
wxpython

#wxpython

Table of Contents

About 1

Chapter 1: Getting started with wxpython 2

Remarks 2

What Is wxPython 2

Ok what is wxWidgets 2

Back to What Is wxPython, (what does it give me)? 3

Flavours of wxPython 4

ASCII vs Unicode: 4

Classic vs. Phoenix: 4

In wxPython but not wxWidgets 4

Demo Screenshots on Win10 4

Examples 7

Installation of wxPython Phoenix 7

Installation of wxPython Classic 8

Hello World 9

What is a wxPython Release Series? 10

Chapter 2: Drag and Drop 12

Introduction 12

Examples 12

FileDropTarget 12

TextDropTarget 13

PyDropTarget 14

Credits 17

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: wxpython

It is an unofficial and free wxpython ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official wxpython.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/wxpython
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with wxpython

Remarks

What Is wxPython

Simply put wxPython is a set of bindings to the wxWidgets C++ Cross Platform GUI library.

Ok what is wxWidgets

The wxWidgets library provides a free, gratis & open source, set of abstractions for the various
GUI elements so that the native controls are still used, where available, maintaining the native
look, feel & speed. As such it provides an abstraction for GUI creation and a number of other
utilities in a platform that lets developers create applications for Windows, Mac OS X, Linux and
other platforms using a single code base. wxWidgets was started in 1992 and you can see a
detailed history here. The wxWidgets library is distributed under the wxWindows License, which is
based on the L-GPL but with an exception clause. The exception clause allows you to link your
application either dynamically or statically to wxWidgets without the requirement to distribute the
source for your your own application. In other words, you can use wxWidgets for either free or
commercial projects, at no cost. The license encourages you to give back enhancements you
make to the wxWidgets library itself.

The highlights, note that wxWidgets comprises 100s of classes for cross platform application
develepment:

Window Layout Using Sizers•
Device Contexts (along with pens, brushes and fonts)•
Comprehensive Event Handling System•
HTML Help Viewer•
Sound and Video Playback•
Unicode and Internationalization Support•
Document/View Architecture•
Printing Archiecture•
Sockets•
Multithreading•
File and Directory Manipulation•
Online and Context-Sensitive Help•
HTML Rendering•
Basic Containers•
Image Loading, Saving, Drawing and Manipulation•
Date-Time Library and Timers•
Error Handling•
Clipboard and Drag-and-Drop•

https://riptutorial.com/ 2

https://www.wxwidgets.org/
https://www.wxwidgets.org/about/history/

Note that some of these facilities, e.g. threading, are not actually GUI related but provide a useful
cross platform abstraction so that, in the case of threading for example, one set of application
code will work on any supported platform.

For many years the wxWidgets library, produced 4 separate builds, in addition to debug builds
from one set of source code, static and dynamic libraries built for both ASCII and Unicode. It is
usually available pre-built in the most common variants and as source code to build with the
various options for the target environment and with the developers C++ tool chain with numerous
tool chains being supported.

The python bindings for this library and some additions form wxPython.

Back to What Is wxPython, (what does it give
me)?

wxPython gives a developer a way of benefiting from a cross platform GUI library, with a clear
licence, while also giving the benefits of Python. Like wxWidgets and Python wxPython is free,
gratis & open source, and available for use and distribution in both free and commercial projects
without a resulting requirement to distribute your source code.

Full GUI Suite including, (but not limited to):
Windows (including MDI Windows)○

Wizards○

Frames & MiniFrames○

Dialogues, Standard, Advanced & Custom○

Books, Trees, Grids & Data View Controls○

Gauges, Sliders, Spinners, Animations, Clipboard, Drag & Drop○

HTML, PDF & Image viewer support○

GUI components can be absolutely positioned but it is strongly recommended to use
sizer based layout which support auto sizing, etc.

○

•

Cross Platform - Support GUIs for Windows, OS-X & Linux with a single code base without
conditional statements in your code

•

Native speed, look & feel.•
Rapid prototype, test & debug - remember that this is python•
Run & edit samples of just about everything in the demo package.•
Clear licence for gratis use even in commercial products.•
If necessary your python GUI can be refactored to a C++ wxWidgets GUI later as it is
already using it.

•

Large, active & helpful user & developer community both on StackOverflow and mailing lists.•

Note that where python itself provides a cross platform mechanism for implementing the utility
functions of wxWidgets, threading again being a good example, it is intentionally omitted from
wxPython.

wxPython also has a very large suite of demonstrations that can be run, tested and edited from

https://riptutorial.com/ 3

http://stackoverflow.com/questions/tagged/wxpython
https://wxpython.org/maillist.php

within the Documents and Demo package.

Flavours of wxPython

ASCII vs Unicode:

For many years, as with wxWidgets, developers had to choose between ASCII and Unicode builds
as well as needing a build for their specific version of python as well as the 32/64 bit options. As of
about wxPython 2.8.9 the ASCII only build of wxPython has been dropped so Unicode support is
always available.

Classic vs. Phoenix:

Since wxPython 3.0.0 there have existed the released "Classic" build of wxPython and a Phoenix
currently unreleased build. The classic build tends to lag behind the wxWidgets builds of the same
numbers and the documentation package is the C++ - it is available for download for various
platforms, (see Installation of Classic), in the case of windows as an executable installer. The
Phoenix bindings, being largely automatically generated, should follow more closely on the
wxWidgets builds and also include wxPython specific documentation - it is build-able from source
or nightly builds as wheels can be obtained using pip, (see Installation of Phoenix).

In wxPython but not wxWidgets

wxPython extends the wxWidgets library with a number of features, the following are just a few,
that are not available in wxWidgets:

Programmers Editors & Shells: crust, crustslices, AlaCart & AlaMode, AlaModeTest•
Interpreter & magic•
Inspection - this allows you to launch a window to browse all of your applications GUI
components.

•

An extensive set of Demos•

Demo Screenshots on Win10

The wxPython demo with all the branches closed:

https://riptutorial.com/ 4

http://www.riptutorial.com/wxpython/example/22820/installation-of-wxpython-classic
http://www.riptutorial.com/wxpython/example/22775/installation-of-wxpython-phoenix
https://wxpython.org/Phoenix/docs/html/wx.py.crust.html#module-wx.py.crust
https://wxpython.org/Phoenix/docs/html/wx.py.crustslices.html#module-wx.py.crustslices
https://wxpython.org/Phoenix/docs/html/wx.py.editor.html#module-wx.py.editor
https://wxpython.org/Phoenix/docs/html/wx.py.PyAlaModeTest.html#module-wx.py.PyAlaModeTest
https://wxpython.org/Phoenix/docs/html/wx.py.interpreter.html#module-wx.py.interpreter
https://wxpython.org/Phoenix/docs/html/wx.py.magic.html#module-wx.py.magic

One of the recent additions:

https://riptutorial.com/ 5

https://i.stack.imgur.com/cGeIw.png

One of the AGW, (Advanced Generic Widgets):

https://riptutorial.com/ 6

https://i.stack.imgur.com/KQ68l.png

Examples

Installation of wxPython Phoenix

wxPython Phoenix is the latest version of wxPython, (currently Sept 2016 without an official
release). It supports both Python 2 and Python 3. You can download a snapshot build (i.e. a
Python wheel) for your platform and Python version here.

wxPython Phoenix utilizes a largely automated mechanism for generating both the python
bindings for the wxWidgets library and the documentation. Phoenix wxPython documentation is
specifically generated for itself using Sphinx. This increases clarity as opposed to C++

https://riptutorial.com/ 7

https://i.stack.imgur.com/OlT2K.png
https://wiki.wxpython.org/ProjectPhoenix
http://wxpython.org/Phoenix/snapshot-builds/
https://wxpython.org/Phoenix/docs/html/main.html
http://sphinx-doc.org/

documentation of the classic build, which includes many overloads that are not available in
wxPython.

Python and pip must be installed before wxPython Phoenix can be installed.

You can use pip to install the Phoenix version of wxPython. Here is the recommended method
currently:

python -m pip install --no-index --find-links=http://wxpython.org/Phoenix/snapshot-builds/ --
trusted-host wxpython.org wxPython_Phoenix

When you use this command, pip will also install wxWidgets. This complex pip command will
likely become 'pip install wxpython' when Phoenix is officially released.

Note: wxPython Phoenix is currently in beta and doesn't have all the widgets that the Classic
version has.

Installation of wxPython Classic

wxPython Classic is a Python 2 build of the wxPython library. Generation of the python bindings
require a large number of manual interventions and the documentation is simply the wxWidgets
documentation which contains some annotations on wxPython mechanisms as such there is
normally a delay of weeks to months between a new release of wxWidgets and the matching
release of wxPython.

Go to the download page on the wxPython website to see if there is already a version of wxPython
that you can download for your platform.

The latest version of Classic is 3.0.2.0

Windows

There are installers for Python 2.6 and 2.7 for 32-bit and 64-bit Windows platforms on the website.
Just download one of these and run them to install it.

Note: Make sure you download a wxPython installer for the right Python you have installed. For
example, if you have Python 2.7 32-bit, then you want a wxPython 32-bit installer

Mac

If you have OSX 10.5 or above, then you will want to download and install the Cocoa version of
wxPython. The Cocoa version also supports 64-bit Mac.

If you have a Mac with a version of OSX less than 10.5, then you will want the Carbon build.

Linux

The first thing to check if your Linux platform's package manager (i.e. yum, apt-get, etc) to see if it
has a version of wxPython that you can install. Unfortunately, a lot of Linux packages for wxPython
are for version 2.8.12.1 instead of 3.0.2.0. If your package manager doesn't have the latest

https://riptutorial.com/ 8

https://wxpython.org/download.php

version, you will probably have to build it yourself.

There are build instructions for 3.0.2.0-Classic here

Hello World

A simple way to create a Hello World program:

import wx
app = wx.App(redirect=False)
frame = wx.Frame(parent=None, id=wx.ID_ANY, title='Hello World')
frame.Show()
app.MainLoop()

Output:

A more typical example would be to subclass wx.Frame:

import wx

class MyFrame(wx.Frame):

 def __init__(self):
 wx.Frame.__init__(self, None, title='Hello World')
 self.Show()

if __name__ == '__main__':
 app = wx.App(redirect=False)
 frame = MyFrame()
 app.MainLoop()

This can also be rewritten to use Python's super:

import wx

class MyFrame(wx.Frame):

 def __init__(self, *args, **kwargs):

https://riptutorial.com/ 9

https://wxpython.org/builddoc.php
https://i.stack.imgur.com/BxlIr.png

 """Constructor"""
 super(MyFrame, self).__init__(*args, **kwargs)
 self.Show()

if __name__ == '__main__':
 app = wx.App(False)
 frame = MyFrame(None, title='Hello World')
 app.MainLoop()

What is a wxPython Release Series?

The wxWidgets project has adopted the release model used by the Linux Kernel project where
there are alternating sets of releases where one set are considered "stable" and the next set are
considered "development." For wxWidgets "stable" and "development" do not refer to bugginess,
but to the stability of the API and backwards compatibility.

Stable: For the duration of the series existing APIs are not modified, although new non-
virtual class methods and such can be added. Binary compatibility of the C++ libs is
maintained by not allowing any changes that modify the in-memory size or layout of the
classes and structs. This can and often does impose limitations on what kinds of
enhancements or bug fixes can be performed in a stable release series, however this really
only affects the C++ layer because in Python being backwards compatible has a slightly
different connotations.

•

Development: The main purpose of the development series of releases is to add new
functionality or to correct problems that could not be corrected in a stable series because of
binary compatibility issues, all in an effort to create the next stable series. So for the duration
of the development series existing the APIs are allowed to be modified or removed as
needed, although most of the time C++ source-level compatibility is maintained via
deprecated overloaded functions or macros, etc. For wxPython this often means that there
will be source-level incompatibilities because there is no overloading or macros, and in order
to support the new version of the API sometimes the old version has to be removed.

•

Because of the binary compatibility issues, the latest development version of wxWidgets/wxPython
can often be less buggy than the latest version of the last stable release series. However there is
the trade-off that the APIs may be changing or evolving between versions in the development
series.

How do the version numbers work?

For releases wxPython uses a 4 component version number. While this looks a lot like how
version numbers are used in other Open Source projects, there are a few subtle differences. So
for some release A.B.C.D you can deduce the following:

Release Series: The first two components of the version number (A.B) represent the
release series, and if the B component is an even number then it is a stable series, if it is an
odd number then it is an development release series. For example, 2.4, 2.6, and 2.8 are
stable and the API is more or less frozen within each series, and 2.3, 2.5, and 2.7 are
development and the API and functionality is allowed to change or evolve as needed.

1.

https://riptutorial.com/ 10

Because of this there can be quite large changes between one stable series to the next (say 2.4 to
2.6) and this often throws people off because in other projects changes of that magnitute would
have caused the first component of the version number to change. Instead you should think of the
combination of A.B as being the major number of the version.

Release Number: The third component of the version number (C) represents one of the
releases in a release series. For example, 2.5.0, 2.5.1, 2.5.2, 2.5.3... are all releases in the
2.5 release series. (And since in this case it is an development series then the API and
functionality of 2.5.3 has evolved to be different in places than it was in 2.5.0.) The C++
wxWidgets releases usually stop here and only A.B.C releases are made.

2.

Subrelease number, or wxPython release: The fourth component of the version number (D)
is used to represent a subrelease, or incremental releases betweeen the official wxWidgets
releases. These releases include fixes for wxWidgets bugs that wxPython may have
exposed, or minor enhancements that are important for wxPython. This is not an arbitrary
wxWidgets snapshot, but rather a tested version of the code with fixes and enhancements
not yet available from wxWidgets except from the source code repository.

3.

Source: https://wiki.wxpython.org/ReleaseSeries

Read Getting started with wxpython online: https://riptutorial.com/wxpython/topic/6690/getting-
started-with-wxpython

https://riptutorial.com/ 11

https://wiki.wxpython.org/ReleaseSeries
https://riptutorial.com/wxpython/topic/6690/getting-started-with-wxpython
https://riptutorial.com/wxpython/topic/6690/getting-started-with-wxpython

Chapter 2: Drag and Drop

Introduction

wxPython provides several different kinds of drag and drop. You can have one of the following
types: wx.FileDropTarget, wx.TextDropTarget, or wx.PyDropTarget.

The first two are pretty self-explanatory. The last one, wx.PyDropTarget, is just a loose wrapper
around wx.DropTarget itself. It adds a couple extra convenience methods that the plain
wx.DropTarget doesn't have. We'll start with a wx.FileDropTarget example.

Examples

FileDropTarget

import wx

class MyFileDropTarget(wx.FileDropTarget):
 """"""

 def __init__(self, window):
 """Constructor"""
 wx.FileDropTarget.__init__(self)
 self.window = window

 def OnDropFiles(self, x, y, filenames):
 """
 When files are dropped, write where they were dropped and then
 the file paths themselves
 """
 self.window.SetInsertionPointEnd()
 self.window.updateText("\n%d file(s) dropped at %d,%d:\n" %
 (len(filenames), x, y))
 for filepath in filenames:
 self.window.updateText(filepath + '\n')

 return True

class DnDPanel(wx.Panel):
 """"""

 def __init__(self, parent):
 """Constructor"""
 wx.Panel.__init__(self, parent=parent)

 file_drop_target = MyFileDropTarget(self)
 lbl = wx.StaticText(self, label="Drag some files here:")
 self.fileTextCtrl = wx.TextCtrl(self,
 style=wx.TE_MULTILINE|wx.HSCROLL|wx.TE_READONLY)
 self.fileTextCtrl.SetDropTarget(file_drop_target)

https://riptutorial.com/ 12

 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(lbl, 0, wx.ALL, 5)
 sizer.Add(self.fileTextCtrl, 1, wx.EXPAND|wx.ALL, 5)
 self.SetSizer(sizer)

 def SetInsertionPointEnd(self):
 """
 Put insertion point at end of text control to prevent overwriting
 """
 self.fileTextCtrl.SetInsertionPointEnd()

 def updateText(self, text):
 """
 Write text to the text control
 """
 self.fileTextCtrl.WriteText(text)

class DnDFrame(wx.Frame):
 """"""

 def __init__(self):
 """Constructor"""
 wx.Frame.__init__(self, parent=None, title="DnD Tutorial")
 panel = DnDPanel(self)
 self.Show()

if __name__ == "__main__":
 app = wx.App(False)
 frame = DnDFrame()
 app.MainLoop()

TextDropTarget

import wx

class MyTextDropTarget(wx.TextDropTarget):

 def __init__(self, textctrl):
 wx.TextDropTarget.__init__(self)
 self.textctrl = textctrl

 def OnDropText(self, x, y, text):
 self.textctrl.WriteText("(%d, %d)\n%s\n" % (x, y, text))
 return True

 def OnDragOver(self, x, y, d):
 return wx.DragCopy

class DnDPanel(wx.Panel):
 """"""

 def __init__(self, parent):
 """Constructor"""
 wx.Panel.__init__(self, parent=parent)

https://riptutorial.com/ 13

 lbl = wx.StaticText(self, label="Drag some text here:")
 self.myTextCtrl = wx.TextCtrl(
 self, style=wx.TE_MULTILINE|wx.HSCROLL|wx.TE_READONLY)
 text_dt = MyTextDropTarget(self.myTextCtrl)
 self.myTextCtrl.SetDropTarget(text_dt)

 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(self.myTextCtrl, 1, wx.EXPAND)
 self.SetSizer(sizer)

 def WriteText(self, text):
 self.text.WriteText(text)

class DnDFrame(wx.Frame):
 """"""

 def __init__(self):
 """Constructor"""
 wx.Frame.__init__(
 self, parent=None, title="DnD Text Tutorial")
 panel = DnDPanel(self)
 self.Show()

if __name__ == "__main__":
 app = wx.App(False)
 frame = DnDFrame()
 app.MainLoop()

PyDropTarget

import wx

class MyURLDropTarget(wx.PyDropTarget):

 def __init__(self, window):
 wx.PyDropTarget.__init__(self)
 self.window = window

 self.data = wx.URLDataObject();
 self.SetDataObject(self.data)

 def OnDragOver(self, x, y, d):
 return wx.DragLink

 def OnData(self, x, y, d):
 if not self.GetData():
 return wx.DragNone

 url = self.data.GetURL()
 self.window.AppendText(url + "\n")

 return d

class DnDPanel(wx.Panel):

https://riptutorial.com/ 14

 """"""

 def __init__(self, parent):
 """Constructor"""
 wx.Panel.__init__(self, parent=parent)
 font = wx.Font(12, wx.SWISS, wx.NORMAL, wx.BOLD, False)

 # create and setup first set of widgets
 lbl = wx.StaticText(self,
 label="Drag some URLS from your browser here:")
 lbl.SetFont(font)
 self.dropText = wx.TextCtrl(
 self, size=(200,200),
 style=wx.TE_MULTILINE|wx.HSCROLL|wx.TE_READONLY)
 dt = MyURLDropTarget(self.dropText)
 self.dropText.SetDropTarget(dt)
 firstSizer = self.addWidgetsToSizer([lbl, self.dropText])

 # create and setup second set of widgets
 lbl = wx.StaticText(self, label="Drag this URL to your browser:")
 lbl.SetFont(font)
 self.draggableURLText = wx.TextCtrl(self,
 value="http://www.mousevspython.com")
 self.draggableURLText.Bind(wx.EVT_MOTION, self.OnStartDrag)
 secondSizer = self.addWidgetsToSizer([lbl, self.draggableURLText])

 # Add sizers to main sizer
 mainSizer = wx.BoxSizer(wx.VERTICAL)
 mainSizer.Add(firstSizer, 0, wx.EXPAND)
 mainSizer.Add(secondSizer, 0, wx.EXPAND)
 self.SetSizer(mainSizer)

 def addWidgetsToSizer(self, widgets):
 """
 Returns a sizer full of widgets
 """
 sizer = wx.BoxSizer(wx.HORIZONTAL)
 for widget in widgets:
 if isinstance(widget, wx.TextCtrl):
 sizer.Add(widget, 1, wx.EXPAND|wx.ALL, 5)
 else:
 sizer.Add(widget, 0, wx.ALL, 5)
 return sizer

 def OnStartDrag(self, evt):
 """"""
 if evt.Dragging():
 url = self.draggableURLText.GetValue()
 data = wx.URLDataObject()
 data.SetURL(url)

 dropSource = wx.DropSource(self.draggableURLText)
 dropSource.SetData(data)
 result = dropSource.DoDragDrop()

class DnDFrame(wx.Frame):
 """"""

 def __init__(self):
 """Constructor"""

https://riptutorial.com/ 15

 wx.Frame.__init__(self, parent=None,
 title="DnD URL Tutorial", size=(800,600))
 panel = DnDPanel(self)
 self.Show()

if __name__ == "__main__":
 app = wx.App(False)
 frame = DnDFrame()
 app.MainLoop()

Read Drag and Drop online: https://riptutorial.com/wxpython/topic/9709/drag-and-drop

https://riptutorial.com/ 16

https://riptutorial.com/wxpython/topic/9709/drag-and-drop

Credits

S.
No

Chapters Contributors

1
Getting started with
wxpython

4444, Boštjan Mejak, Community, Mike Driscoll, Steve Barnes

2 Drag and Drop Mike Driscoll

https://riptutorial.com/ 17

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/7771315/bostjan-mejak
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/393194/mike-driscoll
https://riptutorial.com/contributor/2298070/steve-barnes
https://riptutorial.com/contributor/393194/mike-driscoll

	About
	Chapter 1: Getting started with wxpython
	Remarks
	What Is wxPython

	Ok what is wxWidgets
	Back to What Is wxPython, (what does it give me)?
	Flavours of wxPython

	ASCII vs Unicode:
	Classic vs. Phoenix:
	In wxPython but not wxWidgets
	Demo Screenshots on Win10
	Examples
	Installation of wxPython Phoenix
	Installation of wxPython Classic
	Hello World
	What is a wxPython Release Series?

	Chapter 2: Drag and Drop
	Introduction
	Examples
	FileDropTarget
	TextDropTarget
	PyDropTarget

	Credits

