
vtk

#vtk

Table of Contents

About 1

Chapter 1: Getting started with vtk 2

Remarks 2

Examples 2

Installation or Setup 2

Building and Installation on Windows 7 2

Prerequisites 2

Getting Ready 2

Configuration 3

Building 3

Using the build 4

Cleaning Up 5

Uninstallation 6

Chapter 2: Hello World 7

Examples 7

Hello World Example 7

Breakdown: 7

Notes 9

Credits 10

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: vtk

It is an unofficial and free vtk ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official vtk.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/vtk
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with vtk

Remarks

This section provides an overview of what vtk is, and why a developer might want to use it.

It should also mention any large subjects within vtk, and link out to the related topics. Since the
Documentation for vtk is new, you may need to create initial versions of those related topics.

Examples

Installation or Setup

Building and Installation on Windows 7

Prerequisites

If you want to build VTK from latest sources you need git from Here or you can download a
snapshot of the code as a zip and unzip on to your disk drive

•

CMake•
Microsoft Visual Studio 2015•
Plenty of free space - atleast a couple of GB to be on the safe side, really depending on what
all you want to build

•

Getting Ready

I like to keep things clean so I usually create 3 folders like so:•

c:\vtk #
c:\vtk\src # 'code base' folder
c:\vtk\build # 'out of source' build folder
c:\vtk\install # 'install folder' where the 'installed' files will reside

If using the git method,

open a command prompt○

change working directory cd c:\vtk\src○

clone the git repository git clone https://gitlab.kitware.com/vtk/vtk.git. This could
take a while depending on your internet connection speed

○

If you are working behind a proxy, you will need to setup git to use it. See this question
on how to do that.

○

•

If using the zip method, unzip the source code into c:\vtk\src•

https://riptutorial.com/ 2

https://git-for-windows.github.io/
https://cmake.org/
http://stackoverflow.com/questions/783811/getting-git-to-work-with-a-proxy-server

Configuration

Launch the CMake GUI•
Select c:\vtk\src for Where is the source code:•
Select c:\vtk\build for Where to build the binaries:•
Hit Configure and select Visual Studio 2015 as the required generator•
You will be presented with a number of configuration options•
I generally use the following settings for a minimal build

CMAKE_INSTALL_PREFIX = c:\vtk\install○

BUILD_SHARED_LIBS ticked○

BUILD_DOCUMENTATION unticked○

BUILD_TESTING unticked○

CMAKE_CXX_MP_FLAG ticked. This will use all the CPU cores (on multicore/multiprocessor
systems) to speed up the build

○

•

Keeping Hitting Configure correcting any errors until all the RED entries become WHITE•
Hit Generate•
Close CMake GUI•

Building

If the generation was successful there should be
A Visual Studio Solution :

c:\vtk\build\vtk.sln

○

A bunch of project files -

ALL_BUILD.vcxproj
INSTALL.vcxproj
vtkCompileTools.vcxproj
VTKData.vcxproj
ZERO_CHECK.vcxproj

○

•

You can build this using either from a command line or using the IDE•
I prefer the command line as it is generally faster and uses less RAM•
Using the command line

Launch Developer Command Prompt For Visual Studio 2015○

Change working directory: cd c:\vtk\build○

Launch msbuild:
for debug builds

msbuild /p:Configuration=Debug ALL_BUILD.vcxproj○

msbuild /p:Configuration=Debug INSTALL.vcxproj○

○

for release builds
msbuild /p:Configuration=Release ALL_BUILD.vcxproj○

msbuild /p:Configuration=Release INSTALL.vcxproj○

○

○

•

Using the IDE
Open the VTK.sln with Visual Studio 2015 and build the INSTALL.vcxproj○

This technique is usually slower as the IDE will start building intellisense for each of the ○

•

https://riptutorial.com/ 3

projects listed in the solution
c:\vtk\install should now have some new folders

bin # contains the dll files○

lib # contains the lib files○

cmake○

share○

include # contains the header files○

•

Using the build

To Use VTK in a Visual C++ project, one has to
Configure the compiler header file search path to include c:\vtk\include\vtk-<version>○

Configure the linker library file search path to include c:\vtk\lib○

Configure the linker to link to the required .lib files○

Copy the required DLLs to output folder○

•

I have put together a small props file to handle all the four tasks c:\vtk\vtk.vsprops•

<?xml version="1.0" encoding="UTF-8"?>
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <VTK_ROOT_DIR>$(MSBuildThisFileDirectory)</VTK_ROOT_DIR>
 <VTK_BIN_DIR>$(VTK_ROOT_DIR)\bin</VTK_BIN_DIR>
 <VTK_INC_DIR>$(VTK_ROOT_DIR)\include\vtk-7.0</VTK_INC_DIR>
 <VTK_LIB_DIR>$(VTK_ROOT_DIR)\lib</VTK_LIB_DIR>
 </PropertyGroup>

 <PropertyGroup>
 <BuildDependsOn>CopyVTKBinariesList;$(BuildDependsOn);</BuildDependsOn>
 </PropertyGroup>

 <Target Name="CopyVTKBinariesList">
 <ItemGroup>
 <VtkBinaries Include="$(VTK_BIN_DIR)*.dll" />
 </ItemGroup>
 <Copy SourceFiles="@(VtkBinaries)"
 DestinationFiles="@(VtkBinaries-
>'$(OutDir)\%(RecursiveDir)%(Filename)%(Extension)')"
 SkipUnchangedFiles="true" />
 </Target>

 <ItemDefinitionGroup>
 <ClCompile>

<AdditionalIncludeDirectories>$(VTK_INC_DIR);%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>

 </ClCompile>
 <Link>

<AdditionalLibraryDirectories>$(VTK_LIB_DIR);%(AdditionalLibraryDirectories)</AdditionalLibraryDirectories>

 <AdditionalDependencies>vtkalglib-7.0.lib;vtkChartsCore-7.0.lib;vtkCommonColor-
7.0.lib;vtkCommonComputationalGeometry-7.0.lib;vtkCommonCore-7.0.lib;vtkCommonDataModel-
7.0.lib;vtkCommonExecutionModel-7.0.lib;vtkCommonMath-7.0.lib;vtkCommonMisc-
7.0.lib;vtkCommonSystem-7.0.lib;vtkCommonTransforms-7.0.lib;vtkDICOMParser-
7.0.lib;vtkDomainsChemistry-7.0.lib;vtkDomainsChemistryOpenGL2-7.0.lib;vtkexoIIc-
7.0.lib;vtkexpat-7.0.lib;vtkFiltersAMR-7.0.lib;vtkFiltersCore-7.0.lib;vtkFiltersExtraction-

https://riptutorial.com/ 4

7.0.lib;vtkFiltersFlowPaths-7.0.lib;vtkFiltersGeneral-7.0.lib;vtkFiltersGeneric-
7.0.lib;vtkFiltersGeometry-7.0.lib;vtkFiltersHybrid-7.0.lib;vtkFiltersHyperTree-
7.0.lib;vtkFiltersImaging-7.0.lib;vtkFiltersModeling-7.0.lib;vtkFiltersParallel-
7.0.lib;vtkFiltersParallelImaging-7.0.lib;vtkFiltersProgrammable-7.0.lib;vtkFiltersSelection-
7.0.lib;vtkFiltersSMP-7.0.lib;vtkFiltersSources-7.0.lib;vtkFiltersStatistics-
7.0.lib;vtkFiltersTexture-7.0.lib;vtkFiltersVerdict-7.0.lib;vtkfreetype-7.0.lib;vtkGeovisCore-
7.0.lib;vtkglew-7.0.lib;vtkhdf5-7.0.lib;vtkhdf5_hl-7.0.lib;vtkImagingColor-
7.0.lib;vtkImagingCore-7.0.lib;vtkImagingFourier-7.0.lib;vtkImagingGeneral-
7.0.lib;vtkImagingHybrid-7.0.lib;vtkImagingMath-7.0.lib;vtkImagingMorphological-
7.0.lib;vtkImagingSources-7.0.lib;vtkImagingStatistics-7.0.lib;vtkImagingStencil-
7.0.lib;vtkInfovisCore-7.0.lib;vtkInfovisLayout-7.0.lib;vtkInteractionImage-
7.0.lib;vtkInteractionStyle-7.0.lib;vtkInteractionWidgets-7.0.lib;vtkIOAMR-7.0.lib;vtkIOCore-
7.0.lib;vtkIOEnSight-7.0.lib;vtkIOExodus-7.0.lib;vtkIOExport-7.0.lib;vtkIOGeometry-
7.0.lib;vtkIOImage-7.0.lib;vtkIOImport-7.0.lib;vtkIOInfovis-7.0.lib;vtkIOLegacy-
7.0.lib;vtkIOLSDyna-7.0.lib;vtkIOMINC-7.0.lib;vtkIOMovie-7.0.lib;vtkIONetCDF-
7.0.lib;vtkIOParallel-7.0.lib;vtkIOParallelXML-7.0.lib;vtkIOPLY-7.0.lib;vtkIOSQL-
7.0.lib;vtkIOVideo-7.0.lib;vtkIOXML-7.0.lib;vtkIOXMLParser-7.0.lib;vtkjpeg-7.0.lib;vtkjsoncpp-
7.0.lib;vtklibxml2-7.0.lib;vtkmetaio-7.0.lib;vtkNetCDF-7.0.lib;vtkNetCDF_cxx-
7.0.lib;vtkoggtheora-7.0.lib;vtkParallelCore-7.0.lib;vtkpng-7.0.lib;vtkproj4-
7.0.lib;vtkRenderingAnnotation-7.0.lib;vtkRenderingContext2D-
7.0.lib;vtkRenderingContextOpenGL2-7.0.lib;vtkRenderingCore-7.0.lib;vtkRenderingFreeType-
7.0.lib;vtkRenderingImage-7.0.lib;vtkRenderingLabel-7.0.lib;vtkRenderingLOD-
7.0.lib;vtkRenderingOpenGL2-7.0.lib;vtkRenderingVolume-7.0.lib;vtkRenderingVolumeOpenGL2-
7.0.lib;vtksqlite-7.0.lib;vtksys-7.0.lib;vtktiff-7.0.lib;vtkverdict-7.0.lib;vtkViewsContext2D-
7.0.lib;vtkViewsCore-7.0.lib;vtkViewsGeovis-7.0.lib;vtkViewsInfovis-7.0.lib;vtkzlib-
7.0.lib;%(AdditionalDependencies)</AdditionalDependencies>
 </Link>
 </ItemDefinitionGroup>
 <ItemGroup />

</Project>

The above vsprops file copies all the available dlls in the c:\vtk\bin folder.•

An alternative way to make sure the DLLs can be located is to use alter the PATH
environment variable for the debugging session and put the VTK binaries path as the first
directory to be searched when loading dependencies. The below fragment can be instead of
the CopyVTKBinariesList task to do this.

<PropertyGroup>

<LocalDebuggerEnvironment>PATH=$(VTK_BIN_DIR);%PATH%;$(LocalDebuggerEnvironment)</LocalDebuggerEnvironment>

</PropertyGroup>

•

For final deployment you might want to use a tool like Dependency Walker to track down
which dlls and their dependencies are used and only bundle only those for redistribution.

•

To use the props file in a Visual C++ project you can either use the Property Manager tool
within Visual Studio (Menu: View => Property Manager) or edit the vcxproj using a text editor
and add this following line <Import Project="C:\vtk\vtk.vsprops" /> below the other project
imports.

•

Cleaning Up

https://riptutorial.com/ 5

http://www.dependencywalker.com/

If you like to recover some disk space, you can delete the c:\vtk\build folder but the
downside is you cannot debug into vtk

•

Uninstallation

Simply delete the c:\vtk folder if you dont want to VTK anymore•

MacOSX and Unix:

Install the latest version of CMake available here1.
Download the latest VTK here.2.
Create a build directory for VTK mkdir <path_to_build_directory3.
Configure with ccmake <path_to_VTK_directory -G "UNIX Makefiles" \ -DVTK_USE_QVTK:BOOL=ON \
-DVTK_USE_CARBON:BOOL=ON \ -DCMAKE_INSTALL_PREFIX=/usr/local \ -DVTK_USE_GUISUPPORT:BOOL=ON
or use the GUI to do so with ccmake <path_to_VTK_directory

4.

Get into the build directory and use make -j(you don't have to use -j but compilation is really
long.

5.

Finally use make install6.

Read Getting started with vtk online: https://riptutorial.com/vtk/topic/5182/getting-started-with-vtk

https://riptutorial.com/ 6

http://www.cmake.org/cmake/resources/software.html
http://www.vtk.org/download/
https://riptutorial.com/vtk/topic/5182/getting-started-with-vtk

Chapter 2: Hello World

Examples

Hello World Example

#include <vtkAutoInit.h>

VTK_MODULE_INIT(vtkRenderingOpenGL2);
VTK_MODULE_INIT(vtkRenderingFreeType);
VTK_MODULE_INIT(vtkInteractionStyle);

#include <vtkSmartPointer.h>
#include <vtkTextActor.h>
#include <vtkRenderer.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>

int main(int /*argc*/, char ** /*argv*/)
{
 auto textActor = vtkSmartPointer<vtkTextActor>::New();
 textActor->SetInput("Hello World");

 auto renderer = vtkSmartPointer<vtkRenderer>::New();
 renderer->AddActor(textActor);
 renderer->ResetCamera();

 auto interactor = vtkSmartPointer<vtkRenderWindowInteractor>::New();

 auto renderWindow = vtkSmartPointer<vtkRenderWindow>::New();
 renderWindow->AddRenderer(renderer);
 renderWindow->SetInteractor(interactor);

 interactor->Start();

 return 0;
}

Breakdown:

#include <vtkAutoInit.h>

VTK_MODULE_INIT(vtkRenderingOpenGL2);
VTK_MODULE_INIT(vtkRenderingFreeType);
VTK_MODULE_INIT(vtkInteractionStyle);

VTK design uses a factory method design pattern to create new instances of vtkObject derived
classes using the <ClassName>::New() method. This allows a platform specific implementation to be
selected during runtime to satisfy a required interface.

For this mechanism to work, factory classes need to "register" themselves so that they can be

https://riptutorial.com/ 7

https://en.wikipedia.org/wiki/Factory_method_pattern
http://www.vtk.org/doc/nightly/html/classvtkObject.html

selected by the vtk infrastructure. Details on this topic is available here.

VTK_MODULE_INIT is a macro used to automatically initialize the required modules/library(ies)(
vtkRenderingOpenGL2, vtkRenderingFreeType, vtkInteractionStyle in this example). Failure to initialize
the modules will result in <ClassName>::New() calls to return NULL and therefore runtime errors.

#include <vtkSmartPointer.h>
#include <vtkTextActor.h>
#include <vtkRenderer.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>

vtkSmartPointer role is similar to that of a std::unique_ptr in that it manages the reference count
that controls the lifetime of vtkObject derived class instances.

vtkTextActor is a simple class that can be used to display strings on the screen.

vtkRenderer is a class responsible for managing a scene's contents. Specifically it manages the
collection of

2D actors derived from vtkActor2D•
3D actors derived from vtkProp3D•
Volumes : vtkVolume•
Camera : vtkCamera•
Lights : vtkLight•

vtkRenderWindow is a class that provides platform independent interface for

managing a collection of renderers.•
handling user input and forwarding it to vtkRenderWindowInteractor for further processing•

vtkRenderWindowInteractor is a class responsible for mapping the user input
(mouse/keyboard/timing) events to a corresponding action. Internally it uses a vtkInteractorStyle
to provide different mapping behaviors.

auto textActor = vtkSmartPointer<vtkTextActor>::New();
textActor->SetInput("Hello World");

Create text actor and set the string to display

auto renderer = vtkSmartPointer<vtkRenderer>::New();
renderer->AddActor(textActor);
renderer->ResetCamera();

Create a renderer•
Add the text actor to it•
Resets the camera position to make sure the actor is visible in the screen.•

auto interactor = vtkSmartPointer<vtkRenderWindowInteractor>::New();

https://riptutorial.com/ 8

http://www.vtk.org/Wiki/VTK/Build_System_Migration#How_Implementation_Modules_Are_Initialized
http://www.vtk.org/doc/nightly/html/classvtkSmartPointer.html
http://www.vtk.org/doc/nightly/html/classvtkTextActor.html
http://www.vtk.org/doc/nightly/html/classvtkRenderer.html
http://www.vtk.org/doc/nightly/html/classvtkActor2D.html
http://www.vtk.org/doc/nightly/html/classvtkProp3D.html
http://www.vtk.org/doc/nightly/html/classvtkVolume.html
http://www.vtk.org/doc/nightly/html/classvtkCamera.html
http://www.vtk.org/doc/nightly/html/classvtkLight.html
http://www.vtk.org/doc/nightly/html/classvtkRenderWindow.html
http://www.vtk.org/doc/nightly/html/classvtkRenderWindowInteractor.html
http://www.vtk.org/doc/nightly/html/classvtkRenderWindowInteractor.html
http://www.vtk.org/doc/nightly/html/classvtkInteractorStyle.html

auto renderWindow = vtkSmartPointer<vtkRenderWindow>::New();
renderWindow->AddRenderer(renderer);
renderWindow->SetInteractor(interactor);

Create a window to render into, add the renderer to it and set the interactor. The factory function
will automatically pick a suitable implementation based on the available/registered factory classes

interactor->Start();

This is a blocking call that returns only when the user requests a quit (q key) or closes the window.
Runs a message loop and dispatches the messages.

Running this should create a window that looks like this

Notes

This list of DLLs that were used by this exe are:

VTKCommonCore-7.0.DLL

VTKInteractionStyle-7.0.DLL

VTKRenderingCore-7.0.DLL

VTKRenderingFreeType-7.0.DLL

VTKRenderingOpenGL2-7.0.DLL

Read Hello World online: https://riptutorial.com/vtk/topic/5974/hello-world

https://riptutorial.com/ 9

http://i.stack.imgur.com/wvwfY.png
https://riptutorial.com/vtk/topic/5974/hello-world

Credits

S.
No

Chapters Contributors

1
Getting started with
vtk

Community, LBes, Shreyas Murali

2 Hello World Shreyas Murali

https://riptutorial.com/ 10

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1820086/lbes
https://riptutorial.com/contributor/1635109/shreyas-murali
https://riptutorial.com/contributor/1635109/shreyas-murali

	About
	Chapter 1: Getting started with vtk
	Remarks
	Examples
	Installation or Setup

	Building and Installation on Windows 7
	Prerequisites
	Getting Ready
	Configuration
	Building
	Using the build

	Cleaning Up
	Uninstallation
	Chapter 2: Hello World
	Examples
	Hello World Example

	Breakdown:
	Notes
	Credits

