
weka

#weka

Table of Contents

About 1

Chapter 1: Getting started with weka 2

Remarks 2

Examples 2

Installation or Setup 2

Downloading and installing Weka 2

Chapter 2: Getting Started With Jython in Weka 4

Introduction 4

Remarks 4

How to setup Jython in weka 4

Examples 4

Load and Filter Data 4

Build a classifier 5

Cross-validate Classifier 5

Make A Prediction 5

Cross-validate Classifier Error Bubble 6

Display Graph 7

Chapter 3: How to use CPython Scripting in Weka? 9

Remarks 9

How to install CPython in Weka? 9

Examples 9

Hello World Example for CPython of Weka 9

Chapter 4: How to use R in Weka 10

Remarks 10

Why use R in Weka? 10

How to setup R in Weka 10

How to receive data from Weka? 10

Playing R Codes 11

Examples 11

Plotting inside R Console 11

Chapter 5: Loading Instances 13

Examples 13

ARFF Files 13

Loading ARFF Files 14

Weka <3.5.5 14

Weka >=3.5.5 14

Loading from Database 14

Chapter 6: Mistakes easily made when using KnowledgeFlow 16

Introduction 16

Remarks 16

TrainingSetMaker and TestSetMaker 16

ArffSaver 16

How to use TimeSeriesForecasting in KnowledgeFlow? 16

Examples 16

How to open KnowledgeFlow file directly from terminal 16

Chapter 7: Simple Comparison of Weka Interfaces 18

Introduction 18

Remarks 18

Examples 19

simpleCLI and Jython examples 19

Chapter 8: Text Classification 20

Examples 20

Text classification with LibLinear 20

Credits 23

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: weka

It is an unofficial and free weka ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official weka.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/weka
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with weka

Remarks

This section provides an overview of what weka is, and why a developer might want to use it.

It should also mention any large subjects within weka, and link out to the related topics. Since the
Documentation for weka is new, you may need to create initial versions of those related topics.

Examples

Installation or Setup

Weka is a collection of machine learning algorithms for data mining tasks. The algorithms can
either be applied directly to a dataset or called from your own Java code. Weka contains tools for
data pre-processing, classification, regression, clustering, association rules, and visualization. It is
also well-suited for developing new machine learning schemes.

Downloading and installing Weka

There are two versions of Weka: Weka 3.8 is the latest stable version, and Weka 3.9 is the
development version. For the bleeding edge, it is also possible to download nightly snapshots.

Stable versions receive only bug fixes, while the development version receives new features.
Weka 3.8 and 3.9 feature a package management system that makes it easy for the Weka
community to add new functionality to Weka. The package management system requires an
internet connection in order to download and install packages.

You can download the application for Windows/MacOS/Linux here.

Integrate WEKA library in your code:

pox.xml:

<dependency>
 <groupId>nz.ac.waikato.cms.weka</groupId>
 <artifactId>weka-dev</artifactId>
 <version>3.9.1</version>
</dependency>

gradle:

compile group: 'nz.ac.waikato.cms.weka', name: 'weka-dev', version: '3.9.1'

Read Getting started with weka online: https://riptutorial.com/weka/topic/3699/getting-started-with-

https://riptutorial.com/ 2

http://www.cs.waikato.ac.nz/ml/weka/downloading.html
https://riptutorial.com/weka/topic/3699/getting-started-with-weka

weka

https://riptutorial.com/ 3

https://riptutorial.com/weka/topic/3699/getting-started-with-weka

Chapter 2: Getting Started With Jython in
Weka

Introduction

Why would we use Jython inside Weka? 1. If you are unsatisfied with what Explorer,
Experimenter, KnowledgeFlow, simpleCLI allow you to do, and looking for something to unleash
the greater power of weka; 2. With Jython, we can access all functionalities provided by Weka
API, right inside Weka; 3. Its syntax is Python-like, which is considered to be a beginner-friendly
scripting language;

Remarks

How to setup Jython in weka

install Jython and JFreeChart library from Weka Package manager;1.

go to home directory's terminal, enter nano .bash_profile2.

inside .bash_profile, add a line of code as below

export Weka_Data=User/Documents/Directory/Of/Your/Data

3.

save and exit4.

inside terminal run source .bash_profile5.

Then, restart Weka, go to tools and click Jython console, and you can try those examples above

Examples

Load and Filter Data

imports
import weka.core.converters.ConverterUtils.DataSource as DS
import weka.filters.Filter as Filter
import weka.filters.unsupervised.attribute.Remove as Remove
import os

load data
data = DS.read(os.environ.get("MOOC_DATA") + os.sep + "iris.arff")

remove class attribute
rem = Remove()
rem.setOptions(["-R", "last"])
rem.setInputFormat(data)

https://riptutorial.com/ 4

dataNew = Filter.useFilter(data, rem)

output filtered dataset
print(dataNew)

Build a classifier

imports
import weka.core.converters.ConverterUtils.DataSource as DS
import weka.classifiers.trees.J48 as J48
import os

load data
data = DS.read(os.environ.get("MOOC_DATA") + os.sep + "anneal.arff")
data.setClassIndex(data.numAttributes() - 1)

configure classifier
cls = J48()
cls.setOptions(["-C", "0.3"])

build classifier
cls.buildClassifier(data)

output model
print(cls)

Cross-validate Classifier

imports
import weka.core.converters.ConverterUtils.DataSource as DS
import weka.classifiers.Evaluation as Evaluation
import weka.classifiers.trees.J48 as J48
import java.util.Random as Random
import os

load data
data = DS.read(os.environ.get("MOOC_DATA") + os.sep + "anneal.arff")
data.setClassIndex(data.numAttributes() - 1)

configure classifier
cls = J48()
cls.setOptions(["-C", "0.3"])

cross-validate classifier
evl = Evaluation(data)
evl.crossValidateModel(cls, data, 10, Random(1))

print statistics
print(evl.toSummaryString("=== J48 on anneal (stats) ===", False))
print(evl.toMatrixString("=== J48 on anneal (confusion matrix) ==="))

Make A Prediction

imports
import weka.classifiers.trees.J48 as J48
import weka.core.converters.ConverterUtils.DataSource as DS

https://riptutorial.com/ 5

import os

load training data
data = DS.read(os.environ.get("MOOC_DATA") + os.sep + "anneal_train.arff")
data.setClassIndex(data.numAttributes() - 1)

configure classifier
cls = J48()
cls.setOptions(["-C", "0.3"])

build classifier on training data
cls.buildClassifier(data)

load unlabeled data
dataUnl = DS.read(os.environ.get("MOOC_DATA") + os.sep + "anneal_unlbl.arff")
dataUnl.setClassIndex(dataUnl.numAttributes() - 1)

test compatibility of train/unlabeled datasets
msg = dataUnl.equalHeadersMsg(data)
if msg is not None:
 print("train and prediction data are not compatible:\n" + msg)

make predictions
for inst in dataUnl:
 dist = cls.distributionForInstance(inst)
 labelIndex = cls.classifyInstance(inst)
 label = dataUnl.classAttribute().value(int(labelIndex))
 print(str(dist) + " - " + str(labelIndex) + " - " + label)

Cross-validate Classifier Error Bubble

Note: install jfreechartOffscreenRenderer package as well for JFreeChart library

imports
import weka.classifiers.Evaluation as Evaluation
import weka.classifiers.functions.LinearRegression as LinearRegression
import weka.core.converters.ConverterUtils.DataSource as DS
import java.util.Random as Random
import org.jfree.data.xy.DefaultXYZDataset as DefaultXYZDataset
import org.jfree.chart.ChartFactory as ChartFactory
import org.jfree.chart.plot.PlotOrientation as PlotOrientation
import org.jfree.chart.ChartPanel as ChartPanel
import org.jfree.chart.renderer.xy.XYBubbleRenderer as XYBubbleRenderer
import org.jfree.chart.ChartUtilities as ChartUtilities
import javax.swing.JFrame as JFrame
import java.io.File as File
import os

load data
data = DS.read(os.environ.get("MOOC_DATA") + os.sep + "bodyfat.arff")
data.setClassIndex(data.numAttributes() - 1)

configure classifier
cls = LinearRegression()
cls.setOptions(["-C", "-S", "1"])

cross-validate classifier
evl = Evaluation(data)
evl.crossValidateModel(cls, data, 10, Random(1))

https://riptutorial.com/ 6

collect predictions
act = []
prd = []
err = []
for i in range(evl.predictions().size()):
 prediction = evl.predictions().get(i)
 act.append(prediction.actual())
 prd.append(prediction.predicted())
 err.append(abs(prediction.actual() - prediction.predicted()))

create plot
plotdata = DefaultXYZDataset()
plotdata.addSeries("LR on " + data.relationName(), [act, prd, err])
plot = ChartFactory.createScatterPlot(\
 "Classifier errors", "Actual", "Predicted", \
 plotdata, PlotOrientation.VERTICAL, True, True, True)
plot.getPlot().setRenderer(XYBubbleRenderer())

display plot
frame = JFrame()
frame.setTitle("Weka")
frame.setSize(800, 800)
frame.setLocationRelativeTo(None)
frame.getContentPane().add(ChartPanel(plot))
frame.setVisible(True)

Display Graph

imports
import weka.classifiers.bayes.BayesNet as BayesNet
import weka.core.converters.ConverterUtils.DataSource as DS
import weka.gui.graphvisualizer.GraphVisualizer as GraphVisualizer
import javax.swing.JFrame as JFrame
import os

load data
data = DS.read(os.environ.get("MOOC_DATA") + os.sep + "iris.arff")
data.setClassIndex(data.numAttributes() - 1)

configure classifier
cls = BayesNet()
cls.setOptions(["-Q", "weka.classifiers.bayes.net.search.local.K2", "--", "-P", "2"])

build classifier
cls.buildClassifier(data)

display tree
gv = GraphVisualizer()
gv.readBIF(cls.graph())
frame = JFrame("BayesNet - " + data.relationName())
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE)
frame.setSize(800, 600)
frame.getContentPane().add(gv)
frame.setVisible(True)

adjust tree layout
gv.layoutGraph()

https://riptutorial.com/ 7

Read Getting Started With Jython in Weka online: https://riptutorial.com/weka/topic/8046/getting-
started-with-jython-in-weka

https://riptutorial.com/ 8

https://riptutorial.com/weka/topic/8046/getting-started-with-jython-in-weka
https://riptutorial.com/weka/topic/8046/getting-started-with-jython-in-weka

Chapter 3: How to use CPython Scripting in
Weka?

Remarks

How to install CPython in Weka?

Install wekaPython

go to tools, open package manager1.
search wekaPython, select and click to install2.

Install Python libraries

install anaconda or conda1.
install four packages: numpy, pandas, matplotlib, scikit-learn2.
for full installation doc see conda3.

Examples

Hello World Example for CPython of Weka

Go to Explorer, Open iris.arff data, then go to CPython Scripting, Copy and Paste the
following lines of codes into Python Scripts:

hi = "Hello, CPython of Weka!"
hello = hi.upper()
iris = py_data
info = iris.describe()

To see output, go to Python Variables, select hi, for example, and click Get text

Read How to use CPython Scripting in Weka? online: https://riptutorial.com/weka/topic/7921/how-
to-use-cpython-scripting-in-weka-

https://riptutorial.com/ 9

http://conda.pydata.org/docs/install/quick.html#os-x-miniconda-install
https://riptutorial.com/weka/topic/7921/how-to-use-cpython-scripting-in-weka-
https://riptutorial.com/weka/topic/7921/how-to-use-cpython-scripting-in-weka-

Chapter 4: How to use R in Weka

Remarks

Why use R in Weka?

R is a powerful tool for preprocessing data1.
R has a huge number of libraries and keeps growing2.
R in Weka, can easily get data from, process it, and pass to Weka seamlessly3.

How to setup R in Weka

For Mac User

replace the old info.Plist with the new one given by Mark Hall1.

download and install R2.

install rJava inside R with

install.packages('rJava')

3.

install Rplugin with Weka Package Manager4.

go to weka 3-8-0 folder (if it is the version you are using), and open its terminal, and5.

run the following 2 lines of codes (thanks to Michael Hall)

export R_HOME=/Library/Frameworks/R.framework/Resources
java -Xss10M -Xmx4096M -cp .:weka.jar weka.gui.GUIChooser

6.

to make life easier, inside a directory where you want to work with weka, save the code
above into a file named as weka_r.sh

7.

make it executable, inside this directory's terminal, run the code below:

chmod a+x weka_r.sh

8.

paste weka.jar from weka 3-8-0 into the directory and run the code below:

./weka_r.sh

9.

Now, you are ready to go. Next time, you just need to go to the directory's terminal and run
./weka_r.sh to start R with Weka.

https://riptutorial.com/ 10

https://drive.google.com/file/d/0B5yvejrCQ2QSVnZHWUVGRXhZMVU/view?usp=drive_web
https://www.r-project.org/

How to receive data from Weka?

open Weka from terminal:
go to directory of Weka 3-8-0, open its terminal, run the following code:

java -jar weka.jar

data through Weka Explorer:

preprocess panel, click open file, choose a data file from weka data folder;1.
go to R console panel, type R scripts inside R console box.2.

data through Weka KnowledgeFlow:

Data mining processes panel, click DataSources to choose ArffLoader for example, click it onto
canvas;

1.

double-click ArffLoader to load a data file2.
Scripting panel, click RscriptExecutor onto canvas3.
option + click ArffLoader, select dataset, then click RScript Executor to link them4.
double click RScript Executor to type R script, or5.
click Settings and select R Scripting to use R console with weka's data6.

Playing R Codes

load iris.arff with either Explorer or KnowledgeFlow;1.
try Plotting inside R Console example above2.

Examples

Plotting inside R Console

The following Codes can be found from Weka course

Given iris.arff is loaded in weka, inside Weka Explorer's R console or Weka KnowledgeFlow's R
Scripting, you can play with the following codes to make beautiful plots:

library(ggplot2)

ggplot(rdata, aes(x = petallength)) + geom_density()

ggplot(rdata, aes(x = petallength)) + geom_density() + xlim(0,8)

ggplot(rdata, aes(x = petallength)) + geom_density(adjust = 0.5) + xlim(0,8)

ggplot(rdata, aes(x = petallength, color = class)) + geom_density(adjust = 0.5) + xlim(0,8)

https://riptutorial.com/ 11

https://weka.waikato.ac.nz/advanceddataminingwithweka/unit?unit=3&lesson=3

ggplot(rdata, aes(x = petallength, color = class, fill = class)) + geom_density(adjust = 0.5)
+ xlim(0,8)

ggplot(rdata, aes(x = petallength, color = class, fill = class)) + geom_density(adjust = 0.5,
alpha = 0.5) + xlim(0,8)

library(reshape2)
ndata = melt(rdata)
ndata

ggplot(ndata, aes(x = value, color = class, fill = class)) + geom_density(adjust = 0.5, alpha
= 0.5) + xlim(0,8) + facet_grid(variable ~ .)

ggplot(ndata, aes(x = value, color = class, fill = class)) + geom_density(adjust = 0.5, alpha
= 0.5) + xlim(0,8) + facet_grid(. ~ variable)

ggplot(ndata, aes(y = value, x = class, colour = class)) + geom_boxplot() + facet_grid(. ~
variable)

Read How to use R in Weka online: https://riptutorial.com/weka/topic/7916/how-to-use-r-in-weka

https://riptutorial.com/ 12

https://riptutorial.com/weka/topic/7916/how-to-use-r-in-weka

Chapter 5: Loading Instances

Examples

ARFF Files

ARFF files (Attribute-Relation File Format) are the most common format for data used in Weka.
Each ARFF file must have a header describing what each data instance should be like. The
attributes that can be used are as follows:

Numeric•

Real or integer numbers.

Nominal•

Nominal attributes must provide a set of possible values. For example:

@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}

String•

Allows for arbitrary string values. Usually processed later using the StringToWordVector filter.

Date•

Allows for dates to be specified. As with Java's SimpleDateFormat, this date can also be formatted; it
will default to ISO-8601 format.

An example header can be seen as follows:

@RELATION iris

@ATTRIBUTE sepallength NUMERIC
@ATTRIBUTE sepalwidth NUMERIC
@ATTRIBUTE petallength NUMERIC
@ATTRIBUTE petalwidth NUMERIC
@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}

Following the header each instance must be listed with the correct number of instances; if an
attributes value for an instance is not known a ? can be used instead. The following shows an
example of the set of instances in an ARFF file:

@DATA
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa

https://riptutorial.com/ 13

Loading ARFF Files

Depending on the version of Weka being used different methods for loading ARFF files should be
utilised.

Weka <3.5.5

The following sample code shows how to load an ARFF file:

import weka.core.Instances;
import java.io.BufferedReader;
import java.io.FileReader;
...
BufferedReader reader = new BufferedReader(new FileReader("data.arff"));
Instances data = new Instances(reader);
reader.close();
data.setClassIndex(data.numAttributes() - 1);

The class index shows what attribute should be used for classification. In most ARFF files this is
the last attribute which is why it is set to data.numAttributes() - 1. If you are using a Weka
function, such as buildClassifier, you must set the class index.

Weka >=3.5.5

In the latest version of Weka it is very easy to load an ARFF file. This method can also load CSV
files and any other files Weka can understand.

import weka.core.converters.ConverterUtils.DataSource;
...
DataSource source = new DataSource("data.arff");
Instances data = source.getDataSet();
if (data.classIndex() == -1) {
 data.setClassIndex(data.numAttributes() - 1);
}

Loading from Database

Many databases can be used in Weka. Firstly, the DatabaseUtils.props file must be edited to
match your database; specifically you must provide your database's name, location, port and
correct driver.

jdbcDriver=org.gjt.mm.mysql.Driver
jdbcURL=jdbc:mysql://localhost:3306/my_database

Then the database can be loaded by using some simple code.

import weka.core.Instances;

https://riptutorial.com/ 14

import weka.experiment.InstanceQuery;
...
InstanceQuery query = new InstanceQuery();
query.setUsername("user");
query.setPassword("pass");
query.setQuery("select * from mytable");
Instances data = query.retrieveInstances();

Some notes about loading from a database:

Make sure the correct JDBC driver is in your classpath.•
If you are using Microsoft Access then the JDBC-ODBC-driver which comes with the JDK
can be used.

•

The InstanceQuery method converts VARCHAR to nominal attributes and TEXT to string
attributes. A filter, such as NominalToString or StringToNormal, can convert the attributes back
to their correct type.

•

Read Loading Instances online: https://riptutorial.com/weka/topic/5928/loading-instances

https://riptutorial.com/ 15

https://riptutorial.com/weka/topic/5928/loading-instances

Chapter 6: Mistakes easily made when using
KnowledgeFlow

Introduction

Weka KnowledgeFlow(KF) is a great interface to use. However, Weka manual does not cover
every little details of using KF. Here would be a place for collecting those little tricks or details I
learnt from those errors I did or will make as time goes. Many thanks to people at Wekalist
(especially Mark Hall, Eibe Frank) for building a wonderful learning environment for Weka!

Remarks

TrainingSetMaker and TestSetMaker

a ClassAssigner must be linked between ArffLoader and TrainingSetMaker or TestSetMaker.1.

ArffSaver

In order to save dataset into arff file successfully, it is safer to set relationNameForFilename to
False inside configuration of ArffSaver.

2.

How to use TimeSeriesForecasting in KnowledgeFlow?

Open knowledgeFlow, load dataset with ArffLoader1.
go to setting, check time series forecasting perspective, right-click ArffLoader to send to all
perspective

2.

go to time series forecasting perspective to set up a model3.
run the model and copy the model to clipboard4.
ctrl + v, and click to paste model to Data mining process canvas5.
save prediction along with original data with ArffSaver6.

Examples

How to open KnowledgeFlow file directly from terminal

add the following function into .bash_profile, save and exit1.

function wekaflstart() {
export R_HOME=/Library/Frameworks/R.framework/Resources

https://riptutorial.com/ 16

java -Xss10M -Xmx4096M -cp :weka.jar weka.gui.knowledgeflow.KnowledgeFlow "$1"
}

inside a directory with a weka.jar file, open its terminal, run wekastart "path to a
knowledgeflow file"

2.

Read Mistakes easily made when using KnowledgeFlow online:
https://riptutorial.com/weka/topic/8053/mistakes-easily-made-when-using-knowledgeflow

https://riptutorial.com/ 17

https://riptutorial.com/weka/topic/8053/mistakes-easily-made-when-using-knowledgeflow

Chapter 7: Simple Comparison of Weka
Interfaces

Introduction

Weka has many interfaces, Explorer, KnowledgeFlow, Experimenter, SimpleCLI, Workbench. All
of them share mostly can do the same tasks, with different focus and flexibility. Here, we are going
to explore their different focuses and flexibilities.

Remarks

Explorer

pro:

do all things quickly1.
give a quick and comprehensive view of data structure2.

cos: can't save the process;

Experimenter

pro:

compare several models at once, e.g., run 3 different classifiers against 5 datasets all
together, and see the compared result at one place;

1.

experiment can be saved2.

KnowledgeFlow

pro:

do almost all things that Explorer can do1.
can save the process2.

cos:

KF can't do Experimenter's job, as it doesn't support loops, but ADAMS can help;1.
KF can't access low-level functionalities inside Weka API;2.

simpleCLI

pro: run similar tasks of what Explorer does using command line

cos: it can't access all functionalities of Weka API, Jython or Groovy scripting is recommended for
this task.

https://riptutorial.com/ 18

https://adams.cms.waikato.ac.nz/

Workbench

pro: it gathers all other interfaces together into one place

Examples

simpleCLI and Jython examples

simpleCLI

go to simpleCLI, enter the following code

java weka.classifiers.rules.ZeroR -t path/to/a-file-of-dataset

Jython Example

codes from Advanced Weka MOOC course lesson 5.1

imports
import weka.core.converters.ConverterUtils.DataSource as DS
import weka.filters.Filter as Filter
import weka.filters.unsupervised.attribute.Remove as Remove
import os

load data
data = DS.read(os.environ.get("MOOC_DATA") + os.sep + "iris.arff")

remove class attribute
rem = Remove()
rem.setOptions(["-R", "last"])
rem.setInputFormat(data)
dataNew = Filter.useFilter(data, rem)

output filtered dataset
print(dataNew)

Read Simple Comparison of Weka Interfaces online:
https://riptutorial.com/weka/topic/8042/simple-comparison-of-weka-interfaces

https://riptutorial.com/ 19

https://weka.waikato.ac.nz/advanceddataminingwithweka/unit?unit=5
https://riptutorial.com/weka/topic/8042/simple-comparison-of-weka-interfaces

Chapter 8: Text Classification

Examples

Text classification with LibLinear

Create training instances from .arff file•

private static Instances getDataFromFile(String path) throws Exception{

 DataSource source = new DataSource(path);
 Instances data = source.getDataSet();

 if (data.classIndex() == -1){
 data.setClassIndex(data.numAttributes()-1);
 //last attribute as class index
 }

 return data;
}

Instances trainingData = getDataFromFile(pathToArffFile);

Use StringToWordVector to transform your string attributes to number representation:

*Important features of this filter:

tf-idf representation1.
stemming2.
lowercase wrods3.
stopwords4.
n-gram representation*5.

•

 StringToWordVector() filter = new StringToWordVector();
 filter.setWordsToKeep(1000000);
 if(useIdf){
 filter.setIDFTransform(true);
 }
 filter.setTFTransform(true);
 filter.setLowerCaseTokens(true);
 filter.setOutputWordCounts(true);
 filter.setMinTermFreq(minTermFreq);
 filter.setNormalizeDocLength(new
SelectedTag(StringToWordVector.FILTER_NORMALIZE_ALL,StringToWordVector.TAGS_FILTER));
 NGramTokenizer t = new NGramTokenizer();
 t.setNGramMaxSize(maxGrams);
 t.setNGramMinSize(minGrams);
 filter.setTokenizer(t);
 WordsFromFile stopwords = new WordsFromFile();
 stopwords.setStopwords(new File("data/stopwords/stopwords.txt"));
 filter.setStopwordsHandler(stopwords);

https://riptutorial.com/ 20

 if (useStemmer){
 Stemmer s = new /*Iterated*/LovinsStemmer();
 filter.setStemmer(s);
 }
 filter.setInputFormat(trainingData);

Apply the filter to trainingData: trainingData = Filter.useFilter(trainingData, filter);•

Create the LibLinear Classifier

SVMType 0 below corresponds to the L2-regularized logistic regression1.
Set setProbabilityEstimates(true) to print the output probalities2.

•

 Classifier cls = null;
 LibLINEAR liblinear = new LibLINEAR();
 liblinear.setSVMType(new SelectedTag(0, LibLINEAR.TAGS_SVMTYPE));
 liblinear.setProbabilityEstimates(true);
 // liblinear.setBias(1); // default value
 cls = liblinear;
 cls.buildClassifier(trainingData);

Save model•

 System.out.println("Saving the model...");
 ObjectOutputStream oos;
 oos = new ObjectOutputStream(new FileOutputStream(path+"mymodel.model"));
 oos.writeObject(cls);
 oos.flush();
 oos.close();

Create testing instances from .arff file•

 Instances trainingData = getDataFromFile(pathToArffFile);

Load classifier•

Classifier myCls = (Classifier) weka.core.SerializationHelper.read(path+"mymodel.model");

Use the same StringToWordVector filter as above or create a new one for testingData,
but remember to use the trainingData for this command:
filter.setInputFormat(trainingData); This will make training and testing instances
compatible. Alternatively you could use InputMappedClassifier

•

Apply the filter to testingData: testingData = Filter.useFilter(testingData, filter);•

Classify!

1.Get the class value for every instance in the testing set

•

 for (int j = 0; j < testingData.numInstances(); j++) {
 double res = myCls.classifyInstance(testingData.get(j));
 }

https://riptutorial.com/ 21

res is a double value that corresponds to the nominal class that is defined in .arff file. To get the
nominal class use : testintData.classAttribute().value((int)res)

2.Get the probability distribution for every instance

 for (int j = 0; j < testingData.numInstances(); j++) {
 double[] dist = first.distributionForInstance(testInstances.get(j));
 }

dist is a double array that contains the probabilities for every class defined in .arff file

Note. Classifier should support probability distributions and enable them with:
myClassifier.setProbabilityEstimates(true);

Read Text Classification online: https://riptutorial.com/weka/topic/7753/text-classification

https://riptutorial.com/ 22

https://riptutorial.com/weka/topic/7753/text-classification

Credits

S.
No

Chapters Contributors

1
Getting started with
weka

Community, Gal Dreiman

2
Getting Started With
Jython in Weka

Daniel

3
How to use CPython
Scripting in Weka?

Daniel

4
How to use R in
Weka

Daniel

5 Loading Instances SJB

6
Mistakes easily
made when using
KnowledgeFlow

Daniel

7
Simple Comparison
of Weka Interfaces

Daniel

8 Text Classification xro7

https://riptutorial.com/ 23

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/4333609/daniel
https://riptutorial.com/contributor/4333609/daniel
https://riptutorial.com/contributor/4333609/daniel
https://riptutorial.com/contributor/1257102/sjb
https://riptutorial.com/contributor/4333609/daniel
https://riptutorial.com/contributor/4333609/daniel
https://riptutorial.com/contributor/3923800/xro7

	About
	Chapter 1: Getting started with weka
	Remarks
	Examples
	Installation or Setup

	Downloading and installing Weka
	Chapter 2: Getting Started With Jython in Weka
	Introduction
	Remarks

	How to setup Jython in weka
	Examples
	Load and Filter Data
	Build a classifier
	Cross-validate Classifier
	Make A Prediction
	Cross-validate Classifier Error Bubble
	Display Graph

	Chapter 3: How to use CPython Scripting in Weka?
	Remarks

	How to install CPython in Weka?
	Examples
	Hello World Example for CPython of Weka

	Chapter 4: How to use R in Weka
	Remarks

	Why use R in Weka?
	How to setup R in Weka
	How to receive data from Weka?
	Playing R Codes
	Examples
	Plotting inside R Console

	Chapter 5: Loading Instances
	Examples
	ARFF Files
	Loading ARFF Files

	Weka <3.5.5
	Weka >=3.5.5
	Loading from Database

	Chapter 6: Mistakes easily made when using KnowledgeFlow
	Introduction
	Remarks
	TrainingSetMaker and TestSetMaker
	ArffSaver
	How to use TimeSeriesForecasting in KnowledgeFlow?
	Examples
	How to open KnowledgeFlow file directly from terminal

	Chapter 7: Simple Comparison of Weka Interfaces
	Introduction
	Remarks
	Examples
	simpleCLI and Jython examples

	Chapter 8: Text Classification
	Examples
	Text classification with LibLinear

	Credits

