
xaml

#xaml

Table of Contents

About 1

Chapter 1: Getting started with xaml 2

Remarks 2

Versions 2

Examples 2

Installation or Setup 2

Hello World 2

Chapter 2: Control Templates 5

Examples 5

Control Templates 5

XAML 5

C# Code 5

Chapter 3: Converters 7

Parameters 7

Remarks 7

Examples 7

String to IsChecked Converter 7

Converters 101 8

Creating and using a Converter: BooleanToVisibilityConverter and InvertibleBooleanToVisibi 9

Chapter 4: Data Binding 11

Syntax 11

Remarks 11

Examples 11

Binding string to Text property 11

Formatting String Bindings 11

The basics of INotifyPropertyChanged 12

Binding to a Collection of Objects with INotifyPropertyChanged and INotifyCollectionChange 14

Chapter 5: Data templates 18

Examples 18

Using DataTemplate in a ListBox 18

Chapter 6: Differences in the various XAML dialects 21

Remarks 21

Examples 21

Compiled data bindings: The {x:Bind} markup extension 21

Importing namespaces in XAML 21

Multi Binding 22

Chapter 7: Layout controls 23

Examples 23

Canvas 23

DockPanel 23

StackPanel 24

Grid 24

Basic rows and columns definitions 24

Auto size definitions 25

Simple star sized definitions 25

Proportional star sized definitions 26

Column/Row Span 26

WrapPanel 27

Horizontal orientation 27

Vertical wrap panel 27

UniformGrid 27

Default rows and columns 27

Specified rows / columns 28

FirstColumn Property 28

RelativePanel 28

Chapter 8: Working with custom XAML files 30

Examples 30

Reading an object from XAML 30

Writing an object to XAML 31

Chapter 9: XAML Development Tools 32

Examples 32

Microsoft Visual Studio & Microsoft Expression Blend 32

WPF Inspector 32

Snoop 32

WPF Performance Suite 32

Credits 33

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: xaml

It is an unofficial and free xaml ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official xaml.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/xaml
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with xaml

Remarks

EXtensible Application Markup Language (XAML) is a XML based markup language developed by
Microsoft. It is used in several Microsoft technologies like Windows Presentation Foundation
(WPF), Silverlight, WinRT, Universal Windows Platform, etc. to define the User Interface for
applications.

Versions

Version Release Date

WPF XAML 2006-11-21

Silverlight 3 2009-07-09

Silverlight 4 2010-04-15

Windows 8 XAML 2011-09-01

Examples

Installation or Setup

The easiest way to get writing your first XAML is to install Microsoft Visual Studio. This is avaliable
free from Microsoft.

Once installed you can create a new project, of type WPF Application, either with a VB.NET or C#
code.

This is similar to windows forms in the sense that you have a series of windows, the main
difference being that these windows are written in XAML and are much more responsive to
different devices.

Still needs improvment.

Hello World

Here is a simple example of an XAML page in WPF. It consists of a Grid, a TextBlock and a Button
- the most common elements in XAML.

<Window x:Class="FirstWpfApplication.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

https://riptutorial.com/ 2

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 Title="MainWindow"
 Height="350"
 Width="525">
 <Grid>
 <TextBlock Text="Welcome to XAML!"
 FontSize="30"
 Foreground="Black"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"/>

 <Button Content="Hello World!"
 Background="LightGray"
 Foreground="Black"
 FontSize="25"
 Margin="0,100,0,0"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"/>
 </Grid>
</Window>

Syntax Description

<Window>
The root container which hosts the content that visualizes data and enable
users to interact with it. A WPF window is a combination of an XAML (.xaml)
file, where the element is the root, and a CodeBehind (.cs) file.

<Grid>
A layout panel that arranges its child elements in a tabular structure of rows and
columns.

<TextBlock>
Provides a lightweight control for displaying string text in its Text property or
Inline flow content elements, such as Bold, Hyperlink, and InlineUIContainer, in
its Inlines property.

<Button> Represents a button control which reacts with the user click on it.

Property Description

Title Gets or sets the title of a window.

Height Gets or sets the height of an element.

Width Gets or sets the width of an element.

Text Gets or sets the text content of a text element.

FontSize Gets or sets the top-level font size for the text.

Background Gets or sets the brush color that paints the background of an element.

Foreground Gets or sets the brush color that paints the font of a text in an element.

https://riptutorial.com/ 3

Property Description

Margin
Gets or sets the value that describes the outer space between an
element and the others.

HorizontalAlignment
Gets or sets the horizontal alignment characteristics applied to the
element when it is composed within a parent element, such as a panel
or items control.

VerticalAlignment
Gets or sets the vertical alignment characteristics applied to the
element when it is composed within a parent element such as a panel
or items control.

Read Getting started with xaml online: https://riptutorial.com/xaml/topic/903/getting-started-with-
xaml

https://riptutorial.com/ 4

https://riptutorial.com/xaml/topic/903/getting-started-with-xaml
https://riptutorial.com/xaml/topic/903/getting-started-with-xaml

Chapter 2: Control Templates

Examples

Control Templates

The default user interfaces for WPF controls are typically constructed from other controls and
shapes. For example, a Button is composed of both ButtonChrome and ContentPresenter
controls. The ButtonChrome provides the standard button appearance, while the
ContentPresenter displays the button's content, as specified by the Content property. Sometimes
the default appearance of a control may be incongruent with the overall appearance of an
application. In this case, you can use a ControlTemplate to change the appearance of the control's
user interface without changing its content and behavior.

XAML

 <Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="SDKSample.ControlTemplateButtonWindow"
 Title="Button with Control Template" Height="158" Width="290">

 <!-- Button using an ellipse -->
 <Button Content="Click Me!" Click="button_Click">
 <Button.Template>
 <ControlTemplate TargetType="{x:Type Button}">
 <Grid Margin="5">
 <Ellipse Stroke="DarkBlue" StrokeThickness="2">
 <Ellipse.Fill>
 <RadialGradientBrush Center="0.3,0.2" RadiusX="0.5" RadiusY="0.5">
 <GradientStop Color="Azure" Offset="0.1" />
 <GradientStop Color="CornflowerBlue" Offset="1.1" />
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <ContentPresenter Name="content" HorizontalAlignment="Center"
 VerticalAlignment="Center"/>
 </Grid>
 </ControlTemplate>
 </Button.Template>

 </Button>

 </Window>

C# Code

 using System.Windows;

 namespace SDKSample
 {

https://riptutorial.com/ 5

 public partial class ControlTemplateButtonWindow : Window
 {
 public ControlTemplateButtonWindow()
 {
 InitializeComponent();
 }

 void button_Click(object sender, RoutedEventArgs e)
 {
 MessageBox.Show("Hello, Windows Presentation Foundation!");
 }
 }
 }

Read Control Templates online: https://riptutorial.com/xaml/topic/6782/control-templates

https://riptutorial.com/ 6

https://riptutorial.com/xaml/topic/6782/control-templates

Chapter 3: Converters

Parameters

Parameter Details

value The value to convert from

targetType The type being converted to

parameter Optional value to control how the conversion works

culture CultureInfo object - required if localisation needed

Remarks

The Convert method converts the value from the source (usually the view model) to the target
(usually a property of a control).

The ConvertBack method converts the value from the target back to the source. It is only needed if
the binding is TwoWay or OneWayToSource.

When a ConvertBack is not supported, i.e. there is no one-to-one mapping between the pre-
conversion value and the post-conversion value, it's common practice to have the ConvertBack
method return DependencyProperty.UnsetValue. It's a better option than throwing an exception (e.g.
NotImplementedException) as it avoids unexpected runtime errors. Also, bindings can benefit of their
FallbackValue when DependencyProperty.UnsetValue is returned by a converter.

Examples

String to IsChecked Converter

In XAML:

<RadioButton IsChecked="{Binding EntityValue, Mode=TwoWay,
 Converter={StaticResource StringToIsCheckedConverter},
 ConverterParameter=Male}"
 Content="Male"/>

<RadioButton IsChecked="{Binding EntityValue, Mode=TwoWay,
 Converter={StaticResource StringToIsCheckedConverter},
 ConverterParameter=Female}"
 Content="Female"/>

The C# class:

https://riptutorial.com/ 7

public class StringToIsCheckedConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture)
 {
 string input = (string)value;
 string test = (string)parameter;
 return input == test;
 }

 public object ConvertBack(object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture)
 {
 if (value == null || !(value is bool))
 {
 return string.Empty;
 }
 if (parameter == null || !(parameter is string))
 {
 return string.Empty;
 }
 if ((bool)value)
 {
 return parameter.ToString();
 }
 else
 {
 return string.Empty;
 }
 }
}

Converters 101

XAML controls may have dependency properties that can be bound to objects from DataContext or
other controls. When the type of the object being bound is different from the type of the target
DependencyProperty, a converter may be used to adapt one type to another.

Converters are classes implementing System.Windows.Data.IValueConverter or
System.Windows.Data.IMultiValueConverter; WPF implements some out of the box converters, but
developers may see use in custom implementations, as it is frequently the case.

To use a converter in XAML, an instance can be instantiated in the Resources section. For the
example below, System.Windows.Controls.BooleanToVisibilityConverter will be used:

<UserControl.Resources>
 <BooleanToVisibilityConverter x:Key="BooleanToVisibilityConverter"/>
</UserControl.Resources>

Notice the x:Key element defined, which is then used to reference the instance of
BooleanToVisibilityConverter in the binding:

<TextBlock Text="This will be hidden if property 'IsVisible' is true"
 Visibility="{Binding IsVisible,
 Converter={StaticResource BooleanToVisibilityConverter}}"/>

https://riptutorial.com/ 8

In the example above, a boolean IsVisible property is converted to a value of the
System.Windows.Visibility enumeration; Visibility.Visible if true, or Visibility.Collapsed
otherwise.

Creating and using a Converter: BooleanToVisibilityConverter and
InvertibleBooleanToVisibilityConverter

To extend and expand upon the binding experience we have converters to convert one a value of
one type into another value of another type. To leverage Converters in a Databinding you first
need to create a DataConverter class tht extens either

IValueConverter(WPF & UWP)•

or

IMultiValueConverter(WPF)•

if you want to convert multiple types into one type
In this case we focus on converting a boolean True/False value to the correspionding Visibilities
Visibility.Visible and Visibility.Collapsed:

public class BooleanToVisibilityConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter, string language)
 {
 return (value is bool && (bool) value) ? Visibility.Visible : Visibility.Collapsed;
 }

 public object ConvertBack(object value, Type targetType, object parameter, string
language)
 {
 return (value is Visibility && (Visibility) value == Visibility.Visible);
 }
}

The Convert method is called whenever you GET data FROM the ViewModel.
The ConvertBack is called upon SET ing data TO the ViewModel for BindingMode.TwoWay bindings.

Of course you can also utilize properties within your converter. Take a look at this one:

public class InvertibleBooleanToVisibilityConverter : IValueConverter
{
 public bool Invert { get; set; } = false;

 public object Convert(object value, Type targetType, object parameter, string language)
 {
 return (value is bool && (bool) value != Invert) ? Visibility.Visible :
Visibility.Collapsed;
 }

 public object ConvertBack(object value, Type targetType, object parameter, string
language)
 {
 return (value is Visibility && ((Visibility) value == Visibility.Visible) != Invert);

https://riptutorial.com/ 9

 }
}

If you want to use a converter in a Binding, simply declare it as a resource in your page, window,
or other element, give it a key and supply potentially needed properties:

<Page ...
 xmlns:converters="using:MyNamespce.Converters">
<Page.Resources>
 <converters:InvertibleBooleanToVisibilityConverter
 x:Key="BooleanToVisibilityConverter"
 Invert="False" />
</Page.Resources>

and use it as a StaticResource in a binding:

<ProgressRing
 Visibility="{Binding ShowBusyIndicator,
 Converter={StaticResource BooleanToVisibilityConverter},
 UpdateSourceTrigger=PropertyChanged,
 Mode=OneWay}" />

Read Converters online: https://riptutorial.com/xaml/topic/2996/converters

https://riptutorial.com/ 10

https://riptutorial.com/xaml/topic/2996/converters

Chapter 4: Data Binding

Syntax

<TextBlock Text="{Binding Title}"/>•

<TextBlock Text="{Binding Path=Title}"/>•

<TextBlock> <TextBlock.Text> <Binding Path="Title"/> </TextBlock.Text> </TextBlock>•

Remarks

All these tags produce the same result.

Examples

Binding string to Text property

To change UI content in runtime, you can use Binding. When binded property is changed from the
code, it will be displayed to the UI.

<TextBlock Text="{Binding Title}"/>

To notify UI about changes, property must raise PropertyChanged event from INotifyPropertyChanged
interface or you can use Dependency Property.

The Binding is working if the property "Title" is in the xaml.cs file or in the Datacontext class from
the XAML.

The Datacontext can be set up in the XAML directly

<Window x:Class="Application.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Application">
<Window.DataContext>
 <local:DataContextClass/>
</Window.DataContext>

Formatting String Bindings

When making a bind of something, for example a date you may want to show it in a specific format
without messing around with it in the code.

To do this we can use the StringFormat property.

Here are some examples:

https://riptutorial.com/ 11

Text="{Binding Path=ReleaseDate, StringFormat=dddd dd MMMM yyyy}"

This formats my date to the following:

Tuesday 16 August 2016

Here is another example for temperature.

Text="{Binding Path=Temp, StringFormat={}{0}°C}"

This formats to:

25°C

The basics of INotifyPropertyChanged

If you do not only wish to display static objects, but have your UI respond to changes to correlating
objects, you need to understand the basics of the INotifyPropertyChanged interface.

Assuming we have our MainWindowdefined as

<Window x:Class="Application.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:vm="clr-namespace:Application.ViewModels>
 <Window.DataContext>
 <vm:MainWindowViewModel/>
 </Window.DataContext>
 <Grid>
 <TextBlock Text={Binding Path=ApplicationStateText}" />
 </Grid>
</Window>

With our Viewmodel-Class MainWindowViewModel defined as

namespace Application.ViewModels
{
 public class MainWindowViewModel
 {
 private string _applicationStateText;

 public string ApplicationStateText
 {
 get { return _applicationStateText; }
 set { _applicationStateText = value; }
 }
 public MainWindowViewModel()
 {
 ApplicationStateText = "Hello World!";
 }

 }

https://riptutorial.com/ 12

}

the TextBlock of our Application will display the Text Hello World due to its binding. If our
ApplicationStateText changes during runtime, our UI will not be notified of such change.
In order to implement this, our DataSource, in this case our MainWindowViewModel, needs to
implement the Interface INotifyPropertyChanged. This will cause our Bindingsto be able to subscribe
to the PropertyChangedEvent.
All we need to do is to Invoke the PropertyChangedEventHandler whenever we change our
ApplicationStateText Property like this:

using System.ComponentModel;
using System.Runtime.CompilerServices;

namespace Application.ViewModels
{
 public class MainWindowViewModel : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged;
 public void NotifyPropertyChanged([CallerMemberName] string propertyName = null)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }

 private string _applicationStateText;

 public string ApplicationStateText
 {
 get { return _applicationStateText; }
 set
 {
 if (_applicationStateText != value)
 {
 _applicationStateText = value;
 NotifyPropertyChanged();
 }
 }
 }
 public MainWindowViewModel()
 {
 ApplicationStateText = "Hello World!";
 }
 }
}

and make sure, that our Binding of TextBlock.Text actually listens to a PropertyChangedEvent:

<Window x:Class="Application.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:vm="clr-namespace:Application.ViewModels">
 <Window.DataContext>
 <vm:MainWindowViewModel/>
 </Window.DataContext>
 <Grid>
 <TextBlock Text={Binding Path=ApplicationStateText,
UpdateSourceTrigger=PropertyChanged }" />

https://riptutorial.com/ 13

 </Grid>
</Window>

Binding to a Collection of Objects with INotifyPropertyChanged and
INotifyCollectionChanged

Let's assume you have a ListView wich is supposed to display every User object listed under the
Users Property of the ViewModel where Properties of the User object can get updated
programatically.

<ListView ItemsSource="{Binding Path=Users}" >
 <ListView.ItemTemplate>
 <DataTemplate DataType="{x:Type models:User}">
 <StackPanel Orientation="Horizontal">
 <TextBlock Margin="5,3,15,3"
 Text="{Binding Id, Mode=OneWay}" />
 <TextBox Width="200"
 Text="{Binding Name, Mode=TwoWay,
UpdateSourceTrigger=PropertyChanged, Delay=450}"/>
 </StackPanel>
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

Despite for INotifyPropertyChanged beeing implemented correctly for the User object

public class User : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 private int _id;
 private string _name;

 public int Id
 {
 get { return _id; }
 private set
 {
 if (_id == value) return;
 _id = value;
 NotifyPropertyChanged();
 }
 }
 public string Name
 {
 get { return _name; }
 set
 {
 if (_name == value) return;
 _name = value;
 NotifyPropertyChanged();
 }
 }

 public User(int id, string name)
 {

https://riptutorial.com/ 14

 Id = id;
 Name = name;
 }

 private void NotifyPropertyChanged([CallerMemberName] string propertyName = null)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }
}

and for your ViewModel object

public sealed class MainWindowViewModel : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 private List<User> _users;
 public List<User> Users
 {
 get { return _users; }
 set
 {
 if (_users == value) return;
 _users = value;
 NotifyPropertyChanged();
 }
 }
 public MainWindowViewModel()
 {
 Users = new List<User> {new User(1, "John Doe"), new User(2, "Jane Doe"), new User(3,
"Foo Bar")};
 }

 private void NotifyPropertyChanged([CallerMemberName] string propertyName = null)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }
}

your UI wont update, if a change to a User is made programmatically.

This is simply because you have only set INotifyPropertyChanged on the Instance of the List itself.
Only if you completely re-instantiate the List if one property of an Element changes your UI will
update.

// DO NOT DO THIS
User[] userCache = Users.ToArray();
Users = new List<User>(userCache);

This however is very tiresome and unbelievably bad for performance.
If you have a List of 100'000 Elements showing both the ID and Name of the User, there will be
200'000 DataBindings in place wich each have to be re-created. This results in noticable Lag to
the User whenever a change is made to anything.

To partly solve this issue, you can use System.ComponentModel.ObservableCollection<T> instead of
List<T>:

https://riptutorial.com/ 15

private ObservableCollection<User> _users;
public ObservableCollection<User> Users
{
 get { return _users; }
 set
 {
 if (_users == value) return;
 _users = value;
 NotifyPropertyChanged();
 }
}

The ObservableCollection provides us with the CollectionChangedEvent and implements
INotifyPropertyChanged itself. According to MSDN the Event will rise, "[..]when an item is added,
removed, changed, moved, or the entire list is refreshed".
You will however quickly come to realize that with .NET 4.5.2 and prior, the ObservableCollection
will not raise a CollectionChanged Event if a Property of an Element in the Collection Changes as
discussed here.

Following this solution we can simply implement our own TrulyObservableCollection<T> without the
INotifyPropertyChanged constraint for T having everything we need and exposing wether T
implements INotifyPropertyChanged or not:

/*
 * Original Class by Simon @StackOverflow http://stackoverflow.com/a/5256827/3766034
 * Removal of the INPC-Constraint by Jirajha @StackOverflow
 * according to to suggestion of nikeee @StackOverflow
http://stackoverflow.com/a/10718451/3766034
 */
public sealed class TrulyObservableCollection<T> : ObservableCollection<T>
{
 private readonly bool _inpcHookup;
 public bool NotifyPropertyChangedHookup => _inpcHookup;

 public TrulyObservableCollection()
 {
 CollectionChanged += TrulyObservableCollectionChanged;
 _inpcHookup =
typeof(INotifyPropertyChanged).GetTypeInfo().IsAssignableFrom(typeof(T));
 }
 public TrulyObservableCollection(IEnumerable<T> items) : this()
 {
 foreach (var item in items)
 {
 this.Add(item);
 }
 }

 private void TrulyObservableCollectionChanged(object sender,
NotifyCollectionChangedEventArgs e)
 {
 if (NotifyPropertyChangedHookup && e.NewItems != null && e.NewItems.Count > 0)
 {
 foreach (INotifyPropertyChanged item in e.NewItems)
 {
 item.PropertyChanged += ItemPropertyChanged;
 }

https://riptutorial.com/ 16

https://msdn.microsoft.com/de-de/library/ms668604%28v=vs.110%29.aspx#Anchor_5
http://stackoverflow.com/questions/1427471/observablecollection-not-noticing-when-item-in-it-changes-even-with-inotifyprop
http://stackoverflow.com/a/5256827/3766034

 }
 if (NotifyPropertyChangedHookup && e.OldItems != null && e.OldItems.Count > 0)
 {
 foreach (INotifyPropertyChanged item in e.OldItems)
 {
 item.PropertyChanged -= ItemPropertyChanged;
 }
 }
 }
 private void ItemPropertyChanged(object sender, PropertyChangedEventArgs e)
 {
 var args = new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Replace,
sender, sender, IndexOf((T)sender));
 OnCollectionChanged(args);
 }
}

and define our Property Users as TrulyObservableCollection<User> in our ViewModel

private TrulyObservableCollection<string> _users;
public TrulyObservableCollection<string> Users
{
 get { return _users; }
 set
 {
 if (_users == value) return;
 _users = value;
 NotifyPropertyChanged();
 }
}

Our UI will now get notified about once a INPC-Property of an element within the Collection
changes without the need to re-create every single Binding.

Read Data Binding online: https://riptutorial.com/xaml/topic/3329/data-binding

https://riptutorial.com/ 17

https://riptutorial.com/xaml/topic/3329/data-binding

Chapter 5: Data templates

Examples

Using DataTemplate in a ListBox

Suppose we have the following XAML snippet:

<ListBox x:Name="MyListBox" />

Then in the code-behind for this XAML file, we write the following in the constructor:

MyListBox.ItemsSource = new[]
{
 1, 2, 3, 4, 5
};

Running the application, we get a list of numbers we entered.

However, if we try to display a list of objects of a custom type, like this

MyListBox.ItemsSource = new[]
{
 new Book { Title = "The Hitchhiker's Guide to the Galaxy", Author = "Douglas Adams" },
 new Book { Title = "The Restaurant at the End of the Universe", Author = "Douglas Adams"
},
 new Book { Title = "Life, the Universe and Everything", Author = "Douglas Adams" },
 new Book { Title = "So Long, and Thanks for All the Fish", Author = "Douglas Adams" },
 new Book { Title = "Mostly Harmless", Author = "Douglas Adams" }
};

assuming we have a class called Book

public class Book
{
 public string Title { get; set; }
 public string Author { get; set; }
}

then the list would look something like this:

https://riptutorial.com/ 18

http://i.stack.imgur.com/K35hZ.png

While we might assume the ListBox will be "smart enough" to display our book objects just right,
what we actually see is the full name of the Book type. What ListBox actually does here is calling
the built-in ToString() method on objects it wants to display, and while that produces the desirable
outcome in the case of numbers, calling ToString() on objects of custom classes results in getting
the name of their type, as seen on the screenshot.

We could solve that by writing ToString() for our book class, i.e.

public override string ToString()
{
 return Title;
}

However, that's not very flexible. What if we want to display the author as well? We could write
that into the ToString too, but what if we don't want that in all lists in the app? How about a nice
book cover to display?

That's where DataTemplates can help. They are snippets of XAML that can be "instantiated" as
needed, filled in with details according to the source data they are created for. Simply put, if we
extend our ListBox code as follows:

<ListBox x:Name="MyListBox">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Title}" />
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

then the list will create a TextBox for each item in its source, and those TextBoxes will have their
Text properties "filled in" with values from the Title property of our objects.

If we run the application now, we get the same output as above, *even if we delete the custom

https://riptutorial.com/ 19

http://i.stack.imgur.com/weQhp.png
http://i.stack.imgur.com/mMVMG.png

ToString implementation. What's beneficial about this is that we can then customize this template
well beyond the capabilities of a simple string (and ToString). We can use any XAML element we
want, including custom ones, and can "bind" their values to actual data from our objects (like Title
in the example above). For example, extend the template as follows:

<ListBox x:Name="MyListBox">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel>
 <TextBlock FontStyle="Italic" Text="{Binding Author}" />
 <TextBlock FontSize="18" Text="{Binding Title}" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Then we get a nice formatted view of our books!

Read Data templates online: https://riptutorial.com/xaml/topic/3858/data-templates

https://riptutorial.com/ 20

http://i.stack.imgur.com/syYL1.png
https://riptutorial.com/xaml/topic/3858/data-templates

Chapter 6: Differences in the various XAML
dialects

Remarks

XAML is used in Silverlight, Windows Phone, Windows RT and UWP apps. Sharing code or
converting code between these is sometimes harder than desirable due to subtle differences
between the various XAML dialects. This topic strives to give an overview of these differences with
a short explanation.

Examples

Compiled data bindings: The {x:Bind} markup extension

Databings are essential for working with XAML. The XAML dialect for UWP apps provides a type
of binding: the {x:Bind} markup extension.

Working with {Binding XXX} and {x:Bind XXX} is mostly equivalent, with the difference that the
x:Bind extension works at compile time, which enables better debugging capabilities (e.g. break
points) and better performance.

<object property="{x:Bind bindingPath}" />

The x:Bind markup extension is only available for UWP apps. Learn more about this in this MSDN
article: https://msdn.microsoft.com/en-us/windows/uwp/data-binding/data-binding-in-depth.

Alternatives for Silverlight, WPF, Windows RT: Use the standard {Binding XXX} syntax:

<object property="{Binding bindingPath}" />

Importing namespaces in XAML

Most of the time you need to import namespaces in your XAML file. How this is done is different
for the different XAML variants.

For Windows Phone, Silverlight, WPF use the clr-namespace syntax:

<Window ... xmlns:internal="clr-namespace:rootnamespace.namespace"
 xmlns:external="clr-namespace:rootnamespace.namespace;assembly=externalAssembly"
>

Windows RT, UWP use the using syntax:

<Page ... xmlns:internal="using:rootnamespace.namespace"

https://riptutorial.com/ 21

https://msdn.microsoft.com/en-us/windows/uwp/data-binding/data-binding-in-depth

 xmlns:external="using:rootnamespace.namespace;assembly=externalAssembly"
>

Multi Binding

Multi Binding is a feature exclusive for WPF development. It allows a binding to multiple values at
once (typically used with a MultiValueConverter).

<TextBox>
 <TextBox.Text>
 <MultiBinding Converter="{StaticResource MyConverter}">
 <Binding Path="PropertyOne"/>
 <Binding Path="PropertyTwo"/>
 </MultiBinding>
 </TextBox.Text>
</TextBox>

Platforms other than WPF don't support multi binding. You have to find alternative solutions (like
moving the code from view and converters to the viewmodel) or resort 3rd party behaviours like in
this article: http://www.damirscorner.com/blog/posts/20160221-
MultibindingInUniversalWindowsApps.html)

Read Differences in the various XAML dialects online:
https://riptutorial.com/xaml/topic/4498/differences-in-the-various-xaml-dialects

https://riptutorial.com/ 22

http://www.damirscorner.com/blog/posts/20160221-MultibindingInUniversalWindowsApps.html)
http://www.damirscorner.com/blog/posts/20160221-MultibindingInUniversalWindowsApps.html)
https://riptutorial.com/xaml/topic/4498/differences-in-the-various-xaml-dialects

Chapter 7: Layout controls

Examples

Canvas

Canvas is the simplest of panels. It places items at the specified Top/Left coordinates.

<Canvas>
 <TextBlock
 Canvas.Top="50"
 Canvas.Left="50"
 Text="This is located at 50, 50"/>
 <TextBlock
 Canvas.Top="100"
 Canvas.Left="50"
 Width="150"
 Height="23"
 Text="This is located at 50, 100 with height 23 and width 150"/>
</Canvas>

DockPanel

DockPanel aligns the control according to the dock property, in the order it's placed in the control.

NOTE: DockPanel is part of the WPF framework, but does not come with Silverlight/WinRT/UWP.
Open-source implementations are easy to find though.

<DockPanel LastChildFill="False">
 <!-- This will strech along the top of the panel -->
 <Button DockPanel.Dock="Top" Content="Top"/>
 <!-- This will strech along the bottom of the panel -->
 <Button DockPanel.Dock="Bottom" Content="Bottom"/>
 <!-- This will strech along the remaining space in the left of the panel -->
 <Button DockPanel.Dock="Left" Content="Left"/>
 <!-- This will strech along the remaining space in the right of the panel -->
 <Button DockPanel.Dock="Right" Content="Right"/>
 <!-- Since LastChildFill is false, this will be placed at the panel's right, to the left of
the last button-->
 <Button DockPanel.Dock="Right" Content="Right"/>
</DockPanel>

<!-- When lastChildFill is true, the last control in the panel will fill the remaining space,
no matter what Dock was set to it -->
<DockPanel LastChildFill="True">
 <!-- This will strech along the top of the panel -->
 <Button DockPanel.Dock="Top" Content="Top"/>
 <!-- This will strech along the bottom of the panel -->
 <Button DockPanel.Dock="Bottom" Content="Bottom"/>
 <!-- This will strech along the remaining space in the left of the panel -->
 <Button DockPanel.Dock="Left" Content="Left"/>
 <!-- This will strech along the remaining space in the right of the panel -->

https://riptutorial.com/ 23

 <Button DockPanel.Dock="Right" Content="Right"/>
 <!-- Since LastChildFill is true, this will fill the remaining space-->
 <Button DockPanel.Dock="Right" Content="Fill"/>
</DockPanel>

StackPanel

StackPanel places its controls one after another. It acts like a dock panel with all of its control's
docks set to the same value.

<!-- The default StackPanel is oriented vertically, so the controls will be presented in order
from top to bottom -->
<StackPanel>
 <Button Content="First"/>
 <Button Content="Second"/>
 <Button Content="Third"/>
 <Button Content="Fourth"/>
</StackPanel>

<!-- Setting the Orientation property to Horizontal will display the control in order from
left to right (or right to left, according to the FlowDirection property) -->
<StackPanel Orientation="Horizontal">
 <Button Content="First"/>
 <Button Content="Second"/>
 <Button Content="Third"/>
 <Button Content="Fourth"/>
</StackPanel>

To stack items from the bottom up, use a dock panel.

Grid

Grid is used to create table layouts.

Basic rows and columns definitions

<Grid>
 <!-- Define 3 columns with width of 100 -->
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="100"/>
 <ColumnDefinition Width="100"/>
 <ColumnDefinition Width="100"/>
 </Grid.ColumnDefinitions>
 <!-- Define 3 rows with height of 50 -->
 <Grid.RowDefinitions>
 <RowDefinition Height="50"/>
 <RowDefinition Height="50"/>
 <RowDefinition Height="50"/>
 </Grid.RowDefinitions>
 <!-- This is placed at the top left (first row, first column) -->
 <Button
 Grid.Column="0"
 Grid.Row="0"

https://riptutorial.com/ 24

 Content="Top Left"/>
 <!-- This is placed at the top left (first row, second column) -->
 <Button
 Grid.Column="1"
 Grid.Row="0"
 Content="Top Center"/>
 <!-- This is placed at the center (second row, second column) -->
 <Button
 Grid.Column="1"
 Grid.Row="1"
 Content="Center"/>
 <!-- This is placed at the bottom right (third row, third column) -->
 <Button
 Grid.Column="2"
 Grid.Row="2"
 Content="Bottom Right"/>
</Grid>

NOTE: All the following examples will use only columns, but are applicable to rows as well.

Auto size definitions

Columns and rows can be defined with "Auto" as their width/height. Auto size will take as much
space as it needs to display its content, and no more.
Auto sized definitions can be used with fixed size definitions.

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="50"/>
 </Grid.ColumnDefinitions>
 <!-- This column won't take much space -->
 <Button Grid.Column="0" Content="Small"/>
 <!-- This column will take much more space -->
 <Button Grid.Column="1" Content="This text will be very long."/>
 <!-- This column will take exactly 50 px -->
 <Button Grid.Column="2" Content="This text will be cut"/>
</Grid>

Simple star sized definitions

Columns and rows can be defined with * as their width/height. Star sized rows/columns will take
as much space as it has, regardless of it's content.
Star sized definitions can be used with fixed and auto sized definitions. Star size is the default and
thus the column width or row height can be omitted.

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="50"/>

https://riptutorial.com/ 25

 </Grid.ColumnDefinitions>
 <!-- This column will be as wide as it can -->
 <Button Grid.Column="0" Content="Small"/>
 <!-- This column will take exactly 50 px -->
 <Button Grid.Column="2" Content="This text will be cut"/>
</Grid>

Proportional star sized definitions

Besides the fact that star takes as much space as it can, star definitions are also proportional to
each other. If nothing else is mentioned, each star definition will take as much space as the others
in the current grid.

However, it is possible to define a ratio between the sizes of different definitions by simply adding
a multiplier to it. So a column defined as 2* will be twice as wide as a column defined as *. The
width of a single unit is calculated by dividing the available space by the sum of the multipliers (if
there's non it's counted as 1).
So a grid with 3 columns defined as *, 2*, * will be presented as 1/4, 1/2, 1/4.
And one with 2 columns defined as 2*, 3* will be presented 2/5, 3/5.

If there are auto or fixed definitions in the set, these will be calculated first, and the star definitions
will take the remaining space after that.

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="2*"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <!-- This column will be as wide as the third column -->
 <Button Grid.Column="0" Content="Small"/>
 <!-- This column will be twice as wide as the rest -->
 <Button Grid.Column="1" Content="This text will be very long."/>
 <!-- This column will be as wide as the first column -->
 <Button Grid.Column="2" Content="This text will may be cut"/>
</Grid>

Column/Row Span

It's possible to make a control stretch beyond it's cell by setting it's Row/ColumnSpan. The value
set is the number of rows/columns th

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="2*"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <!-- This control will streach across most of the grid -->
 <Button Grid.Column="0" Grid.ColumnSpan="2" Content="Small"/>

https://riptutorial.com/ 26

 <Button Grid.Column="2" Content="This text will may be cut"/>
</Grid>

WrapPanel

The wrap panel acts in a similar way to stack panel. Except when it recognizes the items will
exceed it's size, it would then wrap them to a new row/column, depending on it's orientation.

Horizontal orientation

<WrapPanel Width="100">
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
</WrapPanel>

Vertical wrap panel

<WrapPanel Height="70" Orientation="Vertical">
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
</WrapPanel>

UniformGrid

Uniform grid will place all it's children in a grid layout, each child in it's own cell. All the cells will
have the same size. It can be thought to be a shorthand to a grid where all the row and column
definitions are set to *

Default rows and columns

By default the UniformGrid will try to create an equal number of rows and columns. When a row
will become to long, it will add a new column.

This code will produce a grid of 3x3 with the first 2 rows filled and the last with one button:

<UniformGrid>

https://riptutorial.com/ 27

 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
</UniformGrid>

Specified rows / columns

You can tell the UniformGrid exactly how many rows and/or column you wish to have.

<UniformGrid Columns="2" >
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
</UniformGrid>

NOTE: in case both rows and columns are set, and there are more children than cells, the last
children in the grid won't be displayed

FirstColumn Property

Once the Columns property is set, you can set the FirstColumn property. This property will enter x
empty cells to the first row before the first child is displayed. FirstColumn must be set to a number
smaller than the Columns property.

In this example the first button will be displayed in the first row's second column:

<UniformGrid Columns="2" FirstColumn="1">
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
</UniformGrid>

RelativePanel

RelativePanel has been introduced in Windows 10 and is used mainly to support adaptive layouts,
where the child elements of the panel are laid out differently depending on available space.
RelativePanel is typically used with visual states, which are used to switch the layout configuration,
adapting to the screen or window size, orientation or use case. The child elements use attached

https://riptutorial.com/ 28

https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.relativepanel.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstate.aspx

properties that define where they are in relation to the panel and each other.

<RelativePanel
 VerticalAlignment="Stretch"
 HorizontalAlignment="Stretch">
 <Rectangle
 x:Name="rectangle1"
 RelativePanel.AlignLeftWithPanel="True"
 Width="360"
 Height="50"
 Fill="Red"/>
 <Rectangle
 x:Name="rectangle2"
 RelativePanel.Below="rectangle1"
 Width="360"
 Height="50"
 Fill="Green" />
</RelativePanel>
<VisualStateManager.VisualStateGroups>
 <VisualStateGroup>
 <VisualState>
 <VisualState.StateTriggers>
 <!--VisualState to be triggered when window width is >=720 effective pixels.--
>
 <AdaptiveTrigger
 MinWindowWidth="720" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter
 Target="rectangle2.(RelativePanel.Below)"
 Value="{x:Null}" />
 <Setter
 Target="rectangle2.(RelativePanel.RightOf)"
 Value="rectangle1" />
 <Setter
 Target="rectangle1.(RelativePanel.AlignLeftWithPanel)"
 Value="False" />
 <Setter
 Target="rectangle1.(RelativePanel.AlignVerticalCenterWithPanel)"
 Value="True" />
 <Setter
 Target="rectangle2.(RelativePanel.AlignVerticalCenterWithPanel)"
 Value="True" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

Read Layout controls online: https://riptutorial.com/xaml/topic/3634/layout-controls

https://riptutorial.com/ 29

https://riptutorial.com/xaml/topic/3634/layout-controls

Chapter 8: Working with custom XAML files

Examples

Reading an object from XAML

Consider a structure of the following classes should be constructed in XAML an then read into a
CLR object:

namespace CustomXaml
{
 public class Test
 {
 public string Value { get; set; }
 public List<TestChild> Children { get; set; } = new List<TestChild>();
 }

 public class TestChild
 {
 public string StringValue { get; set; }
 public int IntValue { get; set; }
 }
}

Classes should either have no explicit constructor or provide an empty one. To keep the XAML
clean, collections need to be initialised. Initialising collections in XAML is also possible though.

To read XAML the XamlServices class can be used. It is defined in System.Xaml which needs to be
added to references. The following line then reads the test.xaml file from disk:

Test test = XamlServices.Load("test.xaml") as Test;

The XamlServices.Load method has several overloads to load from streams and other sources. If
reading XAML from an embedded file (like it is done in WPF) the Build Action property that is set
to Page by default needs to be changed to i.e. Embedded Resource. Otherwise the compiler will ask for
references to WPF assemblies.

The content of the XAML file to read should look something like this:

<Test xmlns="clr-namespace:CustomXaml;assembly=CustomXaml"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Value="test">
 <Test.Children>
 <TestChild StringValue="abc" IntValue="123"/>
 <TestChild StringValue="{x:Null}" IntValue="456"/>
 </Test.Children>
</Test>

The pure xmlns Definition allows the use of classes in the same namespace without prefix. The
Definition of the xmlns:x is neccessary to use constructs like {x:Null}. Of course prefixes for other

https://riptutorial.com/ 30

namespaces or assemblies can be defined as needed.

Writing an object to XAML

Consider a structure of the following classes should be constructed in XAML an then read into a
CLR object:

namespace CustomXaml
{
 public class Test
 {
 public string Value { get; set; }
 public List<TestChild> Children { get; set; } = new List<TestChild>();
 }

 public class TestChild
 {
 public string StringValue { get; set; }
 public int IntValue { get; set; }
 }
}

To write XAML the XamlServices class can be used. It is defined in System.Xaml which needs to be
added to references. The following line then writes the instance test which is of type Test to the file
test.xaml on disk:

XamlServices.Save("test.xaml", test);

The XamlServices.Save method has several overloads to write to streams and other targets. The
resulting XAML should look something like this:

<Test Value="test" xmlns="clr-namespace:CustomXaml;assembly=CustomXaml"
 xmlns:scg="clr-namespace:System.Collections.Generic;assembly=mscorlib"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Test.Children>
 <scg:List x:TypeArguments="TestChild" Capacity="4">
 <TestChild IntValue="123" StringValue="abc" />
 <TestChild IntValue="456" StringValue="{x:Null}" />
 </scg:List>
 </Test.Children>
</Test>

The pure xmlns Definition allows the use of classes in the same namespace without prefix. The
Definition of the xmlns:x is neccessary to use constructs like {x:Null}. The writer automatically
adds the xmlns:scg to initialize a List<TestChild> for the Children property of the Test object. It does
not rely on the property being initialized by the constructor.

Read Working with custom XAML files online: https://riptutorial.com/xaml/topic/6693/working-with-
custom-xaml-files

https://riptutorial.com/ 31

https://riptutorial.com/xaml/topic/6693/working-with-custom-xaml-files
https://riptutorial.com/xaml/topic/6693/working-with-custom-xaml-files

Chapter 9: XAML Development Tools

Examples

Microsoft Visual Studio & Microsoft Expression Blend

Create engaging user interfaces for Windows Desktop Applications with Blend for Visual Studio,
the premier professional design tool for XAML applications. Build beautiful transitions and
visualizations using Blend’s full suite of vector drawing tools, powerful template editing features,
real-time animation, visual state management and more.

Download Visual Studio

WPF Inspector

WPF Inspector is a utility that attaches to a running WPF application to troubleshoot common
problems with layouting, databinding or styling. WPF Inspector allows you to explore a live view of
the logical- and visual tree, read and edit property values of elements, watch the data context,
debug triggers, trace styles and much more.

Download WPF Inspector from Codeplex

Snoop

Snoop is an open source tool available which allows you to browse the visual tree of a running
WPF application without the need for a debugger and change properties.

Download WPF Snoop from GitHub

WPF Performance Suite

The Windows SDK includes a suite of performance profiling tools for Windows Presentation
Foundation (WPF) applications called the WPF Performance Suite. The WPF Performance Suite
enables you to analyze the run-time behavior of your WPF applications and determine
performance optimizations that you can apply. The WPF Performance Suite includes performance
profiling tools called Perforator and Visual Profiler. This topic describes how to install and use the
Perforator and Visual Profiler tools in the WPF Performance Suite.

Read more MSDN

Read XAML Development Tools online: https://riptutorial.com/xaml/topic/6800/xaml-development-
tools

https://riptutorial.com/ 32

https://www.visualstudio.com/en-us/features/wpf-vs.aspx
http://wpfinspector.codeplex.com/
https://github.com/Gimly/snoopwpf
https://msdn.microsoft.com/en-us/library/aa969767(v=vs.110).aspx
https://riptutorial.com/xaml/topic/6800/xaml-development-tools
https://riptutorial.com/xaml/topic/6800/xaml-development-tools

Credits

S.
No

Chapters Contributors

1
Getting started with
xaml

ChrisF, Community, Explisam, Raamakrishnan A., Rafael Costa
, RenDishen, Ryan Thomas

2 Control Templates Vimal CK

3 Converters Adi Lester, AhammadaliPK, ChrisF, Jirajha, Rafael Costa

4 Data Binding Jirajha, RenDishen, Ryan Thomas, SeeuD1, Tobias

5 Data templates Dániel Kis-Nagy

6
Differences in the
various XAML
dialects

HeWillem, stefan.s

7 Layout controls CKII, Filip Skakun

8
Working with custom
XAML files

Alexander Mandt

9
XAML Development
Tools

Vimal CK

https://riptutorial.com/ 33

https://riptutorial.com/contributor/59303/chrisf
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3471424/explisam
https://riptutorial.com/contributor/5562523/raamakrishnan-a-
https://riptutorial.com/contributor/425542/rafael-costa
https://riptutorial.com/contributor/3887869/rendishen
https://riptutorial.com/contributor/4654199/ryan-thomas
https://riptutorial.com/contributor/2445516/vimal-ck
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/4480993/ahammadalipk
https://riptutorial.com/contributor/59303/chrisf
https://riptutorial.com/contributor/3766034/jirajha
https://riptutorial.com/contributor/425542/rafael-costa
https://riptutorial.com/contributor/3766034/jirajha
https://riptutorial.com/contributor/3887869/rendishen
https://riptutorial.com/contributor/4654199/ryan-thomas
https://riptutorial.com/contributor/3288649/seeud1
https://riptutorial.com/contributor/376086/tobias
https://riptutorial.com/contributor/2551363/daniel-kis-nagy
https://riptutorial.com/contributor/558133/hewillem
https://riptutorial.com/contributor/332287/stefan-s
https://riptutorial.com/contributor/831917/ckii
https://riptutorial.com/contributor/41942/filip-skakun
https://riptutorial.com/contributor/4896211/alexander-mandt
https://riptutorial.com/contributor/2445516/vimal-ck

	About
	Chapter 1: Getting started with xaml
	Remarks
	Versions
	Examples
	Installation or Setup
	Hello World

	Chapter 2: Control Templates
	Examples
	Control Templates
	XAML
	C# Code

	Chapter 3: Converters
	Parameters
	Remarks
	Examples
	String to IsChecked Converter
	Converters 101
	Creating and using a Converter: BooleanToVisibilityConverter and InvertibleBooleanToVisibilityConverter

	Chapter 4: Data Binding
	Syntax
	Remarks
	Examples
	Binding string to Text property
	Formatting String Bindings
	The basics of INotifyPropertyChanged
	Binding to a Collection of Objects with INotifyPropertyChanged and INotifyCollectionChanged

	Chapter 5: Data templates
	Examples
	Using DataTemplate in a ListBox

	Chapter 6: Differences in the various XAML dialects
	Remarks
	Examples
	Compiled data bindings: The {x:Bind} markup extension
	Importing namespaces in XAML
	Multi Binding

	Chapter 7: Layout controls
	Examples
	Canvas
	DockPanel
	StackPanel
	Grid

	Basic rows and columns definitions
	Auto size definitions
	Simple star sized definitions
	Proportional star sized definitions
	Column/Row Span
	WrapPanel

	Horizontal orientation
	Vertical wrap panel
	UniformGrid

	Default rows and columns
	Specified rows / columns
	FirstColumn Property
	RelativePanel

	Chapter 8: Working with custom XAML files
	Examples
	Reading an object from XAML
	Writing an object to XAML

	Chapter 9: XAML Development Tools
	Examples
	Microsoft Visual Studio & Microsoft Expression Blend
	WPF Inspector
	Snoop
	WPF Performance Suite

	Credits

