
Web Component

#web-

component

Table of Contents

About 1

Chapter 1: Getting started with Web Component 2

Remarks 2

Versions 2

Examples 2

Availability 2

HTML Template - Hello World 3

Custom Element - Hello World 3

Shadow DOM - Hello World 4

HTML Import - Hello World 4

Hello World example 4

Chapter 2: Testing Web Components 6

Introduction 6

Examples 6

Webpack and Jest 6

Credits 9

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: web-component

It is an unofficial and free Web Component ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official Web
Component.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/web-component
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Web
Component

Remarks

This section provides an overview of what Web Components are, and why a developer might want
to use them.

Web Components are a set of new web technologies implemented in modern web browsers, and
used to design reusable web elements with the only help of HTML, JavaScript and CSS.

Topics covered by the term Web Compoments are:

Custom Elements•

HTML Templates•

Shadow DOM•

HTML Imports•

These technologies are complementary, and can be used together or separately.

Versions

Components Specification
Last
Release

HTML
Templates

W3C HTML5 Recommendation 2014-10-28

Custom
Elements

W3C Working Drafts or WHATWG HTML and DOM Living
Standard

2016-10-13

Shadow DOM
W3C Working Drafts or WHATWG HTML and DOM Living
Standard

2017-01-16

HTML Imports W3C Working Drafts 2016-02-25

Examples

Availability

Native implementations

https://riptutorial.com/ 2

https://www.w3.org/TR/html5/scripting-1.html#the-template-element
https://www.w3.org/TR/custom-elements/
https://www.w3.org/TR/shadow-dom/
https://www.w3.org/TR/html-imports/

The <template> element is implemented in every modern browsers:

Chrome,•
Edge,•
Firefox,•
Opera,•
Safari,•
...•

Custom Elements customElements.define(), Shadow DOM attachShadow() and HTML Imports <link
rel="import"> are implemented in the latest versions of Chrome and Opera.

Polyfills

For other browsers, you can use a polyfill library:

for Custom Elements: from WebReflection or Webcomponents.org,•
for Shadow DOM: from Webcomponents.org,•
for Template : from Neovov,•
for HTML Imports: from Webcomponents.org•

HTML Template - Hello World

Use a <template> element to design a HTML template that you can then reuse in your code.

<template id="Template1">
 Hello, World !
<template>

<div id="Target1"></div>

<script>
 Target1.appendChild(Template1.content.cloneNode(true))
</script>

This will insert the content of the template in the #Target1 div.

Custom Element - Hello World

Create a new HTML tag named <hello-world> that will display "Hello, World!":

<script>
//define a class extending HTMLElement
class HelloWorld extends HTMLElement {
 connectedCallback () {
 this.innerHTML = 'Hello, World!'
 }
}

//register the new custom element
customElements.define('hello-world', HelloWorld)
</script>

https://riptutorial.com/ 3

http://caniuse.com/#search=web%20components
https://github.com/WebReflection/document-register-element
https://github.com/webcomponents/custom-elements
https://github.com/webcomponents/shadydom
https://github.com/neovov/template-element-polyfill
https://github.com/webcomponents/html-imports

<!-- make use the custom element -->
<hello-world></hello-world>

Shadow DOM - Hello World

Add a Shadow DOM to a div that will display "Hello, World!" instead of its initial content.

<div id="Div1">intial content</div>

<script>
 var shadow = Div1.attachShadow({ mode: 'open' })
 shadow.innerHTML = "Hello, World!"
</script>

HTML Import - Hello World

Import an HTML file that will add a div with "Hello, World!" at the end of the main document's DOM
tree.

Imported file hello.html:

<script>
 var div = document.createElement('div')
 div.innerHTML = 'Hello, World!'
 document.body.appendChild(div)
</script>

Main file index.html:

<html>
 <link rel="import" href="hello.html">

Hello World example

This example combines Custom Element, Template, Shadow DOM and HTML Import to display a
the "Hello, World!" string in HTML.

In file hello-world.html:

<!-- 1. Define the template -->
<template>
 Hello, World!
</template>

<script>
 var template = document.currentScript.ownerDocument.querySelector('template')

 //2. Define the custom element

 customElements.define('hello-world', class extends HTMLElement
 {

https://riptutorial.com/ 4

 constructor()
 {
 //3. Create a Shadow DOM
 var sh = this.attachShadow({ mode: 'open' })
 sh.appendChild(document.importNode(template.content, true))
 }
 })
</script>

In main file index.html:

<html>
<head>
 <!-- 4. Import the HTML component -->
 <link rel="import" href="hello-world.html">
</head>
<body>
 <hello-world></hello-world>
</body>
</html>

Read Getting started with Web Component online: https://riptutorial.com/web-
component/topic/8239/getting-started-with-web-component

https://riptutorial.com/ 5

https://riptutorial.com/web-component/topic/8239/getting-started-with-web-component
https://riptutorial.com/web-component/topic/8239/getting-started-with-web-component

Chapter 2: Testing Web Components

Introduction

Things to consider when we want to test our components with: Styles, Templates, Component
classes.

Examples

Webpack and Jest

Jest is used by Facebook to test all JavaScript code including React applications. One of Jest's
philosophies is to provide an integrated "zero-configuration" experience. We observed that when
engineers are provided with ready-to-use tools, they end up writing more tests, which in turn
results in more stable and healthy code bases.

Full working example is available on GitHub as web-components-webpack-es6-boilerplate

Jest runs tests in NodeJS enviroment with jsdom. The whole process is easy. Let's consider
following webpack setup, assuming our project structure looks like a following example:

-src
 --client
 --server
-webpack
 --config.js
package.json

A simple directory structure designed to separate the server render logic from the rest. Webpack
config.js file would contain following modules:

 resolve: {
 modules: ["node_modules"],
 alias: {
 client: path.join(__dirname, "../src/client"),
 server: path.join(__dirname, "../src/server")
 },
 extensions: [".js", ".json", ".scss"]
 },

We can set up Jest to reflect our Webpack config.

module.exports = {
 setupTestFrameworkScriptFile: "<rootDir>/bin/jest.js",
 mapCoverage: true,
 moduleFileExtensions: ["js", "scss", "html"],
 moduleDirectories: ["node_modules"],
 moduleNameMapper: {
 "src/(.*)$": "<rootDir>/src/$1"

https://riptutorial.com/ 6

https://facebook.github.io/jest/
https://github.com/vardius/web-components-webpack-es6-boilerplate
https://github.com/tmpvar/jsdom
https://webpack.github.io/

 },
 transform: {
 "^.+\\.(js|html|scss)$": "<rootDir>/bin/preprocessor.js"
 },
 testMatch: ["<rootDir>/test/**/?(*.)(spec|test).js"],
 testPathIgnorePatterns: ["<rootDir>/(node_modules|bin|build)"]
};

Where should we save this config ?

We can do it in the package.json file under jest key or create as in this example jest.config.js file
in the project root.

What we want to achieve is to make sure that our html files are going to be imported correctly.
That means by escaping them with custom preprocessor, as using only babel-jest would throw
error when trying to parse non js files.

The other important thing here is setupTestFrameworkScriptFile script which actually includes custom
elements polyfills to jsdom. Here is how our preprocessor.js looks like:

const babelJest = require("babel-jest");

const STYLE_URLS_REGEX = /styles:\s*\[\s*((?:'|").*\s*(?:'|")).*\s*.*\]/g;
const ESCAPE_TEMPLATE_REGEX = /(\${|\`)/g;

module.exports.process = (src, path, config) => {
 if (path.endsWith(".html")) {
 src = src.replace(ESCAPE_TEMPLATE_REGEX, "\\$1");
 src = "module.exports=`" + src + "`;";
 }
 src = src.replace(STYLE_URLS_REGEX, "styles: []");

 return babelJest.process(src, path, config);
};

What this script does, is simple: remove style files content as we do not need/want to test it, and
escape templates, when we import them for example with require('template.html') syntax. Then it
passes down content to babel transformer.

Last important thing to do is to include web components polyfills. As by default jsdom does not
support them yet. To do it we can simply add setupTestFrameworkScriptFile in our example it is
jest.js with the following content:

require("document-register-element/pony")(window);

This way we can access web components API in jsdom.

After setting up everything we should have structure like this:

-bin
 --jest.js
 --preprocessor.js
-src

https://riptutorial.com/ 7

 --client
 --server
-webpack
 --config.js
-test
package.json
jest.config.js

Where we keep our tests in the test directory and can run it with command: yarn run jest --no-
cache --config $(node jest.config.js).

Read Testing Web Components online: https://riptutorial.com/web-component/topic/10057/testing-
web-components

https://riptutorial.com/ 8

https://riptutorial.com/web-component/topic/10057/testing-web-components
https://riptutorial.com/web-component/topic/10057/testing-web-components

Credits

S.
No

Chapters Contributors

1
Getting started with
Web Component

Community, Mike, Supersharp

2
Testing Web
Components

Vardius

https://riptutorial.com/ 9

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3325500/mike
https://riptutorial.com/contributor/4600982/supersharp
https://riptutorial.com/contributor/2160958/vardius

	About
	Chapter 1: Getting started with Web Component
	Remarks
	Versions
	Examples
	Availability
	HTML Template - Hello World
	Custom Element - Hello World
	Shadow DOM - Hello World
	HTML Import - Hello World
	Hello World example

	Chapter 2: Testing Web Components
	Introduction
	Examples
	Webpack and Jest

	Credits

