
Vue.js

#vue.js

Table of Contents

About 1

Chapter 1: Getting started with Vue.js 2

Remarks 2

Versions 2

Examples 2

"Hello, World!" Program 2

Simple Example 2

HTML template 3

JavaScript 3

Hello World in Vue 2 (The JSX way) 3

Handling User Input 4

Chapter 2: Components 5

Remarks 5

Examples 5

Component scoped (not global) 5

HTML 5

JS 5

What are components and how to define components? 6

Local registration of components 9

Inline registration 9

Data registration in components 9

Events 10

Chapter 3: Computed Properties 11

Remarks 11

Data vs Computed Properties 11

Examples 11

Basic Example 11

Computed properties vs watch 12

Computed Setters 12

Using computed setters for v-model 13

Chapter 4: Conditional Rendering 16

Syntax 16

Remarks 16

Examples 16

Overview 16

v-if 16

v-else 16

v-show 16

v-if / v-else 16

v-show 18

Chapter 5: Custom Components with v-model 19

Introduction 19

Remarks 19

Examples 19

v-model on a counter component 19

Chapter 6: Custom Directives 21

Syntax 21

Parameters 21

Examples 21

Basics 21

Chapter 7: Custom Filters 25

Syntax 25

Parameters 25

Examples 25

Two-way Filters 25

Basic 26

Chapter 8: Data Binding 27

Examples 27

Text 27

Raw HTML 27

Attributes 27

Filters 27

Chapter 9: Dynamic Components 29

Remarks 29

Examples 29

Simple Dynamic Components Example 29

Javascript: 29

HTML: 29

Snippet: 29

Pages Navigation with keep-alive 30

Javascript: 30

HTML: 31

CSS: 31

Snippet: 31

Chapter 10: Event Bus 32

Introduction 32

Syntax 32

Remarks 32

Examples 32

eventBus 32

Chapter 11: Events 34

Examples 34

Events syntax 34

When should I use events ? 34

The example above can be improved ! 36

How to deal with deprecation of $dispatch and $broadcast? (bus event pattern) 37

Chapter 12: Lifecycle Hooks 39

Examples 39

Hooks for Vue 1.x 39

init 39

created 39

beforeCompile 39

compiled 39

ready 39

attached 39

detached 39

beforeDestroy 39

destroyed 39

Using in an Instance 40

Common Pitfalls: Accessing DOM from the `ready()` hook 40

Chapter 13: List Rendering 42

Examples 42

Basic Usage 42

HTML 42

Script 42

Only render HTML items 42

Pig countdown list 42

Iteration over an object 43

Chapter 14: Mixins 44

Examples 44

Global Mixin 44

Custom Option Merge Strategies 44

Basics 44

Option Merging 45

Chapter 15: Modifiers 47

Introduction 47

Examples 47

Event Modifiers 47

Key Modifiers 47

Input Modifiers 48

Chapter 16: Plugins 49

Introduction 49

Syntax 49

Parameters 49

Remarks 49

Examples 49

Simple logger 49

Chapter 17: Polyfill "webpack" template 51

Parameters 51

Remarks 51

Examples 51

Usage of functions to polyfill (ex: find) 51

Chapter 18: Props 52

Remarks 52

camelCase <=> kebab-case 52

Examples 52

Passing Data from parent to child with props 52

Dynamic Props 57

JS 57

HTML 57

Result 58

Passing Props While Using Vue JSX 58

ParentComponent.js 58

ChildComponent.js: 58

Chapter 19: Slots 59

Remarks 59

Examples 59

Using Single Slots 59

What are slots? 60

Using Named Slots 60

Using Slots in Vue JSX with 'babel-plugin-transform-vue-jsx' 61

Chapter 20: The array change detection caveats 63

Introduction 63

Examples 63

Using Vue.$set 63

Using Array.prototype.splice 63

For nested array 64

Array of objects containing arrays 64

Chapter 21: Using "this" in Vue 65

Introduction 65

Examples 65

WRONG! Using "this" in a callback inside a Vue method. 65

WRONG! Using "this" inside a promise. 65

RIGHT! Use a closure to capture "this" 65

RIGHT! Use bind. 66

RIGHT! Use an arrow function. 66

WRONG! Using an arrow function to define a method that refers to "this" 66

RIGHT! Define methods with the typical function syntax 67

Chapter 22: Vue single file components 68

Introduction 68

Examples 68

Sample .vue component file 68

Chapter 23: VueJS + Redux with Vua-Redux (Best Solution) 69

Examples 69

How to use Vua-Redux 69

Initialize: 69

Chapter 24: vue-router 72

Introduction 72

Syntax 72

Examples 72

Basic Routing 72

Chapter 25: Vuex 73

Introduction 73

Examples 73

What is Vuex? 73

Why use Vuex? 76

How to install Vuex? 78

Auto dismissible notifications 78

Chapter 26: Watchers 82

Examples 82

How it works 82

Credits 84

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: vue-js

It is an unofficial and free Vue.js ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official Vue.js.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/vue-js
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Vue.js

Remarks

Vue.js is a rapidly growing front-end framework for JavaScript, inspired by Angular.js, Reactive.js,
and Rivets.js that offers simplistic user-interface design, manipulation, and deep reactivity.

It is described as a MVVM patterned framework, Model-View View-Model, which is based on the
concept of two-way binding data to components and views. It is incredibly fast, exceeding speeds
of other top-tier JS frameworks, and very user friendly for easy integration and prototyping.

Versions

Version Release Date

2.4.1 2017-07-13

2.3.4 2017-06-08

2.3.3 2017-05-09

2.2.6 2017-03-26

2.0.0 2016-10-02

1.0.26 2016-06-28

1.0.0 2015-10-26

0.12.0 2015-06-12

0.11.0 2014-11-06

Examples

"Hello, World!" Program

To start using Vue.js, make sure you have the script file included in your HTML. For example, add
the following to your HTML.

<script src="https://npmcdn.com/vue/dist/vue.js"></script>

Simple Example

https://riptutorial.com/ 2

https://vuejs.org

HTML template

<div id="app">
 {{ message }}
</div>

JavaScript

new Vue({
 el: '#app',
 data: {
 message: 'Hello Vue.js!'
 }
})

See a live demo of this example.

You might also want to check out the "Hello World" example made by Vue.js.

Hello World in Vue 2 (The JSX way)

JSX is not meant to be interpreted by the browser. It must be first transpiled into standard
Javascript. To use JSX you need to install the plugin for babel babel-plugin-transform-vue-JSX

Run the Command below:

npm install babel-plugin-syntax-jsx babel-plugin-transform-vue-jsx babel-helper-vue-jsx-merge-
props --save-dev

and add it to your .babelrc like this:

{
 "presets": ["es2015"],
 "plugins": ["transform-vue-jsx"]
}

Sample code with VUE JSX:

import Vue from 'vue'
import App from './App.vue'

new Vue({
 el: '#app',
 methods: {
 handleClick () {
 alert('Hello!')
 }
 },
 render (h) {
 return (

https://riptutorial.com/ 3

https://jsfiddle.net/jlam55555/ky667ewg/
https://jsfiddle.net/yyx990803/okv0rgrk/

 <div>
 <h1 on-click={this.handleClick}>Hello from JSX</h1>
 <p> Hello World </p>
 </div>
)
 }
})

By using JSX you can write concise HTML/XML-like structures in the same file as you write
JavaScript code.

Congratulations, You're Done :)

Handling User Input

VueJS can be used to easily handle user input as well, and the two way binding using v-model
makes it really easy to change data easily.

HTML :

<script src="https://unpkg.com/vue/dist/vue.js"></script>
<div id="app">
 {{message}}
<input v-model="message">
</div>

JS :

new Vue({
 el: '#app',
 data: {
 message: 'Hello Vue.js!'
 }
})

It is very easy to do a two-way binding in VueJS using v-model directive.

Check out a live example here.

Read Getting started with Vue.js online: https://riptutorial.com/vue-js/topic/1057/getting-started-
with-vue-js

https://riptutorial.com/ 4

https://jsfiddle.net/sankalpsingha/4yb11nq3/4/
https://riptutorial.com/vue-js/topic/1057/getting-started-with-vue-js
https://riptutorial.com/vue-js/topic/1057/getting-started-with-vue-js

Chapter 2: Components

Remarks

In Component(s):

props is an array of string literals or object references used to pass data from parent component.
It can also be in object form when it is desired to have more fine grained control like specifying
default values, type of data accepted, whether it is required or optional

data has to be a function which returns an object instead of a plain object. It is so because we
require each instance of the component to have its own data for re-usability purpose.

events is an object containing listeners for events to which the component can respond by
behavioral change

methods object containing functions defining the behavior associated with the component

computed properties are just like watchers or observables, whenever any dependency changes
the properties are recalculated automatically and changes are reflected in DOM instantly if DOM
uses any computed properties

ready is a Vue instance's life-cycle hook

Examples

Component scoped (not global)

Demo

HTML

<script type="x-template" id="form-template">
 <label>{{inputLabel}} :</label>
 <input type="text" v-model="name" />
</script>

<div id="app">
 <h2>{{appName}}</h2>
 <form-component title="This is a form" v-bind:name="userName"></form-component>
</div>

JS

// Describe the form component
// Note: props is an array of attribute your component can take in entry.
// Note: With props you can pass static data('title') or dynamic data('userName').

https://riptutorial.com/ 5

https://jsfiddle.net/56t3z02e/

// Note: When modifying 'name' property, you won't modify the parent variable, it is only
descendent.
// Note: On a component, 'data' has to be a function that returns the data.
var formComponent = {
 template: '#form-template',
 props: ['title', 'name'],
 data: function() {
 return {
 inputLabel: 'Name'
 }
 }
};

// This vue has a private component, it is only available on its scope.
// Note: It would work the same if the vue was a component.
// Note: You can build a tree of components, but you have to start the root with a 'new
Vue()'.
var vue = new Vue({
 el: '#app',
 data: {
 appName: 'Component Demo',
 userName: 'John Doe'
 },
 components: {
 'form-component': formComponent
 }
});

What are components and how to define components?

Components in Vue are like widgets. They allow us to write reusable custom elements with
desired behavior.

They are nothing but objects which can contain any/all of the options that the root or any Vue
instance can contain, including an HTML template to render.

Components consist of:

HTML markup: the component's template•
CSS styles: how the HTML markup will be displayed•
JavaScript code: the data and behavior•

These can each be written in a separate file, or as a single file with the .vue extension. Below are
examples showing both ways:

.VUE - as a single file for the component

<style>
 .hello-world-compoment{
 color:#eeeeee;
 background-color:#555555;
 }
</style>

<template>
 <div class="hello-world-component">

https://riptutorial.com/ 6

 <p>{{message}}</p>
 <input @keyup.enter="changeName($event)"/>
 </div>
</template>

<script>
 export default{
 props:[/* to pass any data from the parent here... */],
 events:{ /* event listeners go here */},
 ready(){
 this.name= "John";
 },
 data(){
 return{
 name:''
 }
 },
 computed:{
 message(){
 return "Hello from " + this.name;
 }
 },
 methods:{
 // this could be easily achieved by using v-model on the <input> field, but just
to show a method doing it this way.
 changeName(e){
 this.name = e.target.value;
 }
 }
 }
</script>

Separate Files

hello-world.js - the JS file for the component object

export default{
 template:require('./hello-world.template.html'),
 props:[/* to pass any data from the parent here... */],
 events:{ /* event listeners go here */ },
 ready(){
 this.name="John";
 },
 data(){
 return{
 name:''
 }
 },
 computed:{
 message(){
 return "Hello World! from " + this.name;
 }
 },
 methods:{
 changeName(e){
 let name = e.target.value;
 this.name = name;
 }
 }
}

https://riptutorial.com/ 7

hello-world.template.html

<div class="hello-world-component">
 <p>{{message}}</p>
 <input class="form-control input-sm" @keyup.enter="changeName($event)">
</div>

hello-world.css

 .hello-world-compoment{
 color:#eeeeee;
 background-color:#555555;
}

These examples use es2015 syntax, so Babel will be needed to compile them to es5 for older
browsers.
Babel along with Browserify + vueify or Webpack + vue-loader will be required to compile
hello-world.vue.

Now that we have the hello-world component defined, we should register it with Vue.

This can be done in two ways:

Register as a global component
In the main.js file (entry point to the app) we can register any component globally with
Vue.component:

import Vue from 'vue'; // Note that 'vue' in this case is a Node module installed with 'npm
install Vue'
Vue.component('hello-world', require('./hello-world'); // global registeration

new Vue({
 el:'body',

 // Templates can be defined as inline strings, like so:
 template:'<div class="app-container"><hello-world></hello-world></div>'
});

Or register it locally within a parent component or root component

import Vue from 'vue'; // Note that 'vue' in this case is a Node module installed with 'npm
install Vue'
import HelloWorld from './hello-world.js';

new Vue({
 el:'body',
 template:'<div class="app-container"><hello-world></hello-world></div>",

 components:{HelloWorld} // local registeration
});

Global Components can be used anywhere within the Vue application.

https://riptutorial.com/ 8

Local Components are only available for use in the parent component with which they are
registered.

Fragment component
You may get a console error telling you that you can't do something because yours is a fragment
component. To solve this sort of issue just wrap your component template inside a single tag, like
a <div>.

Local registration of components

A component can be registered either globally or locally (bind to another specific component).

var Child = Vue.extend({
 // ...
})

var Parent = Vue.extend({
 template: '...',
 components: {
 'my-component': Child
 }
})

Thiw new component () will only be available inside the scope (template) of the Parent component.

Inline registration

You can extend and register a component in one step:

Vue.component('custom-component', {
 template: '<div>A custom component!</div>'
})

Also when the component is registered locally:

var Parent = Vue.extend({
 components: {
 'custom-component': {
 template: '<div>A custom component!</div>'
 }
 }
})

Data registration in components

Passing an object to the data property when registering a component would cause all instances of
the component to point to the same data. To solve this, we need to return data from a function.

var CustomComponent = Vue.extend({
 data: function () {
 return { a: 1 }

https://riptutorial.com/ 9

 }
})

Events

One of the ways components can communicate with its ancestors/descendants is via custom
communication events. All Vue instances are also emitters and implement a custom event
interface that facilitates communication within a component tree. We can use the following:

$on: Listen to events emitted by this components ancestors or descendants.•
$broadcast: Emits an event that propagates downwards to all descendants.•
$dispatch: Emits an event that triggers first on the component itself and than propagates
upwards to all ancestors.

•

$emit: Triggers an event on self.•

For example, we want to hide a specific button component inside a form component when the
form submits. On the parent element:

var FormComponent = Vue.extend({
 // ...
 components: {
 ButtonComponent
 },
 methods: {
 onSubmit () {
 this.$broadcast('submit-form')
 }
 }
})

On the child element:

var FormComponent = Vue.extend({
 // ...
 events: {
 'submit-form': function () {
 console.log('I should be hiding');
 }
 }
})

Some things to keep in mind:

Whenever an event finds a component that is listening to it and gets triggered, it will stop
propagating unless the function callback in this component returns true.

•

$dispatch() always triggers first on the component that has emitted it.•
We can pass any number of arguments to the events handler. Doing
this.$broadcast('submit-form', this.formData, this.formStatus) allows us to access this
arguments like 'submit-form': function (formData, formStatus) {}

•

Read Components online: https://riptutorial.com/vue-js/topic/1775/components

https://riptutorial.com/ 10

https://riptutorial.com/vue-js/topic/1775/components

Chapter 3: Computed Properties

Remarks

Data vs Computed Properties

The main use-case difference for the data and computed properties of a Vue instance is dependent
on the potential state or probability of changing of the data. When deciding what category a certain
object should be, these questions might help:

Is this a constant value? (data)•
Does this have the possibility to change? (computed or data)•
Is the value of it reliant on the value of other data? (computed)•
Does it need additional data or calculations to be complete before being used? (computed)•
Will the value only change under certain circumstances? (data)•

Examples

Basic Example

Template

<div id="example">
 a={{ a }}, b={{ b }}
</div>

JavaScript

var vm = new Vue({
 el: '#example',
 data: {
 a: 1
 },
 computed: {
 // a computed getter
 b: function () {
 // `this` points to the vm instance
 return this.a + 1
 }
 }
})

Result

a=1, b=2

Here we have declared a computed property b. The function we provided will be used as the getter

https://riptutorial.com/ 11

function for the property vm.b:

console.log(vm.b) // -> 2
vm.a = 2
console.log(vm.b) // -> 3

The value of vm.b is always dependent on the value of vm.a.

You can data-bind to computed properties in templates just like a normal property. Vue is aware
that vm.b depends on vm.a, so it will update any bindings that depends on vm.b when vm.a changes.

Computed properties vs watch

template

<div id="demo">{{fullName}}</div>

watch example

var vm = new Vue({
 el: '#demo',
 data: {
 firstName: 'Foo',
 lastName: 'Bar',
 fullName: 'Foo Bar'
 }
})

vm.$watch('firstName', function (val) {
 this.fullName = val + ' ' + this.lastName
})

vm.$watch('lastName', function (val) {
 this.fullName = this.firstName + ' ' + val
})

Computed example

var vm = new Vue({
 el: '#demo',
 data: {
 firstName: 'Foo',
 lastName: 'Bar'
 },
 computed: {
 fullName: function () {
 return this.firstName + ' ' + this.lastName
 }
 }
})

Computed Setters

https://riptutorial.com/ 12

Computed properties will automatically be recomputed whenever any data on which the
computation depends changes. However, if you need to manually change a computed property,
Vue allows you to create a setter method to do this:

Template (from the basic example above):

<div id="example">
 a={{ a }}, b={{ b }}
</div>

Javascript:

var vm = new Vue({
 el: '#example',
 data: {
 a: 1
 },
 computed: {
 b: {
 // getter
 get: function () {
 return this.a + 1
 },
 // setter
 set: function (newValue) {
 this.a = newValue - 1
 }
 }
 }

You can now invoke either the getter or the setter:

console.log(vm.b) // -> 2
vm.b = 4 // (setter)
console.log(vm.b) // -> 4
console.log(vm.a) // -> 3

vm.b = 4 will invoke the setter, and set this.a to 3; by extension, vm.b will evaluate to 4.

Using computed setters for v-model

You might need a v-model on a computed property. Normally, the v-model won't update the
computed property value.

The template:

<div id="demo">
 <div class='inline-block card'>
 <div :class='{onlineMarker: true, online: status, offline: !status}'></div>
 <p class='user-state'>User is {{ (status) ? 'online' : 'offline' }}</p>
 </div>

 <div class='margin-5'>

https://riptutorial.com/ 13

 <input type='checkbox' v-model='status'>Toggle status (This will show you as offline to
others)
 </div>
</div>

Styling:

#demo {
 font-family: Helvetica;
 font-size: 12px;
}
.inline-block > * {
 display: inline-block;
}
.card {
 background: #ddd;
 padding:2px 10px;
 border-radius: 3px;
}
.onlineMarker {
 width: 10px;
 height: 10px;
 border-radius: 50%;
 transition: all 0.5s ease-out;
}

.online {
 background-color: #3C3;
}

.offline {
 background-color: #aaa;
}

.user-state {
 text-transform: uppercase;
 letter-spacing: 1px;
}

.margin-5 {
 margin: 5px;
}

The component:

var demo = new Vue({
 el: '#demo',
 data: {
 statusProxy: null
 },
 computed: {
 status: {
 get () {
 return (this.statusProxy === null) ? true : this.statusProxy
 }
 }
 }
})

https://riptutorial.com/ 14

fiddle Here you would see, clicking the radio button has no use at all, your status is still online.

var demo = new Vue({
 el: '#demo',
 data: {
 statusProxy: null
 },
 computed: {
 status: {
 get () {
 return (this.statusProxy === null) ? true : this.statusProxy
 },
 set (val) {
 this.statusProxy = val
 }
 }
 }
})

fiddle And now you can see the toggle happens as the checkbox is checked/unchecked.

Read Computed Properties online: https://riptutorial.com/vue-js/topic/2371/computed-properties

https://riptutorial.com/ 15

http://jsfiddle.net/zrdn0yxr/
http://jsfiddle.net/yyx990803/vjvMp/
https://riptutorial.com/vue-js/topic/2371/computed-properties

Chapter 4: Conditional Rendering

Syntax

<element v-if="condition"></element> //v-if•
<element v-if="condition"></element><element v-else="condition"></element> //v-if | v-else•
<template v-if="condition">...</template> //templated v-if•
<element v-show="condition"></element> //v-show•

Remarks

It is very important to remember the difference between v-if and v-show. While their uses are
almost identical, an element bound to v-if will only render into the DOM when it's condition is true
for the first time. When using the v-show directive, all elements are rendered into the DOM but are
hidden using the display style if the condition is false!

Examples

Overview

In Vue.js, conditional rendering is achieved by using a set of directives on elements in the
template.

v-if

Element displays normally when condition is true. When the condition is false, only partial
compilation occurs and the element isn't rendered into the DOM until the condition becomes true.

v-else

Does not accept a condition, but rather renders the element if the previous element's v-if
condition is false. Can only be used after an element with the v-if directive.

v-show

Behaves similarly to v-if, however, the element will always be rendered into the DOM, even when
the condition is false. If the condition is false, this directive will simply set the element's display
style to none.

v-if / v-else

Assuming we have a Vue.js instance defined as:

var vm = new Vue({
 el: '#example',

https://riptutorial.com/ 16

 data: {
 a: true,
 b: false
 }
});

You can conditionally render any html element by including the v-if directive; the element that
contains v-if will only render if the condition evaluates to true:

<!-- will render 'The condition is true' into the DOM -->
<div id="example">
 <h1 v-if="a">The condition is true</h1>
</div>

The <h1> element will render in this case, because the variable 'a' is true. v-if can be used with any
expression, computed property, or function that evaluates to a boolean:

<div v-if="0 === 1"> false; won't render</div>
<div v-if="typeof(5) === 'number'"> true; will render</div>

You can use a template element to group multiple elements together for a single condition:

<!-- in this case, nothing will be rendered except for the containing 'div' -->
<div id="example">
 <template v-if="b">
 <h1>Heading</h1>
 <p>Paragraph 1</p>
 <p>Paragraph 2</p>
 </template>
</div>

When using v-if, you also have the option of integrating a counter condition with the v-else
directive. The content contained inside the element will only be displayed if the condition of the
previous v-if was false. Note that this means that an element with v-else must appear immediately
after an element with v-if.

<!-- will render only 'ELSE' -->
<div id="example">
 <h1 v-if="b">IF</h1>
 <h1 v-else="a">ELSE</h1>
</div>

Just as with v-if, with v-else you can group multiple html elements together within a <template>:

<div v-if="'a' === 'b'"> This will never be rendered. </div>
<template v-else>

 You can also use templates with v-else.
 All of the content within the template
 will be rendered.

</template>

https://riptutorial.com/ 17

v-show

The use of the v-show directive is almost identical to that of v-if. The only differences are that v-
show does not support the <template> syntax, and there is no "alternative" condition.

var vm = new Vue({
 el: '#example',
 data: {
 a: true
 }
});

The basic use is as follows...

<!-- will render 'Condition met' -->
<div id="example">
 <h1 v-show="a">Condition met</h1>
</div>

While v-show does not support the v-else directive to define "alternative" conditions, this can be
accomplished by negating the previous one...

<!-- will render 'This is shown' -->
<div id="example">
 <h1 v-show="!a">This is hidden</h1>
 <h1 v-show="a">This is shown</h1>
</div>

Read Conditional Rendering online: https://riptutorial.com/vue-js/topic/3465/conditional-rendering

https://riptutorial.com/ 18

https://riptutorial.com/vue-js/topic/3465/conditional-rendering

Chapter 5: Custom Components with v-model

Introduction

Often times we have to create some components which perform some actions/operations on data
and we require that in the parent component. Most of the times vuex would be a better solution, but
in cases where the child component's behavior has nothing to do with application state, for
instance: A range-slider, date/time picker, file reader

Having individual stores for each component each time they get used gets complicated.

Remarks

To have v-model on a component you need to fulfil two conditions.

It should have a prop named 'value'1.
It should emit an input event with the value expected by the parent components.2.

<component v-model='something'></component>

is just syntactic sugar for

<component
 :value="something"
 @input="something = $event.target.value"
>
</component>

Examples

v-model on a counter component

Here counter is a child component accessed by demo which is a parent component using v-model.

// child component
Vue.component('counter', {
 template: `<div><button @click='add'>+1</button>
 <button @click='sub'>-1</button>
 <div>this is inside the child component: {{ result }}</div></div>`,
 data () {
 return {
 result: 0
 }
 },
 props: ['value'],
 methods: {
 emitResult () {

https://riptutorial.com/ 19

 this.$emit('input', this.result)
 },
 add () {
 this.result += 1
 this.emitResult()
 },
 sub () {
 this.result -= 1
 this.emitResult()
 }
 }
})

This child component will be emitting result each time sub() or add() methods are called.

// parent component
new Vue({
 el: '#demo',
 data () {
 return {
 resultFromChild: null
 }
 }
})

// parent template
<div id='demo'>
 <counter v-model='resultFromChild'></counter>
 This is in parent component {{ resultFromChild }}
</div>

Since v-model is present on the child component, a prop with name value was sent at the same
time, there is an input event on the counter which will in turn provide the value from the child
component.

Read Custom Components with v-model online: https://riptutorial.com/vue-js/topic/9353/custom-
components-with-v-model

https://riptutorial.com/ 20

https://riptutorial.com/vue-js/topic/9353/custom-components-with-v-model
https://riptutorial.com/vue-js/topic/9353/custom-components-with-v-model

Chapter 6: Custom Directives

Syntax

Vue.directive(id, definition);•
Vue.directive(id, update); //when you need only the update function.•

Parameters

Parameter Details

id
String - The directive id that will be used without the v- prefix. (Add the v- prefix
when using it)

definition
Object - A definition object can provide several hook functions (all optional): bind
, update, and unbind

Examples

Basics

In addition to the default set of directives shipped in core, Vue.js also allows you to register custom
directives. Custom directives provide a mechanism for mapping data changes to arbitrary DOM
behavior.

You can register a global custom directive with the Vue.directive(id, definition) method, passing
in a directive id followed by a definition object. You can also register a local custom directive by
including it in a component’s directives option.

Hook Functions

bind: called only once, when the directive is first bound to the element.•
update: called for the first time immediately after bind with the initial value, then again
whenever the binding value changes. The new value and the previous value are provided as
the argument.

•

unbind: called only once, when the directive is unbound from the element.•

Vue.directive('my-directive', {
 bind: function () {
 // do preparation work
 // e.g. add event listeners or expensive stuff
 // that needs to be run only once
 },
 update: function (newValue, oldValue) {
 // do something based on the updated value
 // this will also be called for the initial value
 },

https://riptutorial.com/ 21

 unbind: function () {
 // do clean up work
 // e.g. remove event listeners added in bind()
 }
})

Once registered, you can use it in Vue.js templates like this (remember to add the v- prefix):

<div v-my-directive="someValue"></div>

When you only need the update function, you can pass in a single function instead of the definition
object:

Vue.directive('my-directive', function (value) {
 // this function will be used as update()
})

Directive Instance Properties

All the hook functions will be copied into the actual directive object, which you can access inside
these functions as their this context. The directive object exposes some useful properties:

el: the element the directive is bound to.•
vm: the context ViewModel that owns this directive.•
expression: the expression of the binding, excluding arguments and filters.•
arg: the argument, if present.•
name: the name of the directive, without the prefix.•
modifiers: an object containing modifiers, if any.•
descriptor: an object that contains the parsing result of the entire directive.•
params: an object containing param attributes. Explained below.•

You should treat all these properties as read-only and never modify them. You can
attach custom properties to the directive object too, but be careful not to accidentally
overwrite existing internal ones.

An example of a custom directive using some of these properties:

HTML

<div id="demo" v-demo:hello.a.b="msg"></div>

JavaScript

Vue.directive('demo', {
 bind: function () {
 console.log('demo bound!')
 },
 update: function (value) {
 this.el.innerHTML =
 'name - ' + this.name + '
' +
 'expression - ' + this.expression + '
' +

https://riptutorial.com/ 22

 'argument - ' + this.arg + '
' +
 'modifiers - ' + JSON.stringify(this.modifiers) + '
' +
 'value - ' + value
 }
})
var demo = new Vue({
 el: '#demo',
 data: {
 msg: 'hello!'
 }
})

Result

name - demo
expression - msg
argument - hello
modifiers - {"b":true,"a":true}
value - hello!

Object Literal

If your directive needs multiple values, you can also pass in a JavaScript object literal. Remember,
directives can take any valid JavaScript expression:

HTML

<div v-demo="{ color: 'white', text: 'hello!' }"></div>

JavaScript

Vue.directive('demo', function (value) {
 console.log(value.color) // "white"
 console.log(value.text) // "hello!"
})

Literal Modifier

When a directive is used with the literal modifier, its attribute value will be interpreted as a plain
string and passed directly into the update method. The update method will also be called only once,
because a plain string cannot be reactive.

HTML

<div v-demo.literal="foo bar baz">

JavaScript

Vue.directive('demo', function (value) {
 console.log(value) // "foo bar baz"
})

https://riptutorial.com/ 23

Read Custom Directives online: https://riptutorial.com/vue-js/topic/2368/custom-directives

https://riptutorial.com/ 24

https://riptutorial.com/vue-js/topic/2368/custom-directives

Chapter 7: Custom Filters

Syntax

Vue.filter(name, function(value){}); //Basic•
Vue.filter(name, function(value, begin, end){}); //Basic with wrapping values•
Vue.filter(name, function(value, input){}); //Dynamic•
Vue.filter(name, { read: function(value){}, write: function(value){} }); //Two-way•

Parameters

Parameter Details

name String - desired callable name of the filter

value [Callback] Any - value of the data passing into the filter

begin [Callback] Any - value to come before the passed data

end [Callback] Any - value to come after the passed data

input [Callback] Any - user input bound to Vue instance for dynamic results

Examples

Two-way Filters

With a two-way filter, we are able to assign a read and write operation for a single filter that
changes the value of the same data between the view and model.

//JS
Vue.filter('uppercase', {
 //read : model -> view
 read: function(value) {
 return value.toUpperCase();
 },

 //write : view -> model
 write: function(value) {
 return value.toLowerCase();
 }
});

/*
 * Base value of data: 'example string'
 *
 * In the view : 'EXAMPLE STRING'
 * In the model : 'example string'

https://riptutorial.com/ 25

 */

Basic

Custom filters in Vue.js can be created easily in a single function call to Vue.filter.

//JS
Vue.filter('reverse', function(value) {
 return value.split('').reverse().join('');
});

//HTML
{{ msg | reverse }} //'This is fun!' => '!nuf si sihT'

It is good practice to store all custom filters in separate files e.g. under ./filters as it is then easy
to re-use your code in your next application. If you go this way you have to replace JS part:

//JS
Vue.filter('reverse', require('./filters/reverse'));

You can also define your own begin and end wrappers as well.

//JS
Vue.filter('wrap', function(value, begin, end) {
 return begin + value + end;
});

//HTML
{{ msg | wrap 'The' 'fox' }} //'quick brown' => 'The quick brown fox'

Read Custom Filters online: https://riptutorial.com/vue-js/topic/1878/custom-filters

https://riptutorial.com/ 26

https://riptutorial.com/vue-js/topic/1878/custom-filters

Chapter 8: Data Binding

Examples

Text

The most basic form of data binding is text interpolation using the “Mustache” syntax (double curly
braces):

Message: {{ msg }}

The mustache tag will be replaced with the value of the msg property on the corresponding data
object. It will also be updated whenever the data object’s msg property changes.

You can also perform one-time interpolations that do not update on data change:

This will never change: {{* msg }}

Raw HTML

The double mustaches interprets the data as plain text, not HTML. In order to output real HTML,
you will need to use triple mustaches:

<div>{{{ raw_html }}}</div>

The contents are inserted as plain HTML - data bindings are ignored. If you need to reuse
template pieces, you should use partials.

Attributes

Mustaches can also be used inside HTML attributes:

<div id="item-{{ id }}"></div>

Note that attribute interpolations are disallowed in Vue.js directives and special attributes. Don’t
worry, Vue.js will raise warnings for you when mustaches are used in wrong places.

Filters

Vue.js allows you to append optional “filters” to the end of an expression, denoted by the “pipe”
symbol:

{{ message | capitalize }}

Here we are “piping” the value of the message expression through the built-in capitalize filter, which

https://riptutorial.com/ 27

is in fact just a JavaScript function that returns the capitalized value. Vue.js provides a number of
built-in filters, and we will talk about how to write your own filters later.

Note that the pipe syntax is not part of JavaScript syntax, therefore you cannot mix filters inside
expressions; you can only append them at the end of an expression.

Filters can be chained:

{{ message | filterA | filterB }}

Filters can also take arguments:

{{ message | filterA 'arg1' arg2 }}

The filter function always receives the expression’s value as the first argument. Quoted arguments
are interpreted as plain string, while un-quoted ones will be evaluated as expressions. Here, the
plain string 'arg1' will be passed into the filter as the second argument, and the value of
expression arg2 will be evaluated and passed in as the third argument.

Read Data Binding online: https://riptutorial.com/vue-js/topic/1213/data-binding

https://riptutorial.com/ 28

https://riptutorial.com/vue-js/topic/1213/data-binding

Chapter 9: Dynamic Components

Remarks

<component> is a reserved component element, don't be confused with components instance.

v-bind is a directive. Directives are prefixed with v- to indicate that they are special attributes
provided by Vue.

Examples

Simple Dynamic Components Example

Dynamically switch beetween multiple components using <component> element and pass data to v-
bind:is attribute:

Javascript:

new Vue({
 el: '#app',
 data: {
 currentPage: 'home'
 },
 components: {
 home: {
 template: "<p>Home</p>"
 },
 about: {
 template: "<p>About</p>"
 },
 contact: {
 template: "<p>Contact</p>"
 }
 }
})

HTML:

<div id="app">
 <component v-bind:is="currentPage">
 <!-- component changes when currentPage changes! -->
 <!-- output: Home -->
 </component>
</div>

Snippet:

https://riptutorial.com/ 29

http://www.riptutorial.com/vue-js/topic/1775/components

Live Demo

Pages Navigation with keep-alive

Sometimes you want to keep the switched-out components in memory, to make that happen, you
should use <keep-alive> element:

Javascript:

new Vue({
 el: '#app',
 data: {
 currentPage: 'home',
 },
 methods: {
 switchTo: function(page) {
 this.currentPage = page;
 }
 },
 components: {
 home: {
 template: `<div>
 <h2>Home</h2>
 <p>{{ homeData }}</p>
 </div>`,
 data: function() {
 return {
 homeData: 'My about data'
 }
 }
 },
 about: {
 template: `<div>
 <h2>About</h2>
 <p>{{ aboutData }}</p>
 </div>`,
 data: function() {
 return {
 aboutData: 'My about data'
 }
 }
 },
 contact: {
 template: `<div>
 <h2>Contact</h2>
 <form method="POST" @submit.prevent>
 <label>Your Name:</label>
 <input type="text" v-model="contactData.name" >
 <label>You message: </label>
 <textarea v-model="contactData.message"></textarea>
 <button type="submit">Send</button>
 </form>
 </div>`,
 data: function() {
 return {
 contactData: { name:'', message:'' }
 }
 }

https://riptutorial.com/ 30

https://jsfiddle.net/elasri/9soyw9ca/

 }
 }
})

HTML:

<div id="app">
 <div class="navigation">

 Home
 About
 Contact

 </div>

 <div class="pages">
 <keep-alive>
 <component :is="currentPage"></component>
 </keep-alive>
 </div>
</div>

CSS:

.navigation {
 margin: 10px 0;
}

.navigation ul {
 margin: 0;
 padding: 0;
}

.navigation ul li {
 display: inline-block;
 margin-right: 20px;
}

input, label, button {
 display: block
}

input, textarea {
 margin-bottom: 10px;
}

Snippet:

Live Demo

Read Dynamic Components online: https://riptutorial.com/vue-js/topic/7702/dynamic-components

https://riptutorial.com/ 31

https://jsfiddle.net/elasri/hy99p7p6/
https://riptutorial.com/vue-js/topic/7702/dynamic-components

Chapter 10: Event Bus

Introduction

Event buses are a useful way of communicating between components which are not directly
related, i.e. Have no parent-child relationship.

It is just an empty vue instance, which can be used to $emit events or listen $on the said events.

Syntax

export default new Vue()1.

Remarks

Use vuex if your application has a lot of components requiring the data of each other.

Examples

eventBus

// setup an event bus, do it in a separate js file
var bus = new Vue()

// imagine a component where you require to pass on a data property
// or a computed property or a method!

Vue.component('card', {
 template: `<div class='card'>
 Name:
 <div class='margin-5'>
 <input v-model='name'>
 </div>
 <div class='margin-5'>
 <button @click='submit'>Save</button>
 </div>
 </div>`,
 data() {
 return {
 name: null
 }
 },
 methods: {
 submit() {
 bus.$emit('name-set', this.name)
 }
 }
})

// In another component that requires the emitted data.

https://riptutorial.com/ 32

var data = {
 message: 'Hello Vue.js!'
}

var demo = new Vue({
 el: '#demo',
 data: data,
 created() {
 console.log(bus)
 bus.$on('name-set', (name) => {
 this.message = name
 })
 }
})

Read Event Bus online: https://riptutorial.com/vue-js/topic/9498/event-bus

https://riptutorial.com/ 33

https://riptutorial.com/vue-js/topic/9498/event-bus

Chapter 11: Events

Examples

Events syntax

To send an event: vm.$emit('new-message');

To catch an event: vm.$on('new-message');

To send an event to all components down: vm.$broadcast('new-message');

To send an event to all components up: vm.$dispatch('new-message');

Note: $broadcast and $dispatch are deprecated in Vue2. (see Vue2 features)

When should I use events ?

The following picture illustrates how component communication should work. The picture comes
from The Progressive Framework slides of Evan You (Developer of VueJS).

https://riptutorial.com/ 34

https://github.com/vuejs/vue/issues/2873
https://docs.google.com/presentation/d/1WnYsxRMiNEArT3xz7xXHdKeH1C-jT92VxmptghJb5Es/edit#slide=id.g1631db019e_0_16
https://twitter.com/youyuxi

Here is an example of how it works :

DEMO

HTML

<script type="x-template" id="message-box">
 <input type="text" v-model="msg" @keyup="$emit('new-message', msg)" />
</script>

<message-box :msg="message" @new-message="updateMessage"></message-box>
<div>You typed: {{message}}</div>

JS

var messageBox = {
 template: '#message-box',
 props: ['msg']
};

new Vue({
 el: 'body',

https://riptutorial.com/ 35

http://i.stack.imgur.com/G1YWd.png
http://jsfiddle.net/57whmzw4/

 data: {
 message: ''
 },
 methods: {
 updateMessage: function(msg) {
 this.message = msg;
 }
 },
 components: {
 'message-box': messageBox
 }
});

The example above can be improved !

The example above shows how the component communication works. But in case of a custom
input component, to synchronize the parent variable with the value typed, we sould use v-model.

DEMO Vue1

DEMO Vue2

In Vue1, you should use .sync on the prop sent to the <message-box> component. This tells VueJS
to synchronize the value in the child component with the parent's.

Remember: Every component instance has its own isolated scope.

HTML Vue1

<script type="x-template" id="message-box">
 <input v-model="value" />
</script>

<div id="app">
 <message-box :value.sync="message"></message-box>
 <div>You typed: {{message}}</div>
</div>

In Vue2, there is a special 'input' event you can $emit. Using this event allows you to put a v-
model directly on the <message-box> component. The example will look as follow:

HTML Vue2

<script type="x-template" id="message-box">
 <input :value="value" @input="$emit('input', $event.target.value)" />
</script>

<div id="app">
 <message-box v-model="message"></message-box>
 <div>You typed: {{message}}</div>
</div>

JS Vue 1 & 2

https://riptutorial.com/ 36

http://jsfiddle.net/2u6oqoh0/
https://jsfiddle.net/1fe0wasd/

var messageBox = {
 template: '#message-box',
 props: ['value']
};

new Vue({
 el: '#app',
 data: {
 message: ''
 },
 components: {
 'message-box': messageBox
 }
});

Notice how faster the input is updated.

How to deal with deprecation of $dispatch and $broadcast? (bus event
pattern)

You might have realized that $emit is scoped to the component that is emitting the event. That's a
problem when you want to communicate between components far from one another in the
component tree.

Note: In Vue1 you coud use $dispatch or $broadcast, but not in Vue2. The reason being that it
doesn't scale well. There is a popular bus pattern to manage this:

DEMO

HTML

<script type="x-template" id="sender">
 <button @click="bus.$emit('new-event')">Click me to send an event !</button>
</script>

<script type="x-template" id="receiver">
 <div>I received {{numberOfEvents}} event{{numberOfEvents == 1 ? '' : 's'}}</div>
</script>

<sender></sender>
<receiver></receiver>

JS

var bus = new Vue();

var senderComponent = {
 template: '#sender',
 data() {
 return {
 bus: bus
 }
 }
};

https://riptutorial.com/ 37

http://jsfiddle.net/dunyxvm0/

var receiverComponent = {
 template: '#receiver',
 data() {
 return {
 numberOfEvents: 0
 }
 },
 ready() {
 var self = this;

 bus.$on('new-event', function() {
 ++self.numberOfEvents;
 });
 }
};

new Vue({
 el: 'body',
 components: {
 'sender': senderComponent,
 'receiver': receiverComponent
 }
});

You just need to understand that any Vue() instance can $emit and catch ($on) an event. We just
declare a global Vue instance call bus and then any component with this variable can emit and
catch events from it. Just make sure the component has access to the bus variable.

Read Events online: https://riptutorial.com/vue-js/topic/5941/events

https://riptutorial.com/ 38

https://riptutorial.com/vue-js/topic/5941/events

Chapter 12: Lifecycle Hooks

Examples

Hooks for Vue 1.x

init

Called synchronously after the instance has been initialized and prior to any initial data
observation.

•

created

Called synchronously after the instance is created. This occurs prior to $el setup, but after
data observation, computed properties, watch/event callbacks, and methods have been setup.

•

beforeCompile

Immediately prior to compilation of the Vue instance.

•

compiled

Immediately after compilation has completed. All directives are linked but still prior to $el
being available.

•

ready

Occurs after compilation and $el are complete and the instance is injected into the DOM for
the first time.

•

attached

Occurs when $el is attached to the DOM by a directive or instance calls $appendTo().

•

detached

Called when $el is removed/detached from the DOM or instance method.

•

beforeDestroy

Immediately before the Vue instance is destroyed, but is still fully functional.

•

destroyed

Called after an instance is destroyed. All bindings and directives have already been
unbound and child instances have also been destroyed.

•

https://riptutorial.com/ 39

Using in an Instance

Since all lifecycle hooks in Vue.js are just functions, you can place any of them directly in the
instance declaraction.

//JS
new Vue({

 el: '#example',

 data: {
 ...
 },

 methods: {
 ...
 },

 //LIFECYCLE HOOK HANDLING
 created: function() {
 ...
 },

 ready: function() {
 ...
 }

});

Common Pitfalls: Accessing DOM from the `ready()` hook

A common usecase for the ready() hook is to access the DOM, e.g. to initiate a Javascript plugin,
get the dimensions of an element etc.

The problem

Due to Vue's asynchronous DOM update mechanism, it's not guaranteed that the DOM has been
fully updated when the ready() hook is called. This usually results in an error because the element
is undefined.

The Solution

For this situation, the $nextTick() instance method can help. This method defers the execution of
the provided callback function until after the next tick, which means that it is fired when all DOM
updates are guaranteed to be finished.

Example:

module.exports {
 ready: function () {
 $('.cool-input').initiateCoolPlugin() //fails, because element is not in DOM yet.

 this.$nextTick(function() {
 $('.cool-input').initiateCoolPlugin() // this will work because it will be executed

https://riptutorial.com/ 40

http://vuejs.org/api/#vm-nextTick

after the DOM update.
 })
 }
}

Read Lifecycle Hooks online: https://riptutorial.com/vue-js/topic/1852/lifecycle-hooks

https://riptutorial.com/ 41

https://riptutorial.com/vue-js/topic/1852/lifecycle-hooks

Chapter 13: List Rendering

Examples

Basic Usage

A list can be rendered using the v-for directive. The syntax requires that you specify the source
array to iterate on, and an alias that will be used to reference each item in the iteration. In the
following example we use items as the source array, and item as the alias for each item.

HTML

<div id="app">
 <h1>My List</h1>
 <table>
 <tr v-for="item in items">
 <td>{{item}}</td>
 </tr>
 </table>
</div>

Script

new Vue({
 el: '#app',
 data: {
 items: ['item 1', 'item 2', 'item 3']
 }
})

You can view a working demo here.

Only render HTML items

In this example will render five tags

<ul id="render-sample">
 <li v-for="n in 5">
 Hello Loop

Pig countdown list

 <li v-for="n in 10">{{11 - n}} pigs are tanning at the beach. One got fried, and

https://riptutorial.com/ 42

http://codepen.io/theosherman/pen/mExQzp

https://jsfiddle.net/gurghet/3jeyka22/

Iteration over an object

v-for can be used for iterating over an object keys (and values):

HTML:

<div v-for="(value, key) in object">
 {{ key }} : {{ value }}
</div>

Script:

new Vue({
 el: '#repeat-object',
 data: {
 object: {
 FirstName: 'John',
 LastName: 'Doe',
 Age: 30
 }
 }
})

Read List Rendering online: https://riptutorial.com/vue-js/topic/1972/list-rendering

https://riptutorial.com/ 43

https://jsfiddle.net/gurghet/3jeyka22/
https://riptutorial.com/vue-js/topic/1972/list-rendering

Chapter 14: Mixins

Examples

Global Mixin

You can also apply a mixin globally. Use caution! Once you apply a mixin globally, it will affect
every Vue instance created afterwards. When used properly, this can be used to inject processing
logic for custom options:

// inject a handler for `myOption` custom option
Vue.mixin({
 created: function () {
 var myOption = this.$options.myOption
 if (myOption) {
 console.log(myOption)
 }
 }
})

new Vue({
 myOption: 'hello!'
})
// -> "hello!"

Use global mixins sparsely and carefully, because it affects every single Vue instance
created, including third party components. In most cases, you should only use it for
custom option handling like demonstrated in the example above.

Custom Option Merge Strategies

When custom options are merged, they use the default strategy, which simply overwrites the
existing value. If you want a custom option to be merged using custom logic, you need to attach a
function to Vue.config.optionMergeStrategies:

Vue.config.optionMergeStrategies.myOption = function (toVal, fromVal) {
 // return mergedVal
}

For most object-based options, you can simply use the same strategy used by methods:

var strategies = Vue.config.optionMergeStrategies
strategies.myOption = strategies.methods

Basics

Mixins are a flexible way to distribute reusable functionalities for Vue components. A mixin object
can contain any component options. When a component uses a mixin, all options in the mixin will

https://riptutorial.com/ 44

be “mixed” into the component’s own options.

// define a mixin object
var myMixin = {
 created: function () {
 this.hello()
 },
 methods: {
 hello: function () {
 console.log('hello from mixin!')
 }
 }
}

// define a component that uses this mixin
var Component = Vue.extend({
 mixins: [myMixin]
})

var component = new Component() // -> "hello from mixin!"

Option Merging

When a mixin and the component itself contain overlapping options, they will be “merged” using
appropriate strategies. For example, hook functions with the same name are merged into an array
so that all of them will be called. In addition, mixin hooks will be called before the component’s
own hooks:

var mixin = {
 created: function () {
 console.log('mixin hook called')
 }
}

new Vue({
 mixins: [mixin],
 created: function () {
 console.log('component hook called')
 }
})

// -> "mixin hook called"
// -> "component hook called"

Options that expect object values, for example methods, components and directives, will be merged
into the same object. The component’s options will take priority when there are conflicting keys in
these objects:

var mixin = {
 methods: {
 foo: function () {
 console.log('foo')
 },
 conflicting: function () {
 console.log('from mixin')

https://riptutorial.com/ 45

 }
 }
}

var vm = new Vue({
 mixins: [mixin],
 methods: {
 bar: function () {
 console.log('bar')
 },
 conflicting: function () {
 console.log('from self')
 }
 }
})

vm.foo() // -> "foo"
vm.bar() // -> "bar"
vm.conflicting() // -> "from self"

Note that the same merge strategies are used in Vue.extend().

Read Mixins online: https://riptutorial.com/vue-js/topic/2562/mixins

https://riptutorial.com/ 46

https://riptutorial.com/vue-js/topic/2562/mixins

Chapter 15: Modifiers

Introduction

There are some frequently used operations like event.preventDefault() or event.stopPropagation()
inside event handlers. Although we can do this easily inside methods, it would be better if the
methods can be purely about data logic rather than having to deal with DOM event details.

Examples

Event Modifiers

Vue provides event modifiers for v-on by calling directive postfixes denoted by a dot.

.stop•

.prevent•

.capture•

.self•

.once•

For examples:

<!-- the click event's propagation will be stopped -->
<a v-on:click.stop="doThis">

<!-- the submit event will no longer reload the page -->
<form v-on:submit.prevent="onSubmit"></form>

<!-- use capture mode when adding the event listener -->
<div v-on:click.capture="doThis">...</div>

<!-- only trigger handler if event.target is the element itself -->
<!-- i.e. not from a child element -->
<div v-on:click.self="doThat">...</div>

Key Modifiers

When listening for keyboard events, we often need to check for common key codes.
Remembering all the keyCodes is a hassle, so Vue provides aliases for the most commonly used
keys:

.enter•

.tab•

.delete (captures both “Delete” and “Backspace” keys)•

.esc•

.space•

.up•

.down•

.left•

.right•

https://riptutorial.com/ 47

For examples:

<input v-on:keyup.enter="submit">

Input Modifiers

.trim•

If you want user input to be trimmed automatically, you can add the trim modifier to your v-model
managed inputs:

<input v-model.trim="msg">

.number•

If you want user input to be automatically typecast as a number, you can do as follow:

<input v-model.number="age" type="number">

.lazy•

Generally, v-model syncs the input with the data after each input event, but you can add the lazy
modifier to instead sync after change events:

<input v-model.lazy="msg" >

Read Modifiers online: https://riptutorial.com/vue-js/topic/8612/modifiers

https://riptutorial.com/ 48

https://riptutorial.com/vue-js/topic/8612/modifiers

Chapter 16: Plugins

Introduction

Vue plugins adds global functionality as, global methods, directives, transitions, filters, instance
methods, objects and inject some component options using mixins

Syntax

MyPlugin.install = function (Vue, options) {}•

Parameters

Name Description

Vue Vue constructor, injected by Vue

options Additional options if needed

Remarks

In most cases you will need to explicitly tell Vue to use a plugin

// calls `MyPlugin.install(Vue)`
Vue.use(MyPlugin)

To pass options

Vue.use(MyPlugin, { someOption: true })

Examples

Simple logger

//myLogger.js
export default {

 install(Vue, options) {
 function log(type, title, text) {
 console.log(`[${type}] ${title} - ${text}`);
 }

 Vue.prototype.$log = {
 error(title, text) { log('danger', title, text) },
 success(title, text) { log('success', title, text) },

https://riptutorial.com/ 49

 log
 }
 }
}

Before your main Vue instance tell to register your plugin

//main.js
import Logger from './path/to/myLogger';

Vue.use(Logger);

var vm = new Vue({
 el: '#app',
 template: '<App/>',
 components: { App }
})

Now you can call this.$log on any child component

//myComponent.vue
export default {
 data() {
 return {};
 },
 methods: {
 Save() {
 this.$log.success('Transaction saved!');
 }
 }
}

Read Plugins online: https://riptutorial.com/vue-js/topic/8726/plugins

https://riptutorial.com/ 50

https://riptutorial.com/vue-js/topic/8726/plugins

Chapter 17: Polyfill "webpack" template

Parameters

Files or packages Command or configuration to modify

babel-polyfill npm i -save babel-polyfill

karma.conf.js files: ['../../node_modules/babel-
polyfill/dist/polyfill.js','./index.js'],

webpack.base.conf.js app: ['babel-polyfill', './src/main.js']

Remarks

The configurations described above, the example using a non-sstandardised function will work on
"internet explorer" and npm test will pass.

Examples

Usage of functions to polyfill (ex: find)

<template>
 <div class="hello">
 <p>{{ filtered() }}</p>
 </div>
</template>

<script>
export default {
 name: 'hello',
 data () {
 return {
 list: ['toto', 'titi', 'tata', 'tete']
 }
 },
 methods: {
 filtered () {
 return this.list.find((el) => el === 'tata')
 }
 }
}
</script>

Read Polyfill "webpack" template online: https://riptutorial.com/vue-js/topic/9174/polyfill--webpack--
template

https://riptutorial.com/ 51

https://riptutorial.com/vue-js/topic/9174/polyfill--webpack--template
https://riptutorial.com/vue-js/topic/9174/polyfill--webpack--template

Chapter 18: Props

Remarks

camelCase <=> kebab-case

When defining the names of your props, always remember that HTML attribute names are case-
insensitive. That means if you define a prop in camel case in your component definition...

Vue.component('child', {
 props: ['myProp'],
 ...
});

...you must call it in your HTML component as my-prop.

Examples

Passing Data from parent to child with props

In Vue.js, every component instance has its own isolated scope, which means that if a parent
component has a child component - the child component has its own isolated scope and the
parent component has its own isolated scope.

For any medium to large size app, following best practices conventions prevents lots of headaches
during the development phase and then after while maintenance. One of such things to follow is
that avoid referencing/mutating parent data directly from the child component. So then how
do we reference the parent data from within a child component?

Whatever parent data is required in a child component should be passed to the child as props from
the parent.

Use Case: Suppose we have a User database with two tables users and addresses with the
following fields:
users Table

name phone email

John Mclane (1) 234 5678 9012 john@dirhard.com

James Bond (44) 777 0007 0077 bond@mi6.com

addresses Table

https://riptutorial.com/ 52

block street city

Nakatomi Towers Broadway New York

Mi6 House Buckingham Road London

and we want to have three components to display corresponding user information anywhere in our
app

user-component.js

export default{
 template:`<div class="user-component">
 <label for="name" class="form-control">Name: </label>
 <input class="form-control input-sm" name="name" v-model="name">
 <contact-details :phone="phone" :email="email"></contact-details>
 </div>`,
 data(){
 return{
 name:'',
 phone:'',
 email:''
 }
 },
}

contact-details.js

import Address from './address';
export default{
 template:`<div class="contact-details-component>
 <h4>Contact Details:</h4>
 <label for="phone" class="form-control">Phone: </label>
 <input class="form-control input-sm" name="phone" v-model="phone">
 <label for="email" class="form-control">Email: </label>
 <input class="form-control input-sm" name="email" v-model="email">

 <h4>Address:</h4>
 <address :address-type="addressType"></address>
 //see camelCase vs kebab-case explanation below
 </div>`,
 props:['phone', 'email'],
 data:(){
 return:{
 addressType:'Office'
 }
 },
 components:{Address}
}

address.js

export default{
 template:`<div class="address-component">
 <h6>{{addressType}}</h6>
 <label for="block" class="form-control">Block: </label>

https://riptutorial.com/ 53

 <input class="form-control input-sm" name="block" v-model="block">
 <label for="street" class="form-control">Street: </label>
 <input class="form-control input-sm" name="street" v-model="street">
 <label for="city" class="form-control">City: </label>
 <input class="form-control input-sm" name="city" v-model="city">
 </div>`,
 props:{
 addressType:{
 required:true,
 type:String,
 default:'Office'
 },
 data(){
 return{
 block:'',
 street:'',
 city:''
 }
 }
}

main.js

import Vue from 'vue';

Vue.component('user-component', require'./user-component');
Vue.component('contact-details', require'./contact-details');

new Vue({
 el:'body'
});

index.html

...
<body>
 <user-component></user-component>
 ...
</body>

We are displaying the phone and email data, which are properties of user-component in contact-
details which doesn't have phone or email data.

Passing data as props

So within the user-component.js in the template property, where we include the <contact-details>
component, we are passing the phone and the email data from <user-component>(parent
component) to <contact-details>(child component) by dynamically binding it to the props -
:phone="phone" and :email="email which is same as v-bind:phone="phone" and v-bind:email="email"

Props - Dynamic Binding

Since we are dynamically binding the props any change in phone or email within the parent
component i.e. <user-component> will immediately be reflected in the child component i.e. <contact-
details>.

https://riptutorial.com/ 54

Props - as Literals

However, if we would have passed the values of phone and email as string literal values like
phone="(44) 777 0007 0077" email="bond@mi6.com" then it would not reflect any data changes which
happen in the parent component.

One-Way binding

By default the direction of changes is top to bottom i.e. any change to dynamically bound props in
the parent component will propagate to the child component but any change to the prop values in
a child component will not propagate to the parent.

For eg: if from within the <contact-details> we change the email from bond@mi6.com to
jamesbond@mi6.com, the parent data i.e. phone data property in <user-component> will still contain a
value of bond@mi6.com.

However, if we change the value of email from bond@mi6.com to jamesbond@mi6.co in the parent
component (<user-component> in our use case) then the value of email in the child component (
<contact-details> in our use case) will change to jamesbond@mi6.com automatically - change in
parent is instantly propagated to the child.

Two-Way Binding

If we want two-way binding then we have to explicitly specify two-way binding as
:email.sync="email" instead of :email="email". Now if we change the value of prop in the child
component the change will be reflected in the parent component as well.

In a medium to large app changing parent state from the child state will be very hard to detect and
keep track of especially while debugging - Be cautious .

There won't be any .sync option available in Vue.js 2.0. The two-way binding for props is being
deprecated in Vue.js 2.0.

One-time Binding

It is also possible to define explicit one-time binding as :email.once="email, it is more or less
similar to passing a literal, because any subsequent changes in the parent property value will not
propagate to the child.

CAVEAT
When Object or Array is passed as prop, they are ALWAYS PASSED BY REFERENCE, which
means irrespective of the binding type explicitly defined :email.sync="email" or :email="email" or
:email.once="email", if email is an Object or an Array in the parent then regardless of the binding
type, any change in the prop value within the child component will affect the value in the parent as
well.

Props as Array

In the contact-details.js file we have defined props:['phone', 'email'] as an array, which is fine if
we do not want fine grained control with props.

https://riptutorial.com/ 55

Props as Object

If we want more fine grained control over props, like

if we want to define what type of values are acceptable as the prop•
what should be a default value for the prop•
whether a value is MUST (required) to be passed for the prop or is it optional•

then we need to use object notation for defining the props, as we have done in address.js.

If we are authoring reusable components which may be used by other developers on the team as
well, then it is a good practice to define props as objects so that anyone using the component has
a clear idea of what should be the type of data and whether it is compulsory or optional.

It is also referred to as props validation. The type can be any one of the following native
constructors:

String•
Number•
Boolean•
Array•
Object•
Function•
or a Custom Constructor•

Some examples of prop validation as taken from http://vuejs.org/guide/components.html#Props

Vue.component('example', {
 props: {
 // basic type check (`null` means accept any type)
 propA: Number,
 // multiple possible types (1.0.21+)
 propM: [String, Number],
 // a required string
 propB: {
 type: String,
 required: true
 },
 // a number with default value
 propC: {
 type: Number,
 default: 100
 },
 // object/array defaults should be returned from a
 // factory function
 propD: {
 type: Object,
 default: function () {
 return { msg: 'hello' }
 }
 },
 // indicate this prop expects a two-way binding. will
 // raise a warning if binding type does not match.
 propE: {
 twoWay: true

https://riptutorial.com/ 56

http://vuejs.org/guide/components.html#Props

 },
 // custom validator function
 propF: {
 validator: function (value) {
 return value > 10
 }
 },
 // coerce function (new in 1.0.12)
 // cast the value before setting it on the component
 propG: {
 coerce: function (val) {
 return val + '' // cast the value to string
 }
 },
 propH: {
 coerce: function (val) {
 return JSON.parse(val) // cast the value to Object
 }
 }
 }
});

camelCase vs kebab-case

HTML attributes are case-insensitive, which means it cannot differentiate between addresstype and
addressType, so when using camelCase prop names as attributes we need to use their kebab-
case(hyphen-delimited) equivalents:
addressType should be written as address-type in HTML attribute.

Dynamic Props

Just as you're able to bind data from a view to the model, you can also bind props using the same
v-bind directive for passing information from parent to child components.

JS

new Vue({
 el: '#example',
 data: {
 msg: 'hello world'
 }
});

Vue.component('child', {
 props: ['myMessage'],
 template: '{{ myMessage }}
});

HTML

<div id="example">
 <input v-model="msg" />
 <child v-bind:my-message="msg"></child>

https://riptutorial.com/ 57

 <!-- Shorthand ... <child :my-message="msg"></child> -->
</div>

Result

hello world

Passing Props While Using Vue JSX

We have a parent component: Importing a child component in it we'll pass props via an attribute.
Here the attribute is 'src' and we're passing the 'src' too.

ParentComponent.js

import ChildComponent from './ChildComponent';
export default {
 render(h, {props}) {
 const src = 'https://cdn-images-1.medium.com/max/800/1*AxRXW2j8qmGJixIYg7n6uw.jpeg';
 return (
 <ChildComponent src={src} />
);
 }
};

And a child component, where we need to pass props. We need to specify which props we are
passing.

ChildComponent.js:

export default {
 props: ['src'],
 render(h, {props}) {
 return (

 Click this link

);
 }
};

Read Props online: https://riptutorial.com/vue-js/topic/3080/props

https://riptutorial.com/ 58

https://riptutorial.com/vue-js/topic/3080/props

Chapter 19: Slots

Remarks

Important! Slots after render don't guarantee order for positions for slots. Slot, which was the first,
may have a different position after render.

Examples

Using Single Slots

Single slots are used when a child component only defines one slot within its template. The page
component above uses a single slot to distribute content.

An example of the page component's template using a single slot is below:

<html>
 <head>
 <title>Page Title</title>
 </head>
 <body>
 <slot>
 This will only be displayed if there is no content
 to be distributed.
 </slot>
 </body>
</html>

To illustrate how the slot works we can set up a page as follows.

<page>
 <p>This content will be displayed within the page component</p>
</page>

The end result will be:

<html>
 <head>
 <title>Page Title</title>
 </head>
 <body>
 <p>This content will be displayed within the page component</p>
 </body>
</html>

If we didn't put anything between the page tags an instead had <page></page> we would instead
yield the following result since there is default content between the slot tags in the page
component template.

https://riptutorial.com/ 59

<html>
 <head>
 <title>Page Title</title>
 </head>
 <body>
 This will only be displayed if there is no content
 to be distributed.
 </body>
</html>

What are slots?

Slots offer a convenient way of distributing content from a parent component to a child component.
This content can be anything from text, HTML or even other components.

It can be helpful sometimes to think of slots as a means of injecting content directly into a child
component's template.

Slots are especially useful when the component composition underneath the parent component
isn't always the same.

Take the following example where we have a page component. The content of the page could
change based on whether that page displays e.g. an article, blog post or form.

Article

<page>
 <article></article>
 <comments></comments>
</page>

Blog Post

<page>
 <blog-post></blog-post>
 <comments></comments>
</page>

Form

<page>
 <form></form>
</page>

Notice how the content of the page component can change. If we didn't use slots this would be
more difficult as the inner part of the template would be fixed.

Remember: "Everything in the parent template is compiled in parent scope; everything in the child
template is compiled in child scope."

Using Named Slots

https://riptutorial.com/ 60

Named slots work similarly to single slots but instead allow you to distribute content to different
regions within your child component template.

Take the page component from the previous example but modify it's template so it is as follows:

<html>
 <head>
 <title>Page Title</title>
 </head>
 <body>
 <aside>
 <slot name="sidebar"></slot>
 </aside>
 <main>
 <slot name="content"></slot>
 </main>
 </body>
</html>

When using the page component we can now determine where content is placed via the slot
attribute:

<page>
 <p slot="sidebar">This is sidebar content.</p>
 <article slot="content"></article>
</page>

The resulting page will be:

<html>
 <head>
 <title>Page Title</title>
 </head>
 <body>
 <aside>
 <p>This is sidebar content.</p>
 </aside>
 <main>
 <article></article>
 </main>
 </body>
</html>

If a slot is defined without a name attribute then any content which is placed within component tags
not specifying a slot attribute will be placed into that slot.

See the multi insertion example on the Vue.js official docs.

Using Slots in Vue JSX with 'babel-plugin-transform-vue-jsx'

If you're Using VueJS2 and like to use JSX along with it. In this case,to use the slot, the solution
with example is below.We have to use this.$slots.default It's almost like this.props.children in
React JS.

https://riptutorial.com/ 61

https://vuejs.org/guide/components.html#Named-Slots

Component.js :

export default {
 render(h) { //eslint-disable-line
 return (

 { this.$slots.default }

);
 }
};

ParentComponent.js

import Component from './Component';

export default {
 render(h) { //eslint-disable-line
 return (

 <Component>
 Hello World
 </Component>

);
 }
};

Read Slots online: https://riptutorial.com/vue-js/topic/4484/slots

https://riptutorial.com/ 62

https://riptutorial.com/vue-js/topic/4484/slots

Chapter 20: The array change detection
caveats

Introduction

When you try to set a value of an item at a particular index of an array initialized in the data option,
vue can't detect the change and does not trigger an update to the state. In order to overcome this
caveat you should either use vue's Vue.$set or use Array.prototype.splice method

Examples

Using Vue.$set

In your method or any lifecycle hook that changes the array item at particuar index

new Vue({
 el: '#app',
 data:{
 myArr : ['apple', 'orange', 'banana', 'grapes']
 },
 methods:{
 changeArrayItem: function(){
 //this will not work
 //myArr[2] = 'strawberry';

 //Vue.$set(array, index, newValue)
 this.$set(this.myArr, 2, 'strawberry');
 }
 }
})

Here is the link to the fiddle

Using Array.prototype.splice

You can perform the same change instead of using Vue.$set by using the Array prototype's
splice()

new Vue({
 el: '#app',
 data:{
 myArr : ['apple', 'orange', 'banana', 'grapes']
 },
 methods:{
 changeArrayItem: function(){
 //this will not work
 //myArr[2] = 'strawberry';

 //Array.splice(index, 1, newValue)
 this.myArr.splice(2, 1, 'strawberry');

https://riptutorial.com/ 63

https://jsfiddle.net/r_vamsi_krishna/4gwex560/2/

 }
 }
})

For nested array

If yoi have nested array, the following can be done

new Vue({
 el: '#app',
 data:{
 myArr : [
 ['apple', 'banana'],
 ['grapes', 'orange']
]
 },
 methods:{
 changeArrayItem: function(){
 this.$set(this.myArr[1], 1, 'strawberry');
 }
 }
})

Here is the link to the jsfiddle

Array of objects containing arrays

new Vue({
 el: '#app',
 data:{
 myArr : [
 {
 name: 'object-1',
 nestedArr: ['apple', 'banana']
 },
 {
 name: 'object-2',
 nestedArr: ['grapes', 'orange']
 }
]
 },
 methods:{
 changeArrayItem: function(){
 this.$set(this.myArr[1].nestedArr, 1, 'strawberry');
 }
 }
})

Here is the link to the fiddle

Read The array change detection caveats online: https://riptutorial.com/vue-js/topic/10679/the-
array-change-detection-caveats

https://riptutorial.com/ 64

https://jsfiddle.net/r_vamsi_krishna/4gwex560/
https://jsfiddle.net/r_vamsi_krishna/4gwex560/1/
https://riptutorial.com/vue-js/topic/10679/the-array-change-detection-caveats
https://riptutorial.com/vue-js/topic/10679/the-array-change-detection-caveats

Chapter 21: Using "this" in Vue

Introduction

One of the most common errors we find in Vue code on StackOverflow is the misuse of this. The
most common mistakes fall generally in two areas, using this in callbacks for promises or other
asynchronous functions and using arrow functions to define methods, computed properties, etc.

Examples

WRONG! Using "this" in a callback inside a Vue method.

new Vue({
 el:"#app",
 data:{
 foo: "bar"
 },
 methods:{
 doSomethingAsynchronous(){
 setTimeout(function(){
 // This is wrong! Inside this function,
 // "this" refers to the window object.
 this.foo = "baz";
 }, 1000);
 }
 }
})

WRONG! Using "this" inside a promise.

new Vue({
 el:"#star-wars-people",
 data:{
 people: null
 },
 mounted: function(){
 $.getJSON("http://swapi.co/api/people/", function(data){
 // Again, this is wrong! "this", here, refers to the window.
 this.people = data.results;
 })
 }
})

RIGHT! Use a closure to capture "this"

You can capture the correct this using a closure.

new Vue({
 el:"#star-wars-people",
 data:{

https://riptutorial.com/ 65

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

 people: null
 },
 mounted: function(){
 // Before executing the web service call, save this to a local variable
 var self = this;
 $.getJSON("http://swapi.co/api/people/", function(data){
 // Inside this call back, because of the closure, self will
 // be accessible and refers to the Vue object.
 self.people = data.results;
 })
 }
})

RIGHT! Use bind.

You can bind the callback function.

new Vue({
 el:"#star-wars-people",
 data:{
 people: null
 },
 mounted:function(){
 $.getJSON("http://swapi.co/api/people/", function(data){
 this.people = data.results;
 }.bind(this));
 }
})

RIGHT! Use an arrow function.

new Vue({
 el:"#star-wars-people",
 data:{
 people: null
 },
 mounted: function(){
 $.getJSON("http://swapi.co/api/people/", data => this.people = data.results);
 }
})

Caution! Arrow functions are a syntax introduced in Ecmascript 2015. It is not yet supported but
all modern browsers, so only use it if you are targetting a browser you know supports it, or if you
are compiling your javascript down to ES5 syntax using something like babel.

WRONG! Using an arrow function to define a method that refers to "this"

new Vue({
 el:"#app",
 data:{
 foo: "bar"
 },
 methods:{
 // This is wrong! Arrow functions capture "this" lexically

https://riptutorial.com/ 66

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/bind
https://babeljs.io/

 // and "this" will refer to the window.
 doSomething: () => this.foo = "baz"
 }
})

RIGHT! Define methods with the typical function syntax

new Vue({
 el:"#app",
 data:{
 foo: "bar"
 },
 methods:{
 doSomething: function(){
 this.foo = "baz"
 }
 }
})

Alternatively, if you are using a javascript compiler or a browser that supports Ecmascript 2015

new Vue({
 el:"#app",
 data:{
 foo: "bar"
 },
 methods:{
 doSomething(){
 this.foo = "baz"
 }
 }
})

Read Using "this" in Vue online: https://riptutorial.com/vue-js/topic/9350/using--this--in-vue

https://riptutorial.com/ 67

https://riptutorial.com/vue-js/topic/9350/using--this--in-vue

Chapter 22: Vue single file components

Introduction

Describe how to create single file components in a .vue file.

Specially the design decisions that can be made.

Examples

Sample .vue component file

<template>
 <div class="nice">Component {{title}}</div>
</template>

<script>
export default {
 data() {
 return {
 title: "awesome!"
 };
 }
}
</script>

<style>
.nice {
 background-color: red;
 font-size: 48px;
}
</style>

Read Vue single file components online: https://riptutorial.com/vue-js/topic/10118/vue-single-file-
components

https://riptutorial.com/ 68

https://riptutorial.com/vue-js/topic/10118/vue-single-file-components
https://riptutorial.com/vue-js/topic/10118/vue-single-file-components

Chapter 23: VueJS + Redux with Vua-Redux
(Best Solution)

Examples

How to use Vua-Redux

Installing Vua Redux from NPM:

Install through:

npm i vua-redux --save

Initialize:

===============

// main.js

import Vue from 'vue';
import { reduxStorePlugin } from 'vua-redux';
import AppStore from './AppStore';
import App from './Component/App';

// install vua-redux
Vue.use(reduxStorePlugin);

new Vue({
 store: AppStore,
 render(h) {
 return <App />
 }
});

// AppStore.js

import { createStore } from 'redux';

const initialState = {
 todos: []
};

const reducer = (state = initialState, action) => {
 switch(action.type){
 case 'ADD_TODO':
 return {
 ...state,
 todos: [...state.todos, action.data.todo]
 }

https://riptutorial.com/ 69

 default:
 return state;
 }
}

const AppStore = createStore(reducer);

export default AppStore;

Use in your component :

// components/App.js

import { connect } from 'vua-redux';

const App = {
 props: ['some-prop', 'another-prop'],

 /**
 * everything you do with vue component props
 * you can do inside collect key
 */
 collect: {
 todos: {
 type: Array,
 },
 addTodo: {
 type: Function,
 },
 },

 methods: {
 handleAddTodo() {
 const todo = this.$refs.input.value;
 this.addTodo(todo);
 }
 },

 render(h) {
 return <div>

 {this.todos.map(todo => {todo})}

 <div>
 <input type="text" ref="input" />
 <button on-click={this.handleAddTodo}>add todo</button>
 </div>
 </div>
 }
};

function mapStateAsProps(state) {
 return {
 todos: state.todos
 };
}

function mapActionsAsProps(dispatch) {
 return {

https://riptutorial.com/ 70

 addTodo(todo) {
 dispatch({
 type: 'ADD_TODO',
 data: { todo }
 })
 }
 }
}

export default connect(mapStateAsProps, mapActionsAsProps)(App);

Read VueJS + Redux with Vua-Redux (Best Solution) online: https://riptutorial.com/vue-
js/topic/7396/vuejs-plus-redux-with-vua-redux--best-solution-

https://riptutorial.com/ 71

https://riptutorial.com/vue-js/topic/7396/vuejs-plus-redux-with-vua-redux--best-solution-
https://riptutorial.com/vue-js/topic/7396/vuejs-plus-redux-with-vua-redux--best-solution-

Chapter 24: vue-router

Introduction

vue-router is the officially supported routing library for vue.js.

Syntax

<router-link to="/path">Link Text</router-link> <!-- Creates a link to the route that
matches the path -->

•

<router-view></router-view> <!-- Outlet for the currently matched route. It's component
will be rendered here. -->

•

Examples

Basic Routing

The easiest way to get up and running with vue-router is to use the version provided via CDN.

HTML:

<script src="https://unpkg.com/vue/dist/vue.js"></script>
<script src="https://unpkg.com/vue-router/dist/vue-router.js"></script>

<div id="router-example">
 <router-link to="/foo">Link to Foo route</router-link>
 <router-view></router-view>
</div>

JavaScript (ES2015):

const Foo = { template: <div>This is the component for the Foo route</div> }

const router = new VueRouter({
 routes: [
 { path: '/foo', component: Foo}
]
})

const routerExample = new Vue({
 router
}).$mount('#router-example')

Read vue-router online: https://riptutorial.com/vue-js/topic/9654/vue-router

https://riptutorial.com/ 72

https://riptutorial.com/vue-js/topic/9654/vue-router

Chapter 25: Vuex

Introduction

Vuex is a state management pattern + library for Vue.js applications. It serves as a centralised
store for all the components in an application, with rules ensuring that the state can only be
mutated in a predictable fashion. It also integrates with Vue's official dev tools extension to provide
advanced features such as zero-config time-travel debugging and state snapshot export/import.

Examples

What is Vuex?

Vuex is an official plugin for Vue.js which offers a centralised datastore for use within your
application. It is heavily influenced by the Flux application architecture which features a
unidirectional data flow leading to simpler application design and reasoning.

Within a Vuex application the datastore holds all shared application state. This state is altered by
mutations which are performed in response to an action invoking a mutation event via the
dispatcher.

An example of the data flow in a Vuex application is outlined in the diagram below.

https://riptutorial.com/ 73

https://riptutorial.com/ 74

https://i.stack.imgur.com/O9e4f.png

Diagram used under the MIT licence, originally from the Official Vuex GitHub repo.

Individual Vue.js application components can access the store object to retrieve data via getters,
which are pure functions returning a read-only copy of the desired data.

Components can have actions which are functions that perform changes to the component's own
copy of the data, then use the dispatcher to dispatch a mutation event. This event is then handled
by the datastore which updates the state as necessary.

Changes are then automatically reflected throughout the application since all components are
reactively bound to the store via their getters.

An example illustrating the use of vuex in a vue project.

const state = {
 lastClickTime: null
}

const mutations = {
 updateLastClickTime: (state, payload) => {
 state.lastClickTime = payload
 }
}

const getters = {
 getLastClickTime: state => {
 return new Date(state.lastClickTime)
 }
}

const actions = {
 syncUpdateTime: ({ commit }, payload) => {
 commit("updateLastClickTime", payload)
 },
 asyncUpdateTime: ({ commit }, payload) => {
 setTimeout(() => {
 commit("updateLastClickTime", payload)
 }, Math.random() * 5000)
 }
}

const store = new Vuex.Store({
 state,
 getters,
 mutations,
 actions
})

const { mapActions, mapGetters } = Vuex;

// Vue
const vm = new Vue({
 el: '#container',
 store,
 computed: {
 ...mapGetters([
 'getLastClickTime'

https://riptutorial.com/ 75

http://opensource.org/licenses/MIT
https://github.com/vuejs/vuex
http://jsfiddle.net/codewingx/ybvyspdo/7/

])
 },
 methods: {
 ...mapActions([
 'syncUpdateTime',
 'asyncUpdateTime'
]),
 updateTimeSyncTest () {
 this.syncUpdateTime(Date.now())
 },
 updateTimeAsyncTest () {
 this.asyncUpdateTime(Date.now())
 }
 }
})

And the HTML template for the same:

<div id="container">
 <p>{{ getLastClickTime || "No time selected yet" }}</p>
 <button @click="updateTimeSyncTest">Sync Action test</button>
 <button @click="updateTimeAsyncTest">Async Action test</button>
</div>

Here the state contains lastClickTime property initialized as null. This setting up of default
values is important to keep the properties reactive. Properties not mentioned in the state
will be available but the changes made thereafter would not be accessible by using
getters.

1.

The getter used, provides a computed property which will be updated each time a mutation
updates the value of the state property.

2.

Only mutations are allowed to change the state and its properties, that said, it does so
synchronously only.

3.

An Action can be used in case of asynchronous updates, where the API call (here mocked
by the randomly timed setTimeout) can be made in the action, and after getting the response
a mutation can be committed to, to make the change to the state.

4.

Why use Vuex?

When building large applications such as Single Page Apps (SPA's), which typically consist of
many reusable components they can quickly become difficult to build and maintain. The sharing of
data and state between these components can also quickly break down and become difficult to
debug and maintain.

By using a centralised application data store the entire application state can be represented in one
place making the application more organised. Through the use of a unidirectional data flow,
mutations and by scoping component data access to only the data required it becomes much
simpler to reason about the component role and how it should affect the application state.

VueJS components are separate entities and they cannot share data between each other easily.

https://riptutorial.com/ 76

To share data without vuex we need to emit event with data and then listen and catch that event
with on.

component 1

this.$emit('eventWithDataObject', dataObject)

component 2

this.$on('eventWithDataObject', function (dataObject) {
 console.log(dataObject)
})

With vuex installed we can simply access its data from any component without a need of listening
to events.

this.$store.state.myData

We can also change data synchronously with mutators, use asynchronous actions and get data
with getter functions.

Getter functions might work as global computed functions. We can access them from components:

this.$store.getters.myGetter

Actions are global methods. We can dispatch them from components:

this.$store.dispatch('myAction', myDataObject)

And mutations are the only way to change data in vuex.We can commit changes:

this.$store.commit('myMutation', myDataObject)

Vuex code would look like this

state: {
 myData: {
 key: 'val'
 }
},
getters: {
 myGetter: state => {
 return state.myData.key.length
 }
},
actions: {
 myAction ({ commit }, myDataObject) {
 setTimeout(() => {
 commit('myMutation', myDataObject)
 }, 2000)
 }

https://riptutorial.com/ 77

},
mutations: {
 myMutation (state, myDataObject) {
 state.myData = myDataObject
 }
}

How to install Vuex?

Most of the time that you'll be using Vuex will be in larger component based applications where
you likely be using a module bundler such as Webpack or Browserify in conjunction with Vueify if
you're using single files.

In this case the easiest way to get Vuex is from NPM. Run the command below to install Vuex and
save it to your application dependencies.

 npm install --save vuex

Ensure that you load link Vuex with your Vue setup by placing the following line after your
require('vue') statement.

Vue.use(require('vuex'))

Vuex is also available on CDN; you can grab the latest version from cdnjs here.

Auto dismissible notifications

This example will register an vuex module dynamically for storing custom notifications that can
automatically dismissed

notifications.js

resolve vuex store and define some constants

//Vuex store previously configured on other side
import _store from 'path/to/store';

//Notification default duration in milliseconds
const defaultDuration = 8000;

//Valid mutation names
const NOTIFICATION_ADDED = 'NOTIFICATION_ADDED';
const NOTIFICATION_DISMISSED = 'NOTIFICATION_DISMISSED';

set our module initial state

const state = {
 Notifications: []
}

set our module getters

https://riptutorial.com/ 78

https://cdnjs.com/libraries/vuex

const getters = {
 //All notifications, we are returning only the raw notification objects
 Notifications: state => state.Notifications.map(n => n.Raw)
}

set our module Actions

const actions = {
 //On actions we receive a context object which exposes the
 //same set of methods/properties on the store instance
 //{commit} is a shorthand for context.commit, this is an
 //ES2015 feature called argument destructuring
 Add({ commit }, notification) {
 //Get notification duration or use default duration
 let duration = notification.duration || defaultDuration

 //Create a timeout to dismiss notification
 var timeOut = setTimeout(function () {
 //On timeout mutate state to dismiss notification
 commit(NOTIFICATION_DISMISSED, notification);
 }, duration);

 //Mutate state to add new notification, we create a new object
 //for save original raw notification object and timeout reference
 commit(NOTIFICATION_ADDED, {
 Raw: notification,
 TimeOut: timeOut
 })
 },
 //Here we are using context object directly
 Dismiss(context, notification) {
 //Just pass payload
 context.commit(NOTIFICATION_DISMISSED, notification);
 }
}

set our module mutations

const mutations = {
 //On mutations we receive current state and a payload
 [NOTIFICATION_ADDED](state, notification) {
 state.Notifications.push(notification);
 },
 //remember, current state and payload
 [NOTIFICATION_DISMISSED](state, rawNotification) {
 var i = state.Notifications.map(n => n.Raw).indexOf(rawNotification);
 if (i == -1) {
 return;
 }

 clearTimeout(state.Notifications[i].TimeOut);
 state.Notifications.splice(i, 1);
 }
}

Register our module with defined state, getters, actions and mutation

https://riptutorial.com/ 79

_store.registerModule('notifications', {
 state,
 getters,
 actions,
 mutations
});

Usage

componentA.vue

This components displays all notifications as bootstrap's alerts on top right corner of screen, also
allows to manually dismiss each notification.

<template>
<transition-group name="notification-list" tag="div" class="top-right">
 <div v-for="alert in alerts" v-bind:key="alert" class="notification alert alert-dismissible"
v-bind:class="'alert-'+alert.type">
 <button v-on:click="dismiss(alert)" type="button" class="close" aria-label="Close"><span
aria-hidden="true">×</button>
 <div>
 <div>
 {{alert.title}}
 </div>
 <div>
 {{alert.text}}
 </div>
 </div>
 </div>
</transition-group>
</template>

<script>
export default {
 name: 'arc-notifications',
 computed: {
 alerts() {
 //Get all notifications from store
 return this.$store.getters.Notifications;
 }
 },
 methods: {
 //Manually dismiss a notification
 dismiss(alert) {
 this.$store.dispatch('Dismiss', alert);
 }
 }
}
</script>
<style lang="scss" scoped>
$margin: 15px;

.top-right {
 top: $margin;
 right: $margin;
 left: auto;
 width: 300px;
 //height: 600px;
 position: absolute;

https://riptutorial.com/ 80

 opacity: 0.95;
 z-index: 100;
 display: flex;
 flex-wrap: wrap;
 //background-color: red;
}
.notification {
 transition: all 0.8s;
 display: flex;
 width: 100%;
 position: relative;
 margin-bottom: 10px;
 .close {
 position: absolute;
 right: 10px;
 top: 5px;
 }

 > div {
 position: relative;
 display: inline;
 }
}
.notification:last-child {
 margin-bottom: 0;
}
.notification-list-enter,
.notification-list-leave-active {
 opacity: 0;
 transform: translateX(-90px);
}
.notification-list-leave-active {
 position: absolute;
}
</style>

Snippet for add notification in any other component

//payload could be anything, this example content matches with componentA.vue
this.$store.dispatch('Add', {
 title = 'Hello',
 text = 'World',
 type = 'info',
 duration = 15000
});

Read Vuex online: https://riptutorial.com/vue-js/topic/3430/vuex

https://riptutorial.com/ 81

https://riptutorial.com/vue-js/topic/3430/vuex

Chapter 26: Watchers

Examples

How it works

You can watch data property of any Vue instance. When watching a property, you trigger a
method on change:

export default {
 data () {
 return {
 watched: 'Hello World'
 }
 },
 watch: {
 'watched' () {
 console.log('The watched property has changed')
 }
 }
}

You can retrieve the old value and the new one:

export default {
 data () {
 return {
 watched: 'Hello World'
 }
 },
 watch: {
 'watched' (value, oldValue) {
 console.log(oldValue) // Hello World
 console.log(value) // ByeBye World
 }
 },
 mounted () {
 this.watched = 'ByeBye World'
 }
}

If you need to watch nested properties on an object, you will need to use the deep property:

export default {
 data () {
 return {
 someObject: {
 message: 'Hello World'
 }
 }
 },
 watch: {
 'someObject': {

https://riptutorial.com/ 82

 deep: true,
 handler (value, oldValue) {
 console.log('Something changed in someObject')
 }
 }
 }
}

When is the data updated?

If you need to trigger the watcher before making some new changes to an object, you need to use
the nextTick() method:

export default {
 data() {
 return {
 foo: 'bar',
 message: 'from data'
 }
 },
 methods: {
 action () {
 this.foo = 'changed'
 // If you juste this.message = 'from method' here, the watcher is executed after.
 this.$nextTick(() => {
 this.message = 'from method'
 })
 }
 },
 watch: {
 foo () {
 this.message = 'from watcher'
 }
 }
}

Read Watchers online: https://riptutorial.com/vue-js/topic/7988/watchers

https://riptutorial.com/ 83

https://riptutorial.com/vue-js/topic/7988/watchers

Credits

S.
No

Chapters Contributors

1
Getting started with
Vue.js

Community, Erick Petrucelli, ironcladgeek, J. Bruni, James,
Lambda Ninja, m_callens, MotKohn, rap-2-h, Ru Chern Chong,
Sankalp Singha, Shog9, Shuvo Habib, user1012181,
user6939352, Yerko Palma

2 Components
Donkarnash, Elfayer, Hector Lorenzo, Jeff, m_callens,
phaberest, RedRiderX, user6939352

3 Computed Properties
Amresh Venugopal, cl3m, jaredsk, m_callens, Theo, Yerko
Palma

4
Conditional
Rendering

jaredsk, m_callens, Nirazul, user6939352

5
Custom Components
with v-model

Amresh Venugopal

6 Custom Directives Mat J, Ogie Sado

7 Custom Filters Finrod, M U, m_callens

8 Data Binding gurghet, Jilson Thomas

9
Dynamic
Components

Med, Ru Chern Chong

10 Event Bus Amresh Venugopal

11 Events Elfayer

12 Lifecycle Hooks Linus Borg, m_callens, PatrickSteele, xtreak

13 List Rendering chuanxd, gurghet, Mahmoud, Theo

14 Mixins Ogie Sado

15 Modifiers sept08

16 Plugins AldoRomo88

17
Polyfill "webpack"
template

Stefano Nepa

https://riptutorial.com/ 84

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/424498/erick-petrucelli
https://riptutorial.com/contributor/5796609/ironcladgeek
https://riptutorial.com/contributor/370290/j--bruni
https://riptutorial.com/contributor/1014839/james
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/5270744/m-callens
https://riptutorial.com/contributor/5976576/motkohn
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/2284814/sankalp-singha
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/2993242/shuvo-habib
https://riptutorial.com/contributor/1012181/user1012181
https://riptutorial.com/contributor/6939352/user6939352
https://riptutorial.com/contributor/3178237/yerko-palma
https://riptutorial.com/contributor/1220364/donkarnash
https://riptutorial.com/contributor/2034990/elfayer
https://riptutorial.com/contributor/900362/hector-lorenzo
https://riptutorial.com/contributor/3720222/jeff
https://riptutorial.com/contributor/5270744/m-callens
https://riptutorial.com/contributor/1090867/phaberest
https://riptutorial.com/contributor/982259/redriderx
https://riptutorial.com/contributor/6939352/user6939352
https://riptutorial.com/contributor/5756583/amresh-venugopal
https://riptutorial.com/contributor/849105/cl3m
https://riptutorial.com/contributor/2378918/jaredsk
https://riptutorial.com/contributor/5270744/m-callens
https://riptutorial.com/contributor/751096/theo
https://riptutorial.com/contributor/3178237/yerko-palma
https://riptutorial.com/contributor/3178237/yerko-palma
https://riptutorial.com/contributor/2378918/jaredsk
https://riptutorial.com/contributor/5270744/m-callens
https://riptutorial.com/contributor/1602864/nirazul
https://riptutorial.com/contributor/6939352/user6939352
https://riptutorial.com/contributor/5756583/amresh-venugopal
https://riptutorial.com/contributor/219933/mat-j
https://riptutorial.com/contributor/1228501/ogie-sado
https://riptutorial.com/contributor/3493954/finrod
https://riptutorial.com/contributor/1766444/m-u
https://riptutorial.com/contributor/5270744/m-callens
https://riptutorial.com/contributor/440237/gurghet
https://riptutorial.com/contributor/5879270/jilson-thomas
https://riptutorial.com/contributor/4015229/med
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/5756583/amresh-venugopal
https://riptutorial.com/contributor/2034990/elfayer
https://riptutorial.com/contributor/1339840/linus-borg
https://riptutorial.com/contributor/5270744/m-callens
https://riptutorial.com/contributor/182895/patricksteele
https://riptutorial.com/contributor/2610955/xtreak
https://riptutorial.com/contributor/3246991/chuanxd
https://riptutorial.com/contributor/440237/gurghet
https://riptutorial.com/contributor/1783898/mahmoud
https://riptutorial.com/contributor/751096/theo
https://riptutorial.com/contributor/1228501/ogie-sado
https://riptutorial.com/contributor/6602205/sept08
https://riptutorial.com/contributor/2233835/aldoromo88
https://riptutorial.com/contributor/5267712/stefano-nepa

18 Props
asemahle, Donkarnash, FlatLander, m_callens, rap-2-h, Shuvo
Habib

19 Slots Daniel Waghorn, Elfayer, Shuvo Habib, Slava

20
The array change
detection caveats

Vamsi Krishna

21 Using "this" in Vue Bert

22
Vue single file
components

jordiburgos, Ru Chern Chong

23
VueJS + Redux with
Vua-Redux (Best
Solution)

Aniko Litvanyi, FlatLander, Shuvo Habib, Stefano Nepa

24 vue-router AJ Gregory

25 Vuex
AldoRomo88, Amresh Venugopal, Daniel Waghorn, Matej
Vrzala M4, Ru Chern Chong

26 Watchers El_Matella

https://riptutorial.com/ 85

https://riptutorial.com/contributor/1086646/asemahle
https://riptutorial.com/contributor/1220364/donkarnash
https://riptutorial.com/contributor/1262168/flatlander
https://riptutorial.com/contributor/5270744/m-callens
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/2993242/shuvo-habib
https://riptutorial.com/contributor/2993242/shuvo-habib
https://riptutorial.com/contributor/5065008/daniel-waghorn
https://riptutorial.com/contributor/2034990/elfayer
https://riptutorial.com/contributor/2993242/shuvo-habib
https://riptutorial.com/contributor/6180906/slava
https://riptutorial.com/contributor/7814783/vamsi-krishna
https://riptutorial.com/contributor/38065/bert
https://riptutorial.com/contributor/1108098/jordiburgos
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/6915310/aniko-litvanyi
https://riptutorial.com/contributor/1262168/flatlander
https://riptutorial.com/contributor/2993242/shuvo-habib
https://riptutorial.com/contributor/5267712/stefano-nepa
https://riptutorial.com/contributor/3953760/aj-gregory
https://riptutorial.com/contributor/2233835/aldoromo88
https://riptutorial.com/contributor/5756583/amresh-venugopal
https://riptutorial.com/contributor/5065008/daniel-waghorn
https://riptutorial.com/contributor/7290206/matej-vrzala-m4
https://riptutorial.com/contributor/7290206/matej-vrzala-m4
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/4547701/el-matella

	About
	Chapter 1: Getting started with Vue.js
	Remarks
	Versions
	Examples
	"Hello, World!" Program

	Simple Example
	HTML template
	JavaScript
	Hello World in Vue 2 (The JSX way)
	Handling User Input

	Chapter 2: Components
	Remarks
	Examples
	Component scoped (not global)

	HTML
	JS
	What are components and how to define components?
	Local registration of components
	Inline registration
	Data registration in components
	Events

	Chapter 3: Computed Properties
	Remarks
	Data vs Computed Properties
	Examples
	Basic Example
	Computed properties vs watch
	Computed Setters
	Using computed setters for v-model

	Chapter 4: Conditional Rendering
	Syntax
	Remarks
	Examples
	Overview

	v-if
	v-else
	v-show
	v-if / v-else
	v-show

	Chapter 5: Custom Components with v-model
	Introduction
	Remarks
	Examples
	v-model on a counter component

	Chapter 6: Custom Directives
	Syntax
	Parameters
	Examples
	Basics

	Chapter 7: Custom Filters
	Syntax
	Parameters
	Examples
	Two-way Filters
	Basic

	Chapter 8: Data Binding
	Examples
	Text
	Raw HTML
	Attributes
	Filters

	Chapter 9: Dynamic Components
	Remarks
	Examples
	Simple Dynamic Components Example

	Javascript:
	HTML:
	Snippet:
	Pages Navigation with keep-alive

	Javascript:
	HTML:
	CSS:
	Snippet:

	Chapter 10: Event Bus
	Introduction
	Syntax
	Remarks
	Examples
	eventBus

	Chapter 11: Events
	Examples
	Events syntax
	When should I use events ?

	The example above can be improved !
	How to deal with deprecation of $dispatch and $broadcast? (bus event pattern)

	Chapter 12: Lifecycle Hooks
	Examples
	Hooks for Vue 1.x

	init
	created
	beforeCompile
	compiled
	ready
	attached
	detached
	beforeDestroy
	destroyed
	Using in an Instance
	Common Pitfalls: Accessing DOM from the `ready()` hook

	Chapter 13: List Rendering
	Examples
	Basic Usage

	HTML
	Script
	Only render HTML items
	Pig countdown list
	Iteration over an object

	Chapter 14: Mixins
	Examples
	Global Mixin
	Custom Option Merge Strategies
	Basics
	Option Merging

	Chapter 15: Modifiers
	Introduction
	Examples
	Event Modifiers
	Key Modifiers
	Input Modifiers

	Chapter 16: Plugins
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Simple logger

	Chapter 17: Polyfill "webpack" template
	Parameters
	Remarks
	Examples
	Usage of functions to polyfill (ex: find)

	Chapter 18: Props
	Remarks
	camelCase <=> kebab-case
	Examples
	Passing Data from parent to child with props
	Dynamic Props

	JS
	HTML
	Result
	Passing Props While Using Vue JSX

	ParentComponent.js
	ChildComponent.js:
	Chapter 19: Slots
	Remarks
	Examples
	Using Single Slots
	What are slots?
	Using Named Slots
	Using Slots in Vue JSX with 'babel-plugin-transform-vue-jsx'

	Chapter 20: The array change detection caveats
	Introduction
	Examples
	Using Vue.$set
	Using Array.prototype.splice
	For nested array
	Array of objects containing arrays

	Chapter 21: Using "this" in Vue
	Introduction
	Examples
	WRONG! Using "this" in a callback inside a Vue method.
	WRONG! Using "this" inside a promise.
	RIGHT! Use a closure to capture "this"
	RIGHT! Use bind.
	RIGHT! Use an arrow function.
	WRONG! Using an arrow function to define a method that refers to "this"
	RIGHT! Define methods with the typical function syntax

	Chapter 22: Vue single file components
	Introduction
	Examples
	Sample .vue component file

	Chapter 23: VueJS + Redux with Vua-Redux (Best Solution)
	Examples
	How to use Vua-Redux

	Initialize:

	Chapter 24: vue-router
	Introduction
	Syntax
	Examples
	Basic Routing

	Chapter 25: Vuex
	Introduction
	Examples
	What is Vuex?
	Why use Vuex?
	How to install Vuex?
	Auto dismissible notifications

	Chapter 26: Watchers
	Examples
	How it works

	Credits

