
xamarin

#xamarin

Table of Contents

About 1

Chapter 1: Getting started with xamarin 2

Remarks 2

Examples 2

Installing Xamarin Studio on OS X 2

Installation process 4

Next steps 5

Hello World using Xamarin Studio : Xamarin.Forms 5

Chapter 2: Code Sharing Between Projects 7

Examples 7

The Bridge Pattern 7

The Service Locator Pattern 8

Chapter 3: Object validation by Annotations 11

Introduction 11

Examples 11

Simple example 11

Credits 13

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: xamarin

It is an unofficial and free xamarin ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official xamarin.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/xamarin
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with xamarin

Remarks

This section provides an overview of what xamarin is, and why a developer might want to use it.

It should also mention any large subjects within xamarin, and link out to the related topics. Since
the Documentation for xamarin is new, you may need to create initial versions of those related
topics.

Examples

Installing Xamarin Studio on OS X

The first step to start Xamarin development on an OS X machine, is to download and install
Xamarin Studio Community version from the official website. A few fields need to be filled to
download the installer as shown in the picture below.

https://riptutorial.com/ 2

http://xamarin.com/download

The Xamarin Unified installer takes care of identifying and installing all the required non-Xamarin

To develop Xamarin.iOS applications, the following prerequisites have to be met:

The latest iOS SDK from the iOS developer center.•

https://riptutorial.com/ 3

http://i.stack.imgur.com/sJFEZ.png
https://developer.apple.com/ios/

The latest version of Xcode from the Mac App Store or the Apple Developer
Website.

•

Apple Developer Website.
Mac OS X Yosemite (10.10) and above•

Installation process

Once the prerequisites have been met, run the Xamarin Installer by double clicking the Xamarin
logo.

https://riptutorial.com/ 4

https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/

OS X Gatekeeper may show a dialog asking you for a confirmation to open the downloaded appli

To start the actual installation process, you must read and accept the Xamarin software license te

Next step in the installation is to select the products to install. The items are mostly self-explanato

Products that are already installed on the system are shown but grayed out.
After selecting the products, Xamarin Unified installer will automatically download and execute ea

Finally, the installer will show a brief summary of what will be downloaded and installed. In this ex
By clicking “Continue” the download and installation process starts for each product. The installer

Once the installation is complete, Xamarin Studio can be launched. The Community edition is free

Next steps

Hello World (iOS) on Xamarin Studio•

Hello World using Xamarin Studio : Xamarin.Forms

After Successfully installing Xamarin Studio on OS X. It's time for the first Hello World Application.

Hello World Application: Xamarin.Forms

What is Xamarin Forms :

Xamarin.Forms is a new library that enables you to build native UIs for iOS, Android and Windows

Step 1:

Create a new solution.

Click on the "New Solution"

Step 2: Select Forms App and click Next

Step 3: Add App name and click Next

This is how the project stricture will look like when the solution is created:

App.xaml:

<?xml version="1.0" encoding="utf-8"?>

App.xaml.cs:

using Xamarin.Forms;

HelloXamarinFormsPage.xaml

<?xml version="1.0" encoding="utf-8"?>

HelloXamarinFormsPage.xaml.cs

using Xamarin.Forms;

Read Getting started with xamarin online:

https://riptutorial.com/ 5

http://i.stack.imgur.com/gcm0g.png
http://i.stack.imgur.com/SMmyw.png
http://i.stack.imgur.com/Ctzd8.png
http://i.stack.imgur.com/BQU15.png
http://i.stack.imgur.com/TlpnP.png
http://i.stack.imgur.com/V7YVF.png
http://i.stack.imgur.com/pV30U.png
http://i.stack.imgur.com/dYrzH.png
http://i.stack.imgur.com/VO7Pr.png
http://i.stack.imgur.com/b81iI.png
http://i.stack.imgur.com/glNQW.png
http://i.stack.imgur.com/7xzAg.png

https://riptutorial.com/xamarin/topic/899/getting-started-with-xamarin

https://riptutorial.com/ 6

https://riptutorial.com/xamarin/topic/899/getting-started-with-xamarin

Chapter 2: Code Sharing Between Projects

Examples

The Bridge Pattern

The Bridge pattern is one of the most basic Inversion of Control design patterns. For Xamarin, this
pattern is used to reference platform-dependent code from a platform-independent context. For
example: using Android's AlertDialog from a Portable Class Library or Xamarin Forms. Neither of
those contexts knows what an AlertDialog object is, so you must wrap it in a box for them to use.

// Define a common interface for the behavior you want in your common project (Forms/Other
PCL)
public interface IPlatformReporter
{
 string GetPlatform();
}

// In Android/iOS/Win implement the interface on a class
public class DroidReporter : IPlatformReporter
{
 public string GetPlatform()
 {
 return "Android";
 }
}

public class IosReporter : IPlatformReporter
{
 public string GetPlatform()
 {
 return "iOS";
 }
}

// In your common project (Forms/Other PCL), create a common class to wrap the native
implementations
public class PlatformReporter : IPlatformReporter
{
 // A function to get your native implemenation
 public static func<IPlatformReporter> GetReporter;

 // Your native implementation
 private IPlatformReporter _reporter;

 // Constructor accepts native class and stores it
 public PlatformReporter(IPlatformReporter reporter)
 {
 _reporter = GetReporter();
 }

 // Implement interface behavior by deferring to native class

https://riptutorial.com/ 7

 public string GetPlatform()
 {
 return _reporter.GetPlatform();
 }
}

// In your native code (probably MainActivity/AppDelegate), you just supply a function that
returns your native implementation
public class MainActivity : Activity
{
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.activity_main);

 PlatformReporter.GetReporter = () => { return new DroidReporter(); };
 }
}

public partial class AppDelegate : UIApplicationDelegate
{
 UIWindow window;

 public override bool FinishedLaunching(UIApplication app, NSDictionary options)
 {
 window = new UIWindow(UIScreen.MainScreen.Bounds);
 window.RootViewController = new UIViewController();
 window.MakeKeyAndVisible();

 PlatformReporter.GetReporter = () => { return new IosReporter(); };

 return true;
 }
}

// When you want to use your native implementation in your common code, just do as follows:
public void SomeFuncWhoCares()
{
 // Some code here...

 var reporter = new PlatformReporter();
 string platform = reporter.GetPlatform();

 // Some more code here...
}

The Service Locator Pattern

The Service Locator design pattern is very nearly dependency injection. Like the Bridge Pattern,
this pattern can be used to reference platform-dependent code from a platform-independent
context. Most interestingly, this pattern relies on the singleton pattern -- everything you put into the
service locator will be a defacto singleton.

// Define a service locator class in your common project
public class ServiceLocator {

https://riptutorial.com/ 8

 // A dictionary to map common interfaces to native implementations
 private Dictionary<object, object> _services;

 // A static instance of our locator (this guy is a singleton)
 private static ServiceLocator _instance;

 // A private constructor to enforce the singleton
 private ServiceLocator() {
 _services = new Dictionary<object, object>();
 }

 // A Singleton access method
 public static ServiceLocator GetInstance() {
 if(_instance == null) {
 _instance = new ServiceLocator();
 }

 return _instance;
 }

 // A method for native projects to register their native implementations against the
common interfaces
 public static void Register(object type, object implementation) {
 _services?.Add(type, implementation);
 }

 // A method to get the implementation for a given interface
 public static T Resolve<T>() {
 try {
 return (T) _services[typeof(T)];
 } catch {
 throw new ApplicationException($"Failed to resolve type: {typeof(T).FullName}");
 }
 }

//For each native implementation, you must create an interface, and the native classes
implementing that interface
public interface IA {
 int DoAThing();
}

public interface IB {
 bool IsMagnificent();
}

public class IosA : IA {
 public int DoAThing() {
 return 5;
 }
}

public class DroidA : IA {
 public int DoAThing() {
 return 42;
 }
}

https://riptutorial.com/ 9

// You get the idea...

// Then in your native initialization, you have to register your classes to their interfaces
like so:
public class MainActivity : Activity
{
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.activity_main);

 var locator = ServiceLocator.GetInstance();
 locator.Register(typeof(IA), new DroidA());
 locator.Register(typeof(IB), new DroidB());
 }
}

public partial class AppDelegate : UIApplicationDelegate
{
 UIWindow window;

 public override bool FinishedLaunching(UIApplication app, NSDictionary options)
 {
 window = new UIWindow(UIScreen.MainScreen.Bounds);
 window.RootViewController = new UIViewController();
 window.MakeKeyAndVisible();

 var locator = ServiceLocator.GetInstance();
 locator.Register(typeof(IA), new IosA());
 locator.Register(typeof(IB), new IosB());

 return true;
 }
}

// Finally, to use your native implementations from non-native code, do as follows:
public void SomeMethodUsingNativeCodeFromNonNativeContext() {
 // Some boring code here

 // Grabbing our native implementations for the current platform
 var locator = ServiceLocator.GetInstance();
 IA myIA = locator.Resolve<IA>();
 IB myIB = locator.Resolve<IB>();

 // Method goes on to use our fancy native classes
}

Read Code Sharing Between Projects online: https://riptutorial.com/xamarin/topic/6183/code-
sharing-between-projects

https://riptutorial.com/ 10

https://riptutorial.com/xamarin/topic/6183/code-sharing-between-projects
https://riptutorial.com/xamarin/topic/6183/code-sharing-between-projects

Chapter 3: Object validation by Annotations

Introduction

mvc.net introduces data anotations for model validation. This can also be done in Xamarin

Examples

Simple example

Add nuget package System.ComponentModel.Annotations

Define a class:

public class BankAccount
{

 public enum AccountType
 {
 Saving,
 Current
 }

 [Required(ErrorMessage="First Name Required")]
 [MaxLength(15,ErrorMessage="First Name should not more than 1`5 character")]
 [MinLength(3,ErrorMessage="First Name should be more than 3 character")]
 public string AccountHolderFirstName { get; set; }

 [Required(ErrorMessage="Last Name Required")]
 [MaxLength(15,ErrorMessage="Last Name should not more than 1`5 character")]
 [MinLength(3,ErrorMessage="Last Name should be more than 3 character")]
 public string AccountHolderLastName { get; set; }

 [Required]
 [RegularExpression("^[0-9]+$", ErrorMessage = "Only Number allowed in AccountNumber")]
 public string AccountNumber { get; set; }

 public AccountType AcType { get; set; }
}

Define a validator:

public class GenericValidator
{
 public static bool TryValidate(object obj, out ICollection<ValidationResult> results)
 {
 var context = new ValidationContext(obj, serviceProvider: null, items: null);
 results = new List<ValidationResult>();
 return Validator.TryValidateObject(
 obj, context, results,
 validateAllProperties: true
);
 }

https://riptutorial.com/ 11

}

use the validator:

var bankAccount = new BankAccount();
ICollection<ValidationResult> lstvalidationResult;

bool valid = GenericValidator.TryValidate(bankAccount, out lstvalidationResult);
if (!valid)
{
 foreach (ValidationResult res in lstvalidationResult)
 {
 Console.WriteLine(res.MemberNames +":"+ res.ErrorMessage);
 }

}
Console.ReadLine();

Output generated:

First Name Required
Last Name Required
The AccountNumber field is required.

Read Object validation by Annotations online: https://riptutorial.com/xamarin/topic/9720/object-
validation--by-annotations

https://riptutorial.com/ 12

https://riptutorial.com/xamarin/topic/9720/object-validation--by-annotations
https://riptutorial.com/xamarin/topic/9720/object-validation--by-annotations

Credits

S.
No

Chapters Contributors

1
Getting started with
xamarin

Akshay Kulkarni, Community, Gil Sand, hankide, Joel Martinez,
Marius Ungureanu, Sven-Michael Stübe, thomasvdb

2
Code Sharing
Between Projects

kellen lask, valdetero

3
Object validation by
Annotations

Niek de Gooijer

https://riptutorial.com/ 13

https://riptutorial.com/contributor/4321201/akshay-kulkarni
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3603502/gil-sand
https://riptutorial.com/contributor/6625726/hankide
https://riptutorial.com/contributor/5416/joel-martinez
https://riptutorial.com/contributor/2502519/marius-ungureanu
https://riptutorial.com/contributor/1489968/sven-michael-stube
https://riptutorial.com/contributor/3531995/thomasvdb
https://riptutorial.com/contributor/6119087/kellen-lask
https://riptutorial.com/contributor/1134836/valdetero
https://riptutorial.com/contributor/2212856/niek-de-gooijer

	About
	Chapter 1: Getting started with xamarin
	Remarks
	Examples
	Installing Xamarin Studio on OS X

	Installation process
	Next steps
	Hello World using Xamarin Studio : Xamarin.Forms

	Chapter 2: Code Sharing Between Projects
	Examples
	The Bridge Pattern
	The Service Locator Pattern

	Chapter 3: Object validation by Annotations
	Introduction
	Examples
	Simple example

	Credits

