
web-audio

#web-audio

Table of Contents

About 1

Chapter 1: Getting started with web-audio 2

Remarks 2

Examples 2

Synthesising audio 2

Using effects on audio 3

Recording audio from a microphone source 4

Playing audio 5

Realtime altering of two audio sources 5

Setup 7

Credits 8

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: web-audio

It is an unofficial and free web-audio ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official web-audio.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/web-audio
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with web-audio

Remarks

The Web Audio API is a W3C standard for lower level access to the audio system than the
standard <audio>-tag, via a high level API.

Use cases includes games, art, audio synthesis, interactive applications, audio production and any
application where fine-grained control of the audio data is required.

The API can accept input from a number of sources, including loading audio files and decoding
them via the API or <audio>-elements. It also provides facilities to generate sound directly via the
API through the use of oscillator nodes.

There is also a number of processing nodes, such as gains, delays and script processors (which
eventually will be deprecated and replaced by more efficient nodes). These can in turn be used to
build more complex effects and audio graphs.

Examples

Synthesising audio

In this example we show how to generate a simple sine wave, and output it on the user's
speakers/headphones.

let audioContext = new (window.AudioContext || window.webkitAudioContext)();

let sourceNode = audioContext.createOscillator();
sourceNode.type = 'sine';
sourceNode.frequency.value = 261.6;
sourceNode.detune.value = 0;

//Connect the source to the speakers
sourceNode.connect(audioContext.destination);

//Make the sound audible for 100 ms
sourceNode.start();
window.setTimeout(function() { sourceNode.stop(); }, 100);

The start and stop methods of the sourceNode variable above each have an optional parameter
when that specifies how many seconds to wait before starting or stopping.

So, an alternative way to stopping the sound would be:

sourceNode.start();
sourceNode.stop(0.1);

The type parameter of an oscillator node can be set to any of the following values:

https://riptutorial.com/ 2

sine (default)•
square•
sawtooth•
traingle•
a custom wave•

Custom waves are PeriodicWaves and can be created using the AudioContext.createPeriodicWave
method.

Using effects on audio

Effects can be applied to audio by chaining nodes between the source and the destination node.
In this example we use a gain node to mute the source, and only let sound through at specific
times. This allows us to create morse code.

function morse(gainNode, pattern) {
 let silenceTimeout = 300;
 let noiseTimeout;

 if(pattern === '') {
 //We are done here
 return;
 } else if(pattern.charAt(0) === '.') {
 noiseTimeout = 100;
 } else if(pattern.charAt(0) === '-') {
 noiseTimeout = 400;
 } else {
 console.error(pattern.charAt(0), ': Character not recognized.');
 return;
 }

 //Briefly let sound through this gain node
 gainNode.gain.value = 1;
 window.setTimeout(function() {
 gainNode.gain.value = 0;
 window.setTimeout(morse, silenceTimeout, gainNode, pattern.substring(1));
 }, noiseTimeout);
}

let audioContext = new (window.AudioContext || window.webkitAudioContext)();

let sourceNode = audioContext.createOscillator();
let gainNode = audioContext.createGain();

sourceNode.type = 'sine';
sourceNode.frequency.value = 261.6;
sourceNode.detune.value = 0;

//Mute sound going through this gain node
gainNode.gain.value = 0;

//SourceNode -> GainNode -> Speakers
sourceNode.connect(gainNode);
gainNode.connect(audioContext.destination);

//The source node starts outputting

https://riptutorial.com/ 3

https://developer.mozilla.org/en-US/docs/Web/API/AudioContext/createPeriodicWave

sourceNode.start();

//Output SOS
morse(gainNode, '...---...');

Recording audio from a microphone source

In order to record audio from a user's microphone, we must first gain permission from the user to
access the device:

navigator.mediaDevices.getUserMedia({ audio: true })
 .then(successCallback)
 .catch(failureCallback);

On success, our successCallback will be called with a MediaStream object which we can use to
access the microphone:

var audioContext = new (window.AudioContext || window.webkitAudioContext)();
// Create a source from our MediaStream
var source = audioContext.createMediaStreamSource(mediaStream);
// Now create a Javascript processing node with the following parameters:
// 4096 = bufferSize (See notes below)
// 2 = numberOfInputChannels (i.e. Stereo input)
// 2 = numberOfOutputChannels (i.e. Stereo output)
var node = audioContext.createScriptProcessor(4096, 2, 2);
node.onaudioprocess = function(data) {
 console.log(data);
}
// Connect the microphone to the script processor
source.connect(node);
node.connect(audioContext.destination);

The onaudioprocess event gives us access to the Raw PCM data stream from the microphone. We
can access the buffered data like so:

node.onaudioprocess = function(data) {
 var leftChannel = data.inputBuffer.getChannelData(0).buffer;
 var rightChannel = data.inputBuffer.getChannelData(1).buffer;
}

When we're finished recording, we must disconnect from the source and discard the script
processor:

node.disconnect();
source.disconnect();

Important Notes about bufferSize

The bufferSize determines how frequently the onaudioprocess callback is called. Lower values
result in lower (better) latency, higher values will reduce audio breakup/glitches. A value of zero
will allow the browser implementation to choose an appropriate value. If passed in manually, it
must be one of the following values: 256, 512, 1024, 2048, 4096, 8192, 16384.

https://riptutorial.com/ 4

Playing audio

To play audio using the Web Audio API, we need to get an ArrayBuffer of audio data and pass it to
a BufferSource for playback.

To get an audio buffer of the sound to play, you need to use the AudioContext.decodeAudioData
method like so:

const audioCtx = new (window.AudioContext || window.webkitAudioContext)();
// Fetch the MP3 file from the server
fetch("sound/track.mp3")
 // Return the data as an ArrayBuffer
 .then(response => response.arrayBuffer())
 // Decode the audio data
 .then(buffer => audioCtx.decodeAudioData(buffer))
 .then(decodedData => {
 // ...
 });

When the final promise resolves, you'll be given the audio in the form of an AudioBuffer. This can
then be attached to an AudioBufferSourceNode - and played - like so:

const source = context.createBufferSource();
source.buffer = decodedData; // <==
source.start(...);

Where .start() has three parameters that offset when to play the sample, offset where in the
sample to play from, and tell how long to play the sample, respectively.

More information about how to manipulate the buffer source can be found on MDN.

Realtime altering of two audio sources

This example shows how to use two audio sources, and alter one of them based on the other. In
this case we create an audio Ducker, that will lower the volume of the primary track if the
secondary track produces sound.

The ScriptProcessorNode will send regular events to its audioprocess handler. In this handler,
which is linked to the secondary audio source, we calculate the "loudness" of the audio, and use it
to alter a dynamic compressor on the primary audio source. Both are then sent to the
speakers/headphones of the user. The result is very abrupt volume changes in the primary audio
track when sound is detected in the secondary audio track. We could make this smoother by using
an average, and using a delay line to change the volume before the secondary audio is detected,
but the process should be clear in this example.

//The DuckingNode will heavily compress the primary source when the secondary source produces
sound
class DuckingNode {
 constructor(context) {
 let blocksize = 2048;
 let normalThreshold = -50;

https://riptutorial.com/ 5

https://developer.mozilla.org/en-US/docs/Web/API/AudioBufferSourceNode

 let duckThreshold = 0.15;

 //Creating nodes
 this.compressor = context.createDynamicsCompressor();
 this.processor = context.createScriptProcessor(blocksize, 2, 2);

 //Configuring nodes
 this.compressor.threshold.value = normalThreshold;
 this.compressor.knee.value = 0;
 this.compressor.ratio.value = 12;
 this.compressor.reduction.value = -20;
 this.compressor.attack.value = 0;
 this.compressor.release.value = 1.5;

 let self = this;
 this.processor.onaudioprocess = function(audioProcessingEvent) {
 let inputBuffer = audioProcessingEvent.inputBuffer;
 let outputBuffer = audioProcessingEvent.outputBuffer;
 let rms;
 let total = 0.0;
 let len = blocksize * outputBuffer.numberOfChannels;

 for (let channel = 0; channel < outputBuffer.numberOfChannels; channel++) {
 let inputData = inputBuffer.getChannelData(channel);
 let outputData = outputBuffer.getChannelData(channel);

 for (let sample = 0; sample < inputBuffer.length; sample++) {
 // make output equal to the same as the input
 outputData[sample] = inputData[sample];
 total += Math.abs(inputData[sample]);
 }
 }

 //Root mean square
 rms = Math.sqrt(total / len);

 //We set the threshold to at least 'normalThreshold'
 self.compressor.threshold.value = normalThreshold + Math.min(rms - duckThreshold, 0) * 5
* normalThreshold;
 }
 }

 get primaryInput () {
 return this.compressor;
 }

 get secondaryInput () {
 return this.processor;
 }

 connectPrimary(node) {
 this.compressor.connect(node);
 }

 connectSecondary(node) {
 this.processor.connect(node);
 }
};

let audioContext = new (window.AudioContext || window.webkitAudioContext)();

https://riptutorial.com/ 6

//Select two <audio> elements on the page. Ideally they have the autoplay attribute
let musicElement = document.getElementById("music");
let voiceoverElement = document.getElementById("voiceover");

//We create source nodes from them
let musicSourceNode = audioContext.createMediaElementSource(musicElement);
let voiceoverSourceNode = audioContext.createMediaElementSource(voiceoverElement);

let duckingNode = new DuckingNode(audioContext);

//Connect everything up
musicSourceNode.connect(duckingNode.primaryInput);
voiceoverSourceNode.connect(duckingNode.secondaryInput);
duckingNode.connectPrimary(audioContext.destination);
duckingNode.connectSecondary(audioContext.destination);

Part of this example comes from this answer by Kevin Ennis and the code on mdn.

Setup

We start off by creating an audio context and then create an oscillator which is the easiest way to
check that your setup works. (Example fiddle)

// We can either use the standard AudioContext or the webkitAudioContext (Safari)
var audioContext = (window.AudioContext || window.webkitAudioContext);

// We create a context from which we will create all web audio nodes
var context = new audioContext();

// Create an oscillator and make some noise
var osc = context.createOscillator();

// set a frequecy, in this case 440Hz which is an A note
osc.frequency.value = 440;

// connect the oscillator to the context destination (which routes to your speakers)
osc.connect(context.destination);

// start the sound right away
osc.start(context.currentTime);

// stop the sound in a second
osc.stop(context.currentTime + 1);

Read Getting started with web-audio online: https://riptutorial.com/web-audio/topic/6984/getting-
started-with-web-audio

https://riptutorial.com/ 7

http://stackoverflow.com/a/13735171/2209007
http://stackoverflow.com/users/717965/kevin-ennis
https://developer.mozilla.org/en-US/docs/Web/API/ScriptProcessorNode
https://jsfiddle.net/xph4w0ey/
https://riptutorial.com/web-audio/topic/6984/getting-started-with-web-audio
https://riptutorial.com/web-audio/topic/6984/getting-started-with-web-audio

Credits

S.
No

Chapters Contributors

1
Getting started with
web-audio

CodingIntrigue, Community, Mike McCaughan, Mikhail, Oskar
Eriksson, SirPython, Sumurai8, thanksd

https://riptutorial.com/ 8

https://riptutorial.com/contributor/571194/codingintrigue
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/797363/oskar-eriksson
https://riptutorial.com/contributor/797363/oskar-eriksson
https://riptutorial.com/contributor/3424096/sirpython
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/2678454/thanksd

	About
	Chapter 1: Getting started with web-audio
	Remarks
	Examples
	Synthesising audio
	Using effects on audio
	Recording audio from a microphone source
	Playing audio
	Realtime altering of two audio sources
	Setup

	Credits

