
webpack

#webpack

Table of Contents

About 1

Chapter 1: Getting started with webpack 2

Remarks 2

Versions 2

Examples 3

Installation 3

Example of webpack.config.js with babel 4

Example of Javascript + CSS + Fonts + Images 5

Webpack Simple Example 6

Webpack, React JSX, Babel, ES6, simple config 6

Simple webpack setup with Node.js 7

Chapter 2: Development server: webpack-dev-server 10

Examples 10

Installation 10

Using proxy 10

rewrite 11

filter 11

Chapter 3: DllPlugin and DllReferencePlugin 13

Introduction 13

Syntax 13

Examples 13

Vendor configuration (DllPlugin) 13

Referencing a Dll Bundle (DllReferencePlugin) 14

Chapter 4: Hot Module Replacement 16

Remarks 16

webpack-hot-middleware 16

Config 16

Examples 16

Use with webpack-dev-middleware 16

Enable HMR for Module 17

Use with webpack-dev-server 17

Chapter 5: Loaders 19

Remarks 19

Examples 19

Config using preLoader for eslint, babel for jsx and css loader chaining. 19

Chapter 6: Loaders & Plugins 21

Remarks 21

Examples 21

Getting started with loaders 21

loading typescript files 22

Chapter 7: Tree Shaking 24

Examples 24

ES2015 tree shaking 24

Install 24

Usage 24

Chapter 8: Usage of Webpack 25

Examples 25

Usage CommonJS modules example 25

Usage AMD modules example 25

Usage ES6 (Babel) modules example 26

Usage ES6 (Typescript) modules example 27

Credits 28

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: webpack

It is an unofficial and free webpack ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official webpack.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/webpack
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with webpack

Remarks

Webpack is a module bundler which reads modules with dependencies and produces static assets
representing those modules.

It features an extendable loader system which allows bundles to include not only Javascript
assets, but CSS, Images, HTML and much more.

For example, using the in-built Javascript loader, css-loader and url-loader:

require("./code.js") // Load Javascript dependency
var css = require("./styles.css"); // Load CSS as a string
var base64Image = require("./image.png"); // Load an image as a base64 string

Would become a single bundled file:

// From code.js
console.log("Hello, World");
// From styles.css
var css = "body { margin: 0; padding: 0; } h1 { color: #FF0000; }";
// From image.png
var base64Image =
"...";

Dependencies can be defined in any of the most common module styles (CommonJS & AMD).

Versions

Version Release date

3.0.0 2017-06-19

2.6.1 2017-05-25

2.6.0 2017-05-23

2.5.1 2017-05-07

2.5.0 2017-05-04

2.4.1 2017-04-14

2.4.0 2017-04-14

1.13 2016-04-17

https://riptutorial.com/ 2

http://webpack.github.io/docs/list-of-loaders.html
https://github.com/webpack/css-loader
https://github.com/webpack/url-loader
https://webpack.github.io/docs/changelog.html#1-13

Version Release date

1.12 2015-08-25

1.11 2015-08-06

1.10 2015-06-27

1.9 2015-05-10

1.8 2015-04-29

1.7 2015-03-11

1.6 2015-02-24

1.5 2015-01-21

1.4 2014-12-28

1.3 2014-08-25

1.2 2014-05-27

1.1 2014-05-17

1.0 2014-03-01

0.11 2013-12-31

0.10 2013-06-19

0.9 2013-03-19

0.8 2013-01-21

Examples

Installation

Prerequisites:

NodeJS and npm

There are two ways of installing Webpack: globally or per-project. It is best to have the
dependency installed per-project, as this will allow you to use different versions of webpack for
each project and don't require user to have installed webpack globally.

Installing per-project

https://riptutorial.com/ 3

https://webpack.github.io/docs/changelog.html#1-12
https://webpack.github.io/docs/changelog.html#1-11
https://webpack.github.io/docs/changelog.html#1-10
https://webpack.github.io/docs/changelog.html#1-9
https://webpack.github.io/docs/changelog.html#1-8
https://webpack.github.io/docs/changelog.html#1-7
https://webpack.github.io/docs/changelog.html#1-6
https://webpack.github.io/docs/changelog.html#1-5
https://webpack.github.io/docs/changelog.html#1-4
https://webpack.github.io/docs/changelog.html#1-3
https://webpack.github.io/docs/changelog.html#1-2
https://webpack.github.io/docs/changelog.html#1-1
https://webpack.github.io/docs/changelog.html#1-0
https://webpack.github.io/docs/changelog.html#0-11
https://webpack.github.io/docs/changelog.html#0-10
https://webpack.github.io/docs/changelog.html#0-9
https://webpack.github.io/docs/changelog.html#0-8
https://nodejs.org/
https://www.npmjs.com/

Run the following command from the root folder of your project:

npm install webpack --save-dev

You can then run the webpack executable installed to node_modules:

./node_modules/.bin/webpack

Or create an NPM script in your package.json file, where you can omit the node_modules part - npm
is smart enought to include that folder in its PATH.

// in package.json:
{
 ...
 "scripts": {
 "start": "webpack"
 },
 ...
}

// from terminal:
npm start

Installing globally

Run the following command at a prompt:

npm install webpack -g

Example of webpack.config.js with babel

Dependencies

npm i -D webpack babel-loader

webpack.config.js

const path = require('path');

module.exports = {
 entry: {
 app: ['babel-polyfill', './src/'],
 },
 output: {
 path: __dirname,
 filename: './dist/[name].js',
 },
 resolve: {
 extensions: ['', '.js'],
 },
 module: {
 loaders: [{

https://riptutorial.com/ 4

 test: /\.js$/,
 loaders: ['babel-loader'],
 include: path.resolve(__dirname, 'src')
 }],
 }
};

Example of Javascript + CSS + Fonts + Images

Required modules

npm install --save-dev webpack extract-text-webpack-plugin file-loader css-loader style-loader

Folder structure

.
└── assets
 ├── css
 ├── images
 └── js

webpack.config.js

const webpack = require('webpack');
const ExtractTextPlugin = require('extract-text-webpack-plugin');
const path = require('path');
const glob = require('glob');

module.exports = {
 entry: {
 script: path.resolve(__dirname, './assets/js/app.js'),
 style: path.resolve(__dirname, './assets/css/app.css'),
 images: glob.sync(path.resolve(__dirname, './assets/images/**/*.*')),
 },
 context: __dirname,
 output: {
 path: path.resolve('./dist/assets'),
 publicPath: '/dist/assets',
 filename: '[name].js',
 },
 module: {
 loaders: [
 {
 test: /\.css$/,
 loader: ExtractTextPlugin.extract({
 fallback: 'style-loader',
 use: 'css-loader'
 }),
 },
 {
 test: /(\.woff2?|\.woff|\.ttf|\.eot|\.svg)(\?v=\d+\.\d+\.\d+)?$/,
 loader: 'file-loader?name=[name]-[hash:6].[ext]',
 },
 {
 test: /\.(png|jpe?g|gif|ico)$/,
 loader: 'file-loader?name=[name].[ext]',

https://riptutorial.com/ 5

 },
],
 },
 plugins: [
 new ExtractTextPlugin('app.css' /* optional: , { allChunks: true } */),
],
};

glob.sync('./assets/images/**/*.*') will require all files in the images folder as entry.

ExtractTextPlugin will grab the generated output and create a bundled css file.

Webpack Simple Example

The minimum required to use Webpack is the following command:

webpack ./src/index.js ./dist/bundle.js

// this is equivalent to:

webpack source-file destination-file

Web pack will take the source file, compile to the output destination and resolve any dependencies
in the source files.

Webpack, React JSX, Babel, ES6, simple config

Ensure that you install the correct npm dependencies (babel decided to split itself into a bunch of
packages, something to do with "peer dependencies"):

npm install webpack webpack-node-externals babel-core babel-loader babel-preset-react babel-
preset-latest --save

webpack.config.js:

module.exports = {
 context: __dirname, // sets the relative dot (optional)
 entry: "./index.jsx",
 output: {
 filename: "./index-transpiled.js"
 },
 module: {
 loaders: [{
 test: /\.jsx$/,
 loader: "babel?presets[]=react,presets[]=latest" // avoid .babelrc
 }]
 }, // may need libraryTarget: umd if exporting as a module
 externals: [require("webpack-node-externals")()], // probably not required
 devtool: "inline-source-map"
};

webpack-node-externals is a function that scans your node_modules and ensures that they aren't
transpiled and bundled along with your front-end code, though it ensures the bundle retains
reference to them. This helps with faster transpilation, since you're not re-encoding libraries.

https://riptutorial.com/ 6

Simple webpack setup with Node.js

Folder Structure

.
├── lib
├── modules
| ├── misc.js
| ├── someFunctions.js
├── app.js
├── index.html
├── package.json
├── webpack.config.js
└── webserver.js

package.json

{
 "name": "webpack-example-with-nodejs",
 "version": "1.0.0",
 "description": "Example using webpack code-splitting with some Node.js to support the
example",
 "main": "webserver.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "@Gun",
 "license": "ISC",
 "devDependencies": {
 "body-parser": "^1.17.1",
 "express": "^4.15.2",
 "http": "0.0.0",
 "morgan": "^1.8.1",
 "multer": "^1.3.0",
 "webpack": "^2.4.1"
 }
}

webpack.config.js

var path = require('path'); // used to get context

module.exports = {
 context: path.join(__dirname, 'app'), // resolves entry below, must be absolute path
 entry: './app.js', // entry point or loader for the application
 output: {
 path: path.join(__dirname, 'app/lib'), // express static folder is at /app/lib
 filename: '[name].bundle.js', // the file name of the bundle to create. [name] is
replaced by the name of the chunk (code-splitting)
 publicPath: 'static' // example uses express as the webserver
 }
};

webserver.js

var express = require('express'),

https://riptutorial.com/ 7

 path = require('path'),
 bodyParser = require('body-parser'),
 multer = require('multer')()
 logger = require('morgan'),
 fs = require('fs'),
 http = require('http');

var app = express();
var port = 31416;

app.use(bodyParser.urlencoded({ extended: false }));
app.use(bodyParser.json());
app.use(logger('short'));
app.use('/jsBundles',express.static('lib'));
app.get('/', function(request, response){
 response.sendFile(__dirname + '/index.html');
});

var server = http.createServer(app).listen(port, function(){
 console.log("I feel a disturbance in the port:" + port);
});

index.html

<!DOCTYPE html>
<html>
 <body>
 <div id="someValue"><label for="num">Enter a number:</label><input id="num" /></div>
 <div class="buttonList">

 <button id="doubleIt">double it</button>
 <button id="tripleIt">triple it</button>

 </div>
 <div id="someOtherValue">
 And the count shall be:
 </div>
 <script src="/jsBundles/main.bundle.js"></script>
 </body>
</html>

app.js

require(['./modules/someFunctions'],function(){
 window.onload = function(){
 var someFunctions = require('./modules/someFunctions');
 document.getElementById('doubleIt').onclick = function(){
 var num = document.getElementById('num').value;
 document.getElementById('theCount').innerHTML =
someFunctions.Double(num);
 };

 document.getElementById('tripleIt').onclick = function(){
 var num = document.getElementById('num').value;
 document.getElementById('theCount').innerHTML =
someFunctions.Triple(num);
 };
 };
});

https://riptutorial.com/ 8

misc.js

var self = {};
self.isNumber = function(value){
 // http://stackoverflow.com/questions/9716468/is-there-any-function-like-isnumeric-in-
javascript-to-validate-numbers
 return !isNaN(parseFloat(value)) && isFinite(value);
};
module.exports = self;

someFunctions.js

require(['./misc'], function(){
 var misc= require('./misc');

 var self = {};
 self.Double = function(value){
 if(!misc.isNumber(value)){
 return 0;
 };
 return value*2;
 }

 self.Triple = function(value){
 if(!misc.isNumber(value)){
 return 0;
 };
 return value*3;
 }

 module.exports = self;
});

NOTE

run npm i --save-dev to install dependencies

run node .\node_modules\webpack\bin\webpack.js once dependencies are installed

run node webserver.js to start the server

Read Getting started with webpack online: https://riptutorial.com/webpack/topic/924/getting-
started-with-webpack

https://riptutorial.com/ 9

https://riptutorial.com/webpack/topic/924/getting-started-with-webpack
https://riptutorial.com/webpack/topic/924/getting-started-with-webpack

Chapter 2: Development server: webpack-
dev-server

Examples

Installation

webpack-dev-server can be installed via npm

npm --save-dev webpack-dev-server

now you can start server

./node_modules/.bin/webpack-dev-server

To simplify usage you can add script to package.json

// package.json
{
 ...
 "scripts": {
 "start": "webpack-dev-server"
 },
 ...
}

now to run server you can use

npm run start

webpack-dev-server is configured in webpack.config.js file in section devServer.

To change server content base directory you can use option contentBase. Example configuration
setting root directory to public_html could look like

let path = require("path");

module.exports = {
 ...
 devServer: {
 contentBase: path.resolve(__dirname, "public_html")
 },
 ...
}

Using proxy

webpack-dev-server

https://riptutorial.com/ 10

can proxy some requests to others servers. This might be useful for developing API client when
you want to send requests to same domain.

Proxy is configured via proxy parameter.

Example configuration of dev server passing requests to /api to other service listening on port
8080 might look like this

// webpack.config.js
module.exports = {
 ...
 devServer: {
 proxy: {
 "/api": {
 target: "http://localhost:8080"
 }
 }
 }
...
}

rewrite

It is possible to rewrite destination path using pathRewrite option.

Assuming you want to strip /api prefix from previous example your config might look like

// webpack.config.js
 ...
 devServer: {
 proxy: {
 "/api": {
 target: "http://localhost:8080",
 pathRewrite: {"^/api" : ""}
 }
 }
 }
...

Request /api/user/256 will be converted to http://localhost:8080/user/256.

filter

It is possible to proxy only some requests. bypass allows you to provide function which return value
will determine if request should be proxied or not.

Assuming you only want to proxy only POST requests to /api and let webpack handle the rest your
configuration might look like this

// webpack.config.js

https://riptutorial.com/ 11

https://webpack.js.org/configuration/dev-server/#devserver-proxy

 ...
 devServer: {
 proxy: {
 "/api": {
 target: "http://localhost:8080",
 bypass: function(req, res, proxyOptions) {
 if(req.method != 'POST') return false;
 }
 }
 }
 }
...

Read Development server: webpack-dev-server online:
https://riptutorial.com/webpack/topic/9877/development-server--webpack-dev-server

https://riptutorial.com/ 12

https://riptutorial.com/webpack/topic/9877/development-server--webpack-dev-server

Chapter 3: DllPlugin and DllReferencePlugin

Introduction

The Dll and DllReference plugins allow the code to be split in multiple bundles in a way the
bundles can be compiled independently.

It is possible to build "vendor" scripts in a library that does not need to be compiled often (ex:
React, jQuery, Bootstrap, Fontawesome...) and reference it in your app bundle that will need those
scripts.

The application bundle, the one that is constantly going to be changed, will be in a separate
configuration just referencing a already built "vendor" bundle.

Syntax

new webpack.DllPlugin({ path: '[name]-manifest.json', name: '[name]_[hash]' })•
new webpack.DllReferencePlugin({ context: __dirname, manifest: require('./packname-
manifest.json') })

•

Examples

Vendor configuration (DllPlugin)

Note: The output.library and name (in DllPlugin) must be the same.

const path = require('path');
const webpack = require('webpack');
const ExtractTextPlugin = require('extract-text-webpack-plugin');
const extractCSS = new ExtractTextPlugin('vendor.css');
const isDevelopment = process.env.NODE_ENV !== 'production';

module.exports = {
 resolve: {
 extensions: ['.js'],
 },
 module: {
 rules: [
 { test: /\.(png|woff|woff2|eot|ttf|svg)$/, loader: 'url-loader?limit=100000' },
 { test: /\.s?css$/i, loader: extractCSS.extract(['css-loader?minimize', 'sass-loader'])
},
 { test: /\.json$/, loader: 'json-loader' },
],
 },
 entry: {
 vendor: [
 'babel-polyfill',
 'font-awesome/scss/font-awesome.scss',
 'bootstrap/scss/bootstrap.scss',
 'jquery',

https://riptutorial.com/ 13

 'history',
 'react',
 'react-dom',
 'redux',
 'react-redux',
 'react-router',
 'react-router-dom',
 'react-router-redux',
 'redux-thunk',
],
 },
 output: {
 path: path.resolve('./dist'),
 filename: '[name].js',
 library: '[name]_[hash]',
 },
 plugins: [
 extractCSS,
 new webpack.DllPlugin({
 path: path.join(__dirname, 'dist', '[name]-manifest.json'),
 name: '[name]_[hash]',
 })
].concat(isDevelopment ? [] : [
 new webpack.optimize.UglifyJsPlugin({
 beautify: false,
 comments: false,
 }),
]),
};

Referencing a Dll Bundle (DllReferencePlugin)

Note: manifest (in DllReferencePlugin) should reference path (defined in DllPlugin)

const webpack = require('webpack');
const path = require('path');
const isDevelopment = process.env.NODE_ENV !== 'production';

const ExtractTextPlugin = require('extract-text-webpack-plugin');
const extractCSS = new ExtractTextPlugin('app.css');

const merge = require('extendify')({ isDeep: true, arrays: 'concat' });

module.exports = merge({
 context: __dirname,
 entry: {
 app: (isDevelopment ? ['webpack-hot-middleware/client'] : []).concat(['./src/']),
 },
 output: {
 path: path.resolve('./dist'),
 publicPath: '/static',
 filename: '[name].js',
 },
 resolve: {
 extensions: ['.js', '.ts', '.tsx'],
 },
 module: {
 loaders: [
 {

https://riptutorial.com/ 14

 test: /\.tsx?$/,
 loader: 'babel-loader!awesome-typescript-loader?forkChecker=true',
 include: /src|spec/,
 },
 {
 test: /\.s?css$/,
 loader: extractCSS.extract(['css-loader?minimize', 'sass-loader']),
 include: /src/,
 },
],
 },
 plugins: [
 new webpack.DllReferencePlugin({
 context: __dirname,
 manifest: require('./dist/vendor-manifest.json'),
 }),
 new webpack.DefinePlugin({
 'process.env': {
 'ENV': JSON.stringify(process.env.NODE_ENV),
 },
 }),
 extractCSS,
],
}, isDevelopment ? require('./webpack.config.development') :
require('./webpack.config.production'));

Read DllPlugin and DllReferencePlugin online: https://riptutorial.com/webpack/topic/9508/dllplugin-
and-dllreferenceplugin

https://riptutorial.com/ 15

https://riptutorial.com/webpack/topic/9508/dllplugin-and-dllreferenceplugin
https://riptutorial.com/webpack/topic/9508/dllplugin-and-dllreferenceplugin

Chapter 4: Hot Module Replacement

Remarks

webpack-hot-middleware

Use with webpack-dev-middleware, by adding webpack-hot-middleware/client to entry.

Config

Add configs as query string to the path. Example:

webpack-hot-middleware/client?path=/__what&timeout=2000&overlay=false

Option Description

path The path which the middleware is serving the event stream on

timeout The time to wait after a disconnection before attempting to reconnect

overlay Set to false to disable the DOM-based client-side overlay.

reload Set to true to auto-reload the page when webpack gets stuck.

noInfo Set to true to disable informational console logging.

quiet Set to true to disable all console logging.

dynamicPublicPath
Set to true to use webpack publicPath as prefix of path. (We can set
__webpack_public_path__ dynamically at runtime in the entry point, see
note of output.publicPath)

Examples

Use with webpack-dev-middleware

Install webpack-dev-middleware via npm

npm i -D webpack-dev-middleware webpack-hot-middleware

1.

Modify webpack.config.js

Add webpack-hot-middleware/client to each items defined in "entry"•

2.

https://riptutorial.com/ 16

Add new webpack.HotModuleReplacementPlugin() to "plugins"

module.exports = {
 entry: {
 js: [
 './index.js',
 'webpack-hot-
middleware/client?path=/__webpack_hmr&timeout=20000&reload=true'
]
 },
 plugins: [
 new webpack.HotModuleReplacementPlugin()
]
};

•

Add these to index.js

var webpack = require('webpack');
var webpackDevMiddleware = require('webpack-dev-middleware');
var webpackHotMiddleware = require('webpack-hot-middleware');

var config = require('./webpack.config.js');
var compiler = webpack(config);

app.use(webpackDevMiddleware(compiler, {
 noInfo: true,
 publicPath: config.output.publicPath,
 stats: { colors: true },
 watchOptions: {
 aggregateTimeout: 300,
 poll: true
 },
}));

app.use(webpackHotMiddleware(compiler, {
 log: console.log,
}));

3.

Enable HMR for Module

To make a module eligible for Hot Module Replacement (HMR), the simplest way is to add
module.hot.accept() inside the module, like this:

// ...

if(module.hot) {
 module.hot.accept(); // This will make current module replaceable
}

Use with webpack-dev-server

Install webpack-dev-server via npm.

npm i -D webpack-dev-server

1.

https://riptutorial.com/ 17

Configure webpack-dev-server by adding server.js.

// server.js

var webpack = require("webpack");
var WebpackDevServer = require("webpack-dev-server");
var config = require("./webpack.dev.config");

var server = new WebpackDevServer(webpack(config), {
 // ...
});

server.listen(8080);

2.

Modify webpack.config.js

Add webpack-dev-server/client to each items defined in "entry".•

Add webpack/hot/only-dev-server to each items defined in "entry".

NOTE: Change if needed...○

Use webpack/hot/only-dev-server to block page refresh if HMR fails.○

Use webpack/hot/dev-server to auto-refresh page if HMR fails.○

•

Add new webpack.HotModuleReplacementPlugin() to "plugins"

module.exports = {
 entry: {
 js: [
 'webpack-dev-server/client?http://localhost:8080'
 'webpack/hot/only-dev-server',
 './index.js'
]
 },
 plugins: [
 new webpack.HotModuleReplacementPlugin()
]
};

•

3.

Add hot: true in webpack-dev-server configuration

var server = new WebpackDevServer(webpack(config), {
 hot: true

 // ... other configs
});

4.

Read Hot Module Replacement online: https://riptutorial.com/webpack/topic/4594/hot-module-
replacement

https://riptutorial.com/ 18

https://riptutorial.com/webpack/topic/4594/hot-module-replacement
https://riptutorial.com/webpack/topic/4594/hot-module-replacement

Chapter 5: Loaders

Remarks

Webpack loaders can be configured as "preLoaders", "loaders" and "postLoaders". Although they
don't have to be, configurations which use linting or other imperative or serial operations can take
advantage of these build stages in the pipeline.

The key to understanding loaders and their use is that Webpack will run each module in the
require graph through the loader system. Following the example above, this means that as
Webpack begins crawling through the imports of your application, it will identify the files required
and using a simple regex, will determine which file or file type requires what loader or series of
loaders.

Above you can see that all ".js" or ".jsx" files will be es-linted by the eslint-loader in the preLoader
phase. Other js|x file types will also be run through the babel-loader in the main loader phase.
Also, in the same phase, any .scss files will be loaded into the sass-loader. This allows you to
import Sass files in your JS modules and have them be output to the resulting JS bundle or even
another separate standalone CSS bundle (using a plugin).

Note: Importing .scss files will only work with Webpack and an appropriate loader. Node will not
understand this kind of import without a pre-processor or transpiler.

Also of note in the .scss example is the ability to "chain" loaders using the ! exclamation mark as a
"pipe" between different loaders. The example above pipes the output of the "sass-loader" into the
"css-loader" and finally to the "style-loader" This could also be performed with an array of loaders:
['style-loader', 'css-loader', 'sass-loader']. Different options are also available to inline loader
definitions and follow the query parameter syntax commonly found in URLs.

See also: https://webpack.github.io/docs/loaders.html

Examples

Config using preLoader for eslint, babel for jsx and css loader chaining.

The following configuration can be used as a base config for bundling up your project as a library.
Notice how the module config contains a list of preLoaders and loaders.

// webpack.config.js

var path = require('path');

module.exports = {
 entry: path.join(__dirname, '..', 'src/index.js'),
 output: {
 path: path.join(__dirname, '..', '/lib'),
 filename: outputFile,

https://riptutorial.com/ 19

https://github.com/MoOx/eslint-loader
https://github.com/babel/babel-loader
https://github.com/jtangelder/sass-loader
https://github.com/webpack/extract-text-webpack-plugin
http://webpack.github.io/docs/loaders.html#parameters
https://webpack.github.io/docs/loaders.html

 library: 'myCoolBundle.js',
 libraryTarget: 'umd',
 umdNamedDefine: true
 },
 module: {
 preLoaders: [
 {
 test: /(\.jsx|\.js)$/,
 loader: "eslint-loader",
 exclude: /node_modules/,
 }
],
 loaders: [
 {
 test: /(\.jsx|\.js)$/,
 loader: ['babel'],
 exclude: /(node_modules)/,
 include: path.join(__dirname, '..'),
 query: {
 presets: ['es2015', 'react']
 }
 },
 {
 test: /\.scss$/,
 loaders: ["style-loader", "css-loader!sass-loader"]
 }
]
 },
 resolve: {
 root: path.resolve(__dirname, '..', './src'),
 extensions: ['', '.js', '.jsx', '.scss'],
 fallback: path.join(__dirname, '../node_modules')
 },
 eslint: {
 configFile: path.resolve(__dirname, '..', '.eslintrc'),
 }
};

Read Loaders online: https://riptutorial.com/webpack/topic/6534/loaders

https://riptutorial.com/ 20

https://riptutorial.com/webpack/topic/6534/loaders

Chapter 6: Loaders & Plugins

Remarks

Loaders and plugins make up the building blocks of Webpack.

Loaders are typically delegated to a single task and file type. They are easier to setup and usually
require less boilerplate code.

Plugins, on the other hand, have access to Webpack's internal build system via hooks, and are
therefore more powerful. Plugins can modify the fully configured Webpack environment, and they
can perform custom actions throughout the compilation process.

When dealing with our CSS files, for example, a loader might be used to automatically add vendor
prefixes to properties, while a plugin might be used to produce a minified stylesheet in the bundler
build process.

Examples

Getting started with loaders

To begin, npm install the desired loaders for your project.

Inside of the configuration object that is being exported in webpack.config.js, a module property will
hold all of your loaders.

const source = `${__dirname}/client/src/`;

module.exports = {
 // other settings here

 module: {
 loaders: [
 {
 test: /\.jsx?$/,
 include: source,
 loaders: ['babel?presets[]=es2015,presets[]=react', 'eslint']
 },
 {
 test: /\.s?css$/,
 include: source,
 loaders: ['style', 'css', 'autoprefixer', 'sass']
 }
]
 },
};

In the above configuration, we're using three basic settings for our loaders:

test: This is where we bind loaders to specific extensions using RegExp. The first set of •

https://riptutorial.com/ 21

loaders is being executed on all .js and .jsx files. The second set is being executed on all
.css and .scss files.
include: This is the directory we want our loaders to run on. Optionally, we could just as
easily use the exclude property to define directories we do not want included.

•

loaders: This is a list of all the loaders we want to run on the files specified in test and
include.

•

It's important to note that loaders are executed from right to left in each loaders array, and from
bottom to top in the individual definitions. The code below will execute the loaders in the following
order: sass, autoprefixer, css, style.

loaders: [
 {
 test: /\.s?css$/,
 include: source,
 loaders: ['style', 'css', 'autoprefixer']
 },
 {
 test: /\.s?css$/,
 include: source,
 loaders: ['sass']
 }
]

This is a common source of confusion and bugs for developers who are new to webpack. For
example, when using JSX and ES6 syntax, we want to lint that code, not lint the compiled code
that is provided by our babel loader. Therefore, our eslint loader is placed to the right of our babel
loader.

The -loader suffix is optional when listing our loaders.

loaders: ['sass']

... is equivalent to:

loaders: ['sass-loader']

Alternatively, you can use the loader property (singular) along with a string separating the list of
loaders by the ! character.

loaders: ['style', 'css']

... is equivalent to:

loader: "style!css"

loading typescript files

https://riptutorial.com/ 22

To use typescript with webpack you need typescript and ts-loader installed

npm --save-dev install typescript ts-loader

Now you can configure webpack to use typescript files

// webpack.config.js

module.exports = {
 ..
 resolve: {
 // .js is required for react imports.
 // .tsx is required for react tsx files.
 // .ts is optional, in case you will be importing any regular ts files.
 extensions: ['.js', '.ts', '.tsx']
 },
 module: {
 rules: [
 {
 // Set up ts-loader for .ts/.tsx files and exclude any imports from node_modules.
 test: /\.tsx?$/,
 loaders: isProduction ? ['ts-loader'] : ['react-hot-loader', 'ts-loader'],
 exclude: /node_modules/
 }
]
 },
 ...
};

Read Loaders & Plugins online: https://riptutorial.com/webpack/topic/5651/loaders---plugins

https://riptutorial.com/ 23

https://riptutorial.com/webpack/topic/5651/loaders---plugins

Chapter 7: Tree Shaking

Examples

ES2015 tree shaking

webpack 2 introduces tree shaking which can remove unused code when ES2015 modules are
used to import and export code.

Install

npm install babel-preset-es2015-webpack --save-dev

Usage

in .babelrc:

{
 "presets": [
 "es2015-webpack"
]
}

Read Tree Shaking online: https://riptutorial.com/webpack/topic/6466/tree-shaking

https://riptutorial.com/ 24

https://riptutorial.com/webpack/topic/6466/tree-shaking

Chapter 8: Usage of Webpack

Examples

Usage CommonJS modules example

Create folder. Open it in command line. Run npm install webpack -g. Create 2 files:

cats.js:

var cats = ['dave', 'henry', 'martha'];
module.exports = cats;

app.js

cats = require('./cats.js');
console.log(cats);

Run in command line: webpack ./app.js app.bundle.js

Now in folder will be file app.bundle.js. You can include it in index.html page, open it in browser
and see result in console.

But more fast way is run in command line: node app.bundle.js and see result immediately in
console:

['dave', 'henry', 'martha']

Usage AMD modules example

Create folder. Open it in command line. Run npm install webpack -g. Create 2 files:

cats.js:

define(function(){
 return ['dave', 'henry', 'martha'];
});

app.js

require(['./cats'],function(cats){
 console.log(cats);
})

Run in command line:

webpack ./app.js app.bundle.js

https://riptutorial.com/ 25

Now in folder will be file: app.bundle.js.

Create index.html file:

<html>
 <body>
 <script src='app.bundle.js' type="text/javascript"></script>
 </body>
</html>

Open it in browser and see result in console:

['dave', 'henry', 'martha']

Usage ES6 (Babel) modules example

as written in MDN at July 2016:

This feature is not implemented in any browsers natively at this time. It is implemented
in many transpilers, such as the Traceur Compiler, Babel or Rollup.

So here is example with Babel loader for Webpack:

Create folder. Add package.json file there:

{
 "devDependencies": {
 "babel-core": "^6.11.4",
 "babel-loader": "^6.2.4",
 "babel-preset-es2015": "^6.9.0",
 "webpack": "^1.13.1"
 }
}

Open folder in command line. Run:

npm install.

Create 2 files:

cats.js:

export var cats = ['dave', 'henry', 'martha'];

app.js:

import {cats} from "./cats.js";
console.log(cats);

For proper using of babel-loader should be added webpack.config.js file:

https://riptutorial.com/ 26

https://developer.mozilla.org/en/docs/web/javascript/reference/statements/import/

 module: {
 loaders: [
 {
 test: /\.js$/,
 exclude: /(node_modules|bower_components)/,
 loader: 'babel?presets[]=es2015'
 }
]
}

Run in command line:

webpack ./app.js app.bundle.js

Now in folder will be file: app.bundle.js.

Create index.html file:

<html>
 <body>
 <script src='app.bundle.js' type="text/javascript"></script>
 </body>
</html>

Open it in browser and see result in console:

['dave', 'henry', 'martha']

Usage ES6 (Typescript) modules example

as written in [MDN][1] at July 2016:

This feature is not implemented in any browsers natively at this time. It is implemented
in many transpilers, such as the Traceur Compiler, Babel or Rollup.

So here is example with Typescript loader for Webpack:

//TODO

Create simplified version of this article: http://www.jbrantly.com/typescript-and-webpack/ without
tsd and jquery.

Read Usage of Webpack online: https://riptutorial.com/webpack/topic/6001/usage-of-webpack

https://riptutorial.com/ 27

http://www.jbrantly.com/typescript-and-webpack/
https://riptutorial.com/webpack/topic/6001/usage-of-webpack

Credits

S.
No

Chapters Contributors

1
Getting started with
webpack

BrunoLM, CodingIntrigue, Community, Everettss, Filip Dupanovi
ć, Gun, Ken Redler, m_callens, neaumusic, noah.muth, Pavlin,
pongo, RamenChef, Ru Chern Chong, Toby

2
Development server:
webpack-dev-server

mleko

3
DllPlugin and
DllReferencePlugin

BrunoLM

4
Hot Module
Replacement

BrunoLM, Kevin Law

5 Loaders 4m1r

6 Loaders & Plugins jabacchetta, mleko

7 Tree Shaking RationalDev

8 Usage of Webpack Rajab Shakirov

https://riptutorial.com/ 28

https://riptutorial.com/contributor/340760/brunolm
https://riptutorial.com/contributor/571194/codingintrigue
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/44041/filip-dupanovic
https://riptutorial.com/contributor/44041/filip-dupanovic
https://riptutorial.com/contributor/4089161/gun
https://riptutorial.com/contributor/195594/ken-redler
https://riptutorial.com/contributor/5270744/m-callens
https://riptutorial.com/contributor/1487102/neaumusic
https://riptutorial.com/contributor/3910751/noah-muth
https://riptutorial.com/contributor/1627234/pavlin
https://riptutorial.com/contributor/136559/pongo
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/4008056/toby
https://riptutorial.com/contributor/3552932/mleko
https://riptutorial.com/contributor/340760/brunolm
https://riptutorial.com/contributor/340760/brunolm
https://riptutorial.com/contributor/585371/kevin-law
https://riptutorial.com/contributor/2296997/4m1r
https://riptutorial.com/contributor/4500152/jabacchetta
https://riptutorial.com/contributor/3552932/mleko
https://riptutorial.com/contributor/2800482/rationaldev
https://riptutorial.com/contributor/3914072/rajab-shakirov

	About
	Chapter 1: Getting started with webpack
	Remarks
	Versions
	Examples
	Installation
	Example of webpack.config.js with babel
	Example of Javascript + CSS + Fonts + Images
	Webpack Simple Example
	Webpack, React JSX, Babel, ES6, simple config
	Simple webpack setup with Node.js

	Chapter 2: Development server: webpack-dev-server
	Examples
	Installation
	Using proxy

	rewrite
	filter
	Chapter 3: DllPlugin and DllReferencePlugin
	Introduction
	Syntax
	Examples
	Vendor configuration (DllPlugin)
	Referencing a Dll Bundle (DllReferencePlugin)

	Chapter 4: Hot Module Replacement
	Remarks

	webpack-hot-middleware
	Config
	Examples
	Use with webpack-dev-middleware
	Enable HMR for Module
	Use with webpack-dev-server

	Chapter 5: Loaders
	Remarks
	Examples
	Config using preLoader for eslint, babel for jsx and css loader chaining.

	Chapter 6: Loaders & Plugins
	Remarks
	Examples
	Getting started with loaders
	loading typescript files

	Chapter 7: Tree Shaking
	Examples
	ES2015 tree shaking

	Install
	Usage

	Chapter 8: Usage of Webpack
	Examples
	Usage CommonJS modules example
	Usage AMD modules example
	Usage ES6 (Babel) modules example
	Usage ES6 (Typescript) modules example

	Credits

