jump to a mark
	Global Marks
	Special marks
	Jump to specific line

	Chapter 30: Normal mode commands
	Syntax
	Remarks
	Examples
	Sorting text

	Normal sorting
	Reverse sorting
	Case insensitive sorting
	Numerical sorting
	Remove duplicates after sorting
	Combining options
	Chapter 31: Normal mode commands (Editing)
	Examples
	Introduction - Quick Note on Normal Mode
	Basic Undo and Redo

	Undo
	Redo
	Repeat the Last Change
	Copy, Cut and Paste

	Registers
	Motions
	Copying and Cutting
	Pasting
	So, How Do I Perform A Really Simple Cut and Paste?
	Completion

	Chapter 32: Plugins
	Examples
	Fugitive Vim
	NERD Tree

	Chapter 33: Regular expressions
	Remarks
	Examples
	Word

	Chapter 34: Regular expressions in Ex Mode
	Examples
	Edit a regular expression in Ex mode

	Chapter 35: Saving
	Examples
	Saving a buffer in a non-existent dir

	Chapter 36: Scrolling
	Examples
	Scrolling downwards
	Scrolling upwards
	Scrolling relative to cursor position

	Chapter 37: Searching in the current buffer
	Examples
	Searching for an arbitrary pattern
	Searching for the word under the cursor
	execute command on lines that contain text

	Chapter 38: Solarized Vim
	Introduction
	Examples
	.vimrc

	Chapter 39: Spell checker
	Examples
	Spell Checking
	Set Word List

	Chapter 40: Split windows
	Syntax
	Remarks
	Examples
	Opening multiple files in splits from the command line
	Horizontally
	Vertically
	Opening a new split window
	Changing the size of a split or vsplit

	Shortcuts
	Close all splits but the current one
	Managing Open Split Windows (Keyboard Shortcuts)
	Move between splits
	Sane split opening

	Chapter 41: Substitution
	Syntax
	Parameters
	Remarks

	Example
	Examples
	Simple replacement
	Quickly refactor the word under the cursor
	Replacement with interactive approval
	Keyboard short-cut to replace currenlty highlighted word

	Chapter 42: The dot operator
	Examples
	Basic Usage
	Set indent

	Chapter 43: Tips and tricks to boost productivity
	Syntax
	Remarks
	Examples
	Quick "throwaway" macros
	Using the path completion feature inside Vim
	Turn On Relative Line Numbers
	Viewing line numbers
	Mappings for exiting Insert mode

	jk
	Caps Lock
	Linux
	Windows
	macOS
	How to know the directory and/or the path of the file you are editing
	Search within a function block
	Copy, move or delete found line
	Write a file if you forget to `sudo` before starting vim
	Automatically reload vimrc upon save
	Command line completion

	Chapter 44: Useful configurations that can be put in .vimrc
	Syntax
	Examples
	Move up/down displayed lines when wrapping
	Enable Mouse Interaction
	Configure the default register to be used as system clipboard

	Chapter 45: Using ex from the command line
	Examples
	Substitution from the command line

	Chapter 46: Using Python for Vim scripting
	Syntax
	Examples
	Check Python version in Vim
	Execute Vim normal mode commands through Python statement
	Executing multi-line Python code

	Chapter 47: vglobal: Execute commands on lines that do not match globally
	Introduction
	Examples
	:v/pattern/d

	Chapter 48: Vim Options
	Syntax
	Remarks
	Examples
	Set
	Indentation

	Width
	Spaces
	Tabs
	Automatic Indentation
	Instruction descriptions
	Invisible characters

	Show or hide invisible characters
	Default symbol characters
	Customize symbols
	Chapter 49: Vim Registers
	Parameters
	Examples
	Delete a range of lines into a named register
	Paste the filename while in insert mode using the filename register
	Copy/paste between Vim and system clipboard
	Append to a register

	Chapter 50: Vim Resources
	Remarks
	Examples
	Learning Vimscript the Hard Way

	Chapter 51: Vim Text Objects
	Examples
	Select a word without surrounding white space
	Select a word with surrounding white space
	Select text inside a tag

	Chapter 52: Vimscript
	Remarks
	Examples
	Hello World
	Using Normal Mode Commands in Vimscript

	Chapter 53: Whitespace
	Introduction
	Remarks
	Examples
	Delete trailing spaces in a file
	Delete blank lines in a file
	Convert tabs to spaces and spaces to tabs

	Credits

