
xml

#xml

Table of Contents

About 1

Chapter 1: Getting started with xml 2

Remarks 2

Versions 2

Examples 2

Installation or Setup 2

The basic building blocks 3

Well-formedness 4

Hello World 5

Namespaces 5

Chapter 2: Building blocks 6

Examples 6

Elements 6

Attributes 6

Text 7

Comments 8

Processing instructions 8

Chapter 3: DTD 10

Introduction 10

Examples 10

Document Type Declaration 10

Entities 10

XML document with an internal DTD 10

XML document with an external DTD 11

Chapter 4: Entities 12

Remarks 12

Examples 12

Pre-defined general entities 12

User-defined general (internal) entities 12

External parsed entities 13

Chapter 5: Escaping 15

Remarks 15

Examples 15

Ampersand 15

Lower-than sign 15

Greater-than sign 15

Apostrophes and quotes 16

CDATA sections 16

Character references 16

Chapter 6: Namespaces 17

Remarks 17

Examples 17

Bind a prefix to a namespace 17

Absence of namespace 17

Irrelevance of prefixes 18

Default namespace 18

Attribute names with no prefix 18

Scope of namespace bindings 18

Chapter 7: XML Catalogs 20

Introduction 20

Examples 20

Catalog entry to resolve DTD location 20

Chapter 8: XML Schema 21

Introduction 21

Examples 21

An Example of XSD Document 21

Credits 22

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: xml

It is an unofficial and free xml ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official xml.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/xml
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with xml

Remarks

XML is a markup language used to store hierarchical data in text files. It is also known as semi-
structured data, like JSON. XML is machine-readable, yet can also be read and produced by
people.

XML is made up of elements, sometimes casually referred to as a tag soup, which can themselves
contain other elements and/or text. Elements may also contain attributes.

XML is often used for data exchange between platforms, especially over the internet. It is also
increasingly used for storing semi-structured data in NoSQL data stores (XML
databases/document stores). Furthermore, it has the flexibility to handle document-oriented data
(text with markup), which makes it very popular in the publishing industry. XML is also widely used
for configuration files.

One of the main reasons why XML is so widely used is that it is standardized, with many parsers
available, including open source. This makes the cost of using XML lower than the invention of
one's own new syntax.

More information about XML's origin and goals can be found in the official W3C Recommendation.

There are two versions of XML, shown in the table below. The editions of each version are just
revisions of the original documents and not changes of the standards.

The first version of XML is 1.0. XML 1.1 was primary changed due to the Unicode version change
from 2.0 to 3.1 and specifies a set of new rules for the use and interpretation of new Unicode
characters.

Versions

Version Release Date

1.0 1998-02-10

1.1 2001-12-13

Examples

Installation or Setup

XML is a syntax, which means a simple text editor is enough to get started.

However, having an XML-specific editor that shows you when and where your document is not

https://riptutorial.com/ 2

https://www.w3.org/TR/2006/REC-xml-20060816/#sec-origin-goals
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/2006/PER-xml11-20060614/

well-formed is almost indispensable for productivity. Such editors may also allow you to validate
XML documents against an XML Schema, or even generate XML Schemas from XML documents
(and vice versa).

Some examples of editors are oXygen, Atom, Eclipse and Altova XMLSpy. An alternate solution is
to use a command-line XML parser such as Apache Xerces.

The basic building blocks

XML is made of basic building blocks, which are:

element•
text•
attributes•
comments•
processing instructions•

An element has angle brackets:

<element/>

<element>some content</element>

An attribute appears in an opening element tag:

<element
 attribute-name="attribute value"
 other-attribute='single-quoted value'>
 ...
</element>

Text can appear anywhere within or between elements:

<element>some more bold text</element>

Comments use the following syntax. It is important to know that XML comments, unlike in
programming languages, are part of the model, and will be visible to the application above the
parser.

<!-- this is a comment -->

Processing instructions allow passing messages to the consuming application (e.g., how to
display, or a stylesheet, etc). XML does not restrict the format of processing instructions.

<?target-application these are some instructions?>

More details on building blocks can be found in this topic

https://riptutorial.com/ 3

http://www.riptutorial.com/xml/topic/1590/building-blocks

Well-formedness

An XML document is a text file that conforms to the XML specification's well-formedness rules.
Such a conforming document is said to be well-formed (not to be confused with valid). XML is very
strict with well-formedness in comparison to other languages such as HTML. A text file that is not
well-formed is not considered XML and cannot be used by consuming applications at all.

Here are some rules that apply to XML documents:

XML uses a much self-describing syntax. A prolog defines the XML version and the
character encoding:

<?xml version="1.0" encoding="UTF-8"?>

1.

There must be exactly one top-level element.

However, comments, processing instructions, as well as the initial XML declaration, are
allowed at the top-level as well. Text and attributes are not.

<?xml version="1.0"?>
<!-- some comments -->
<?app a processing instruction?>
<root/>
<!-- some more comments -->

2.

Elements may nest, but must be "properly nested":

<name>
 <first-name>John</first-name>
 <last-name>Doe</last-name>
</name>

The start and end tags of an embedded element have to be within the start and end tags of
its container element. An overlapping of elements is illegal. In particular, this is not well-
formed XML: <foo><bar></foo></bar>

3.

Attributes may only appear in opening element tags or empty element tags, not in closing
element tags. If attribute syntax appears between elements, it has no meaning and is parsed
as text.

<person first-name="John" last-name="Doe"/>

This is not well-formed: <person></person first-name="John"/>

4.

Comments, processing instructions, text and further elements can appear anywhere inside
an element (i.e., between its opening and closing tag) but not inside the tags.

<element>
 This is some bold text.

5.

https://riptutorial.com/ 4

 <!-- the b tag has no particular meaning in XML -->
</element>

This example is not well-formed: <element <-- comment --> />

The < character may not appear in text, or in attribute values.6.

The " character may not appear in attribute values that are quoted with ". The ' character
may not appear in attribute values that are quoted with '.

7.

The sequence of characters -- may not appear in a comment.8.

Literal < and & characters must be escaped by their respective entities < and &.9.

Hello World

<?xml version="1.0"?>
<?speech-generator voice="Siri"?>
<root xmlns:vocabulary="http://www.example.com/vocabulary">
 <!-- These are the standard greetings -->
 <vocabulary:greetings>
 <vocabulary:greeting xml:lang="en-US" type="informal">
 Hi!
 </vocabulary:greeting>
 <vocabulary:greeting xml:lang="en-US" type="intermediate">
 Hello!
 </vocabulary:greeting>
 <vocabulary:greeting xml:lang="en-US" type="formal">
 Good morning to you!
 </vocabulary:greeting>
 </vocabulary:greetings>
</root>

Namespaces

Element and attribute names live in namespaces that are URIs. Namespaces are bound to
prefixes that are used in the actual element and attribute names, which are called QNames.

This document binds a namespace to the prefix prefix and defines a default namespace, bound
with the absence of prefix.

<?xml version="1.0"?>
<document
 xmlns="http://www.example.com/default-namespace"
 xmlns:prefix="http://www.example.com/another-namespace">
 <prefix:element/>
</document>

More details on namespaces can be found in this topic

Read Getting started with xml online: https://riptutorial.com/xml/topic/882/getting-started-with-xml

https://riptutorial.com/ 5

http://www.riptutorial.com/xml/topic/1593/namespaces
https://riptutorial.com/xml/topic/882/getting-started-with-xml

Chapter 2: Building blocks

Examples

Elements

Elements come with angle brackets are the most prominent building block of XML.

Elements can either be empty, in which case they are made of an empty tag (notice the ending
slash):

<an-empty-element/>

Or they can have content, in which case they have an opening tag (no slash) and a closing tag
(beginning slash):

<a-non-empty-element>Content</a-non-empty-element>

Elements can nest (but only between opening and closing tags):

<parent-element>
 <child-element/>
 <another-child-element>
 Some more content.
 </another-child-element>
</parent-element>

Element names are called QNames (qualified names). All above elements are in no namespace,
but element names can also be defined in namespaces using prefixes like so:

<my-namespace:parent-element xmlns:my-namespace="http://www.example.com/">
 <my-namespace:child-element/>
 <my-namespace:another-child-element>
 Some more content.
 </my-namespace:another-child-element>
</my-namespace:parent-element>

Namespaces and element names are described in greater details in this section of the
documentation.

Attributes

Attributes are name-value pairs associated with an element.

They are represented by values in single or double quotes inside the opening element tag, or the
empty element tag if it is an empty element.

https://riptutorial.com/ 6

http://www.riptutorial.com/xml/topic/1593/namespaces
http://www.riptutorial.com/xml/topic/1593/namespaces

<document>
 <anElement foo="bar" abc='xyz'><!-- some content --></anElement>
 <anotherElement a="1"/>
</document>

Attributes are not ordered (unlike elements). The following two elements have the same sets of
attributes:

<foo alpha="1" beta="2"/>

<foo beta="2" alpha="1"/>

Attributes cannot be repeated in the same element (unlike elements). The following document is
not well-formed: <foo a="x" a="y"/> because the attribute a appears twice in the same element.

The following document is well-formed. Values can be identical, it is the attribute name that can't
be repeated.

<foo a="x" b="x"/>

Attributes cannot be nested (unlike elements).

Text

Text is made of all characters outside of any markup (opening element tags, closing element tags,
etc).

<?xml version="1.0"?>
<document>
 This is some text and this is some more text.
</document>

The precise XML terminology for text is character data. The XML specification actually uses the
word text for the entire XML document, or a parsed entity, because it defines XML at the syntactic
level. However some data models such as the XDM (XQuery and XPath Data Model), which
represent XML documents as trees, refer to character data as text nodes, such that text is often
understood as a synonym for character data in practice.

Character data may not contain a < character -- this would be interpreted as the first character of
an opening element tag -- neither can it contain the]]> character sequence. The appropriate
characters must be escaped with an entity reference instead.

<?xml version="1.0"?>
<document>
 It is fine to escape the < character, as well as]]>.
</document>

For convenience, one can also escape a bigger chunk of text with a CDATA section (but the
sequence]]> is still not allowed for obvious reasons):

https://riptutorial.com/ 7

<?xml version="1.0"?>
<document>
 <![CDATA[
 In a CDATA section, it is fine to write < or even & and entity references
 such as & are not resolved.
]]>
</document>

Comments

Comments in XML look like so:

<!-- This is a comment -->

They can appear in element content or top-level:

<?xml version="1.0"?>
<!-- a comment at the top-level -->
<document>
 <!-- a comment inside the document -->
</document>

Comments cannot appear inside tags or inside attributes:

<element <!-- comment with -- inside --> />

or

<element attr="<!-- comment with -- inside -->"/>

are not well-formed.

The character sequence -- cannot appear in the middle of a comment. This is not well-formed
XML:

<!-- comment with -- inside -->

Comments in XML, unlike in other languages such as C++, are part of the data model: they are
parsed, forwarded, and visible to the consuming application.

Processing instructions

A processing instruction is used to directly pass on some information or instruction to the
application via the parser.

<?my-application some instructions ?>

The token after the initial question mark (here my-application) is called the target and identifies the
application at which the instruction is aimed. What follows it is not further specified and it is up to
the application to interpret it. Entity and character references are not recognized.

https://riptutorial.com/ 8

It can appear at the top-level, or in element content.

Read Building blocks online: https://riptutorial.com/xml/topic/1590/building-blocks

https://riptutorial.com/ 9

https://riptutorial.com/xml/topic/1590/building-blocks

Chapter 3: DTD

Introduction

XML Document Type Declaration commonly known as DTD is a way to describe precisely the
XML language. DTDs check the validity of, structure and vocabulary of an XML document against
the grammatical rules of the appropriate XML language. A DTD defines the structure and the legal
elements and attributes of an XML document.

Examples

Document Type Declaration

An XML document can contain a DTD. DTD stands for Document Type Declaration. A DTD begins
with <!DOCTYPE root-element-name > where doc-element-name must match the name of the so-called
document element (the one element at the top-level).

<?xml version="1.0"?>
<!DOCTYPE document>
<document>
 <!-- the rest of the document -->
</document>

Entities

A DTD can contain entity declarations.

<?xml version="1.0"?>
<!DOCTYPE document [
 <!ENTITY my-entity "This is the replacement text">
]>
<document>
 <!-- the rest of the document -->
</document>

Entities are described in details in this topic.

XML document with an internal DTD

A DTD is referred to as an internal DTD if elements are declared within the XML files. To reference
it as internal DTD, standalone attribute in XML declaration must be set to yes.

An XML that describes a note that contains property to, from and message along with internal
DTD will look like:

 <?xml version="1.0" encoding="utf-8" standalone="yes"?>
<!DOCTYPE note [

https://riptutorial.com/ 10

http://www.riptutorial.com/xml/topic/2302/entities

<!ELEMENT note (to,from,message>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT message (#PCDATA)>
]>
<note>
<to>Mr.X</to>
<from>Mr.Y</from>
<message>Stack Overflow is awesome </message>
</note>

XML document with an external DTD

In external DTD elements are declared outside the XML file. They are accessed by specifying the
system attributes which may be either the legal .dtd file or a valid URL. To reference it as external
DTD, the standalone attribute in the XML declaration must be set as no.

An XML that describes a note that contains property to, from and the message is given below.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE note SYSTEM "note.dtd">
<note>
 <to>Mr.X</to>
 <from>Mr.Y</from>
 <message>Stack Overflow is awesome</message>
</note>

External DTD for the above XML, note.dtd is given below

<!DOCTYPE note [
<!ELEMENT note (to,from,message>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT message (#PCDATA)>
]>

Read DTD online: https://riptutorial.com/xml/topic/3897/dtd

https://riptutorial.com/ 11

https://riptutorial.com/xml/topic/3897/dtd

Chapter 4: Entities

Remarks

From a storage perspective, an XML document is made of entities. One of the entities is the
document entity, which is the main XML document itself.

Entities can be classified like so (tentatively sorted by descending order of usage):

document entity: this is the main XML file.•
internal general entities: this is the most common one besides the document entity, and
the one most XML users are aware of. Often, the word entity is casually used for them. They
allow specifying some shortcuts for longer replacement texts in document content. They are
declared in the DTD.

•

the external DTD subset: another file in which part of the DTD is outsourced.•
parameter entities: shortcuts, for use in the DTD.•
external parsed general entities: they are XML fragments stored in other files.•
unparsed entities: these can be any files on which XML places no restrictions, including
images, sounds, etc.

•

In many cases, an XML document consists solely of the document entity.

Examples

Pre-defined general entities

XML pre-defines five general entities that can be used without declaring them:

& " ' < >

They are associated with the names amp, quot, apos, lt and gt.

<?xml version="1.0"?>
<entities>
 & is an ampersand.
 " is a quote.
 ' is an apostrophe.
 < is a lower-than sign.
 > is a greater-than sign.
</entities>

User-defined general (internal) entities

It is possible to define one's own general entities. The declaration occurs in the DTD subset, with a
name and the associated replacement text.

It can then be used in the document using the entity reference syntax &...;, either in text, or in

https://riptutorial.com/ 12

attribute values.

<?xml version="1.0"?>
<!DOCTYPE my-document [
 <!ENTITY my-entity "This is my entity">
]>
<my-document>
 The entity was declared as follows: &my-entity;
 <element attribute="Entity: &my-entity;"/>
</my-document>

External parsed entities

XML fragments, also known under the name of external parsed entities, can be stored in separate
files.

XML fragments, unlike XML documents, are less restrictive, in that several elements can appear
top-level, as well as text nodes. Like an XML document, an external parsed entity may begin with
an XML declaration, but this declaration is not considered part of its replacement text.

This is an example of external parsed entity:

<?xml version="1.0" encoding="UTF-8"?>
This is some text
<element/>
<element/>

An external parsed entity can then be declared in an XML document, in the DTD, and it can be
used with an entity reference, which has the same syntax as for general internal entities:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE root [
<!ENTITY fragment SYSTEM "fragment.xml">
]>
<root>
 &fragment;
</root>

With the entity reference resolved, this document is equivalent to:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE root [
<!ENTITY fragment SYSTEM "fragment.xml">
]>
<root>
 This is some text
 <element/>
 <element/>
</root>

Every opening element tag in an external parsed entity must have a corresponding ending tag: it is
not allowed to spread single elements over multiple entities, nor to spread markup.

https://riptutorial.com/ 13

A validating parser is required to resolve the entity reference and include its replacement text in
the document as above. A non-validating parser may skip this, and instead tell the consuming
application that there is an unresolved reference to an external parsed entity.

Read Entities online: https://riptutorial.com/xml/topic/2302/entities

https://riptutorial.com/ 14

https://riptutorial.com/xml/topic/2302/entities

Chapter 5: Escaping

Remarks

Characters can be escaped in XML using entity references and character references, or CDATA
sections.

XML pre-defines five entities:

Named entity Replacement text

amp &

quot "

apos '

lt <

gt >

Consuming applications will not know whether each character has been escaped or not, and how.

Examples

Ampersand

The & character appears first in entity references and must be escaped in element content or in
attribute content.

<?xml version="1.0"?>
<document attribute="An ampersand is escaped as &">
 An ampersand can also be escaped as & in element content.
</document>

Lower-than sign

The < character appears first in entity tags and must be escaped in element content or in attribute
content.

<?xml version="1.0"?>
<document attribute="A lower-than sign is escaped as <">
 2 + 2 < 5
</document>

Greater-than sign

https://riptutorial.com/ 15

The]]> character sequence is not allowed in element content. The easiest way to escape it is to
escape > as >.

<?xml version="1.0"?>
<document>
 The sequence]]> cannot appear in element content.
</document>

Apostrophes and quotes

Attribute values can appear in simple or double quotes. The appropriate character must be
escaped.

<?xml version="1.0"?>
<document
 quot-attribute="This is a "double quote" and this one is 'simple'"
 apos-attribute='This is a 'simple quote' and this one is "double"'>
</document>

CDATA sections

Longer portions of text containing special characters can be escaped with a CDATA section.
CDATA sections can only appear in element content.

<?xml version="1.0"?>
<document>
 This is a CDATA section : <![CDATA[plenty of special characters like & < > " ;]]>
</document>

A CDATA section cannot contain the sequence]]> because it ends it.

Character references

Characters can be escaped using character references, in element content or attribute values.
Their Unicode codepoint can be specified in decimal or hex.

<?xml version="1.0"?>
<document>
 The line feed character can be escaped with a decimal (
) or hex (
)
 representation of its Unicode codepoint (10).
</document>

XML restricts characters that can appear in a document, even escaped. In particular, the only
control characters allowed are line feed (10), carriage return (13) or horizontal tab (9).

Read Escaping online: https://riptutorial.com/xml/topic/3685/escaping

https://riptutorial.com/ 16

https://riptutorial.com/xml/topic/3685/escaping

Chapter 6: Namespaces

Remarks

Element and attribute names in XML are called QNames (qualified names).

A QName is made of:

a namespace (a URI)•
a prefix (an NCName, NC because it contains no colon)•
a local name (an NCName)•

Only the namespace and the local name are relevant for comparing two QNames. The prefix is
only a proxy to the namespace.

The namespace and prefix are optional, but the namespace is always present if the prefix is
present (this is ensured at the syntactic level, so this cannot be done wrong).

The lexical representation of a QName is prefix:local-name. The namespace is bound separately
using the special xmlns:... attributes (reminder: attributes beginning with xml are reserved in
XML).

If the prefix is empty, no colon is used in the lexical representation of the QName, which only
contains the local-name. QNames with an empty prefix either have no namespace (if no default
namespace is in scope) or are in the default namespace.

Examples

Bind a prefix to a namespace

A namespace is a URI, but to avoid verbosity, prefixes are used as a proxy.

In the following example, the prefix my-prefix is bound to the namespace
http://www.example.com/my-namespace by using the special attribute xmlns:my-prefix (my-prefix can
be replaced with any other prefix):

<?xml version="1.0"?>
<my-prefix:foo xmlns:my-prefix="http://www.example.com/my-namespace">
 <!-- the element my-prefix:foo
 lives in the namespace http://www.example.com/my-namespace -->
</my-prefix:foo>

Absence of namespace

In XML, element and attribute names live in namespaces.

By default, they are in no namespace:

https://riptutorial.com/ 17

<?xml version="1.0"?>
<foo attr="value">
 <!-- the foo element is in no namespace, neither is the attr attribute -->
</foo>

Irrelevance of prefixes

These two documents are semantically equivalement, as namespaces matter, not prefixes.

<?xml version="1.0"?>
<myns:foo xmlns:myns="http://www.example.com/my-namespace">
</myns:foo>

<?xml version="1.0"?>
<ns:foo xmlns:ns="http://www.example.com/my-namespace">
</ns:foo>

Default namespace

The default namespace is the namespace corresponding to the absence of any prefix. It can be
declared with the special xmlns attribute.

<?xml version="1.0"?>
<foo xmlns="http://www.example.com/my-namespace">
 <!-- the element foo is in the namespace
 http://www.example.com/my-namespace -->
</foo>

If no default namespace is declared, then names with no prefix are in no namespace.

Attribute names with no prefix

Elements and attributes behave differently with respect to default namespaces. This is often the
source of confusion.

An attribute whose name has no prefix lives in no namespace, also when a default namespace
is in scope.

<?xml version="1.0"?>
<foo attr="value" xmlns="http://www.example.com/my-namespace">
 <!-- The attribute attr is in no namespace, even though
 a default namespace is in scope. The element foo,
 however, is in the default namespace. -->
</foo>

Scope of namespace bindings

A namespace binding (special xmlns or xmlns:... attribute) is in scope for all the descendants of
the enclosing element, including this element.

https://riptutorial.com/ 18

<?xml version="1.0"?>
<root>
 <my:element xmlns:my="http://www.example.com/ns1">
 <!-- here, the prefix my is bound to http://www.example.com/ns1 -->
 </my:element>
 <my:element xmlns:my="http://www.example.com/ns2">
 <!-- here, the prefix my is bound to http://www.example.com/ns2 -->
 </my:element>
</root>

The binding can be overriden in a nested element (this affects readability though):

<?xml version="1.0"?>
<my:element xmlns:my="http://www.example.com/ns1">
 <!-- here, the prefix my is bound to http://www.example.com/ns1 -->
 <my:first-child-element/>

 <my:child-element xmlns:my="http://www.example.com/ns2">
 <!-- here, the prefix my is bound to http://www.example.com/ns2,
 including for the element my:child-element -->
 </my:child-element>

 <!-- here, the prefix my is bound to http://www.example.com/ns1 -->
 <my:last-child-element/>

</my:element>

It is very common to declare all namespace bindings in the root element, which improves
readability.

<?xml version="1.0"?>
<root
 xmlns="http://www.example.com/default-namespace"
 xmlns:ns1="http://www.example.com/ns1"
 xmlns:ns2="http://www.example.com/ns2">

 <ns1:element>
 <ns2:other-element/>
 </ns1:element>

</root>

Read Namespaces online: https://riptutorial.com/xml/topic/1593/namespaces

https://riptutorial.com/ 19

https://riptutorial.com/xml/topic/1593/namespaces

Chapter 7: XML Catalogs

Introduction

An XML catalog is made up of entries from one or more catalog entry files. A catalog entry file is
an XML file whose document element is catalog and whose content follows the XML catalog DTD
defined by OASIS at http://www.oasis-open.org/committees/entity/spec.html. Most of the elements
are catalog entries, each of which serves to map an identifier or URL to another location.

Examples

Catalog entry to resolve DTD location

1

2 3

<public
 publicId="-//OASIS//DTD DocBook XML V4.5//EN" 4
 uri="docbook45/docbookx.dtd"/>

<system
 systemId="http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" 5
 uri="docbook45/docbookx.dtd"/>

<system
 systemId="docbook4.5.dtd" 6
 uri="docbook45/docbookx.dtd"/>

Read XML Catalogs online: https://riptutorial.com/xml/topic/10875/xml-catalogs

https://riptutorial.com/ 20

http://www.oasis-open.org/committees/entity/spec.html
https://riptutorial.com/xml/topic/10875/xml-catalogs

Chapter 8: XML Schema

Introduction

XML Schema is commonly known as XML Schema Definition (XSD). It is used to describe and
validate the structure and the content of XML data. XML schema defines the elements, attributes
and data types.

Examples

An Example of XSD Document

An XSD that describe a contact information about a company is given below.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://NamespaceTest.com/CommonTypes"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
<xs:element name="contact">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string" />
 <xs:element name="company" type="xs:string" />
 <xs:element name="phone" type="xs:int" />
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

In the above example the attributes in second line

<xs:schema targetNamespace="http://NamespaceTest.com/CommonTypes"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

Attributes 'targetnamespace' and elementFormDefault are optional.

Read XML Schema online: https://riptutorial.com/xml/topic/8983/xml-schema

https://riptutorial.com/ 21

http://namespacetest.com/CommonTypes
http://www.w3.org/2001/XMLSchema
https://riptutorial.com/xml/topic/8983/xml-schema

Credits

S.
No

Chapters Contributors

1
Getting started with
xml

Al.G., Burkart, Community, Elizaveta Revyakina, Ghislain
Fourny, Joe, JohnRC, Kin, MAZux, Mohammad Arman,
RamenChef, TuringTux, w5m, Wolfgang Schindler

2 Building blocks Ghislain Fourny, Hoylen

3 DTD Dipesh Poudel, Ghislain Fourny

4 Entities Ghislain Fourny

5 Escaping Ghislain Fourny

6 Namespaces Ghislain Fourny

7 XML Catalogs Mistletoe

8 XML Schema Dipesh Poudel

https://riptutorial.com/ 22

https://riptutorial.com/contributor/3132718/al-g-
https://riptutorial.com/contributor/4051245/burkart
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6771587/elizaveta-revyakina
https://riptutorial.com/contributor/284285/ghislain-fourny
https://riptutorial.com/contributor/284285/ghislain-fourny
https://riptutorial.com/contributor/4832389/joe
https://riptutorial.com/contributor/1992793/johnrc
https://riptutorial.com/contributor/2828227/kin
https://riptutorial.com/contributor/3317006/mazux
https://riptutorial.com/contributor/1276495/mohammad-arman
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6377268/turingtux
https://riptutorial.com/contributor/2047725/w5m
https://riptutorial.com/contributor/3891682/wolfgang-schindler
https://riptutorial.com/contributor/284285/ghislain-fourny
https://riptutorial.com/contributor/232064/hoylen
https://riptutorial.com/contributor/5309397/dipesh-poudel
https://riptutorial.com/contributor/284285/ghislain-fourny
https://riptutorial.com/contributor/284285/ghislain-fourny
https://riptutorial.com/contributor/284285/ghislain-fourny
https://riptutorial.com/contributor/284285/ghislain-fourny
https://riptutorial.com/contributor/8132392/mistletoe
https://riptutorial.com/contributor/5309397/dipesh-poudel

	About
	Chapter 1: Getting started with xml
	Remarks
	Versions
	Examples
	Installation or Setup
	The basic building blocks
	Well-formedness
	Hello World
	Namespaces

	Chapter 2: Building blocks
	Examples
	Elements
	Attributes
	Text
	Comments
	Processing instructions

	Chapter 3: DTD
	Introduction
	Examples
	Document Type Declaration
	Entities
	XML document with an internal DTD
	XML document with an external DTD

	Chapter 4: Entities
	Remarks
	Examples
	Pre-defined general entities
	User-defined general (internal) entities
	External parsed entities

	Chapter 5: Escaping
	Remarks
	Examples
	Ampersand
	Lower-than sign
	Greater-than sign
	Apostrophes and quotes
	CDATA sections
	Character references

	Chapter 6: Namespaces
	Remarks
	Examples
	Bind a prefix to a namespace
	Absence of namespace
	Irrelevance of prefixes
	Default namespace
	Attribute names with no prefix
	Scope of namespace bindings

	Chapter 7: XML Catalogs
	Introduction
	Examples
	Catalog entry to resolve DTD location

	Chapter 8: XML Schema
	Introduction
	Examples
	An Example of XSD Document

	Credits

