
xmpp

#xmpp

Table of Contents

About 1

Chapter 1: Getting started with xmpp 2

Remarks 2

Versions 2

Examples 2

Connecting and sending a message 2

SleekXMPP (Python) 2

Smack (Java / Android) 3

Creating a Chat Session and sending a message 3

Create Xmpp Client Connection Using agsxmpp library 3

Send a message using agsxmpp library 4

Chapter 2: Architecture 6

Remarks 6

Addressability 6

Stateful Streams 6

Routing 6

Servers 6

Examples 7

Visualizing the XMPP Network as a Graph 7

Chapter 3: Stream Negotiation 10

Remarks 10

Examples 10

Closing a stream 10

Starting a stream 10

Close XMPP connection using agsxmpp library 11

Chapter 4: XMPP Addresses aka. JIDs (Jabber Identifiers) 12

Syntax 12

Parameters 12

Remarks 12

Examples 12

Splitting a JID (generic) 12

JID Types 13

Validating a JID (generic) 13

Splitting a JID (Go) 14

Splitting a JID (Rust) 15

Credits 16

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: xmpp

It is an unofficial and free xmpp ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official xmpp.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/xmpp
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with xmpp

Remarks

The Extensible Messaging and Presence Protocol (XMPP) is a network protocol that uses XML to
exchange structured data between two or more network connected entities in near-real-time.
XMPP was created to satisfy the IETFs guidelines for instant messaging and presence protocols (
RFC 2779), but its purpose goes far beyond IM. It is also used as a message-oriented
middleware, for machine-to-machine (M2M) communication and for the Internet of Things (IoT).

The lightweight XMPP core protocol provides users with

strong authentication•
global addresses•
structured and extensible format for data exchange•

The extensible approach makes it possible to build custom protocols on top of XMPP core.

The core XMPP protocol is defined in RFC 6120 and is managed by the Internet Engineering Task
Force (XMPP). The instant messaging extensions are defined in RFC 6121, and a third document
(RFC 7622) defines the format of XMPP addresses, also called "Jabber Identifiers" (JIDs).
Additional functionality is specified in the form of XMPP Extension Protocols (XEPs), which are
created by the community and maintained by the XMPP Standards Foundation (XSF).

Versions

Version Notes Release Date

1.0 Core: RFC 6120, IM: RFC 6121, Address: RFC 7622 2011-03-01

0.9 Core: RFC 3920, IM: RFC 3921, Address: RFC 6122 2004-10-01

Examples

Connecting and sending a message

SleekXMPP (Python)

import sleekxmpp

client = sleekxmpp.Client("address@example.net", "password")
client.connect()
client.process(blocking=False)
client.send_message(mto="remote@example.net", mbody=self.msg)

https://riptutorial.com/ 2

https://tools.ietf.org/html/rfc2779
https://tools.ietf.org/html/rfc6120
https://tools.ietf.org/html/rfc6121
https://tools.ietf.org/html/rfc7622
https://xmpp.org/extensions/xep-0001.html
https://xmpp.org/
https://tools.ietf.org/html/rfc6120
https://tools.ietf.org/html/rfc6121
https://tools.ietf.org/html/rfc7622
https://tools.ietf.org/html/rfc3920
https://tools.ietf.org/html/rfc3921
https://tools.ietf.org/html/rfc6122

Smack (Java / Android)

XMPPTCPConnection connection = new XMPPTCPConnection("user", "password", "example.org")
connection.connect().login();
Message message = new Message("otheruser@example.net", "Hi, how are you?");
connection.sendStanza(message);
connection.disconnect();

Creating a Chat Session and sending a message

Smack (Java)

Using Smack 4.1•
It is recommended to include Smack as Maven dependency in your project (e.g. by using
gradle or Maven).

•

Otherwhise the following Smack artifacts/jars have to be added manually to the classpath:
smack-core, smack-extensions, smack-experimental, smack-im, smnack-tcp, smack-java7

•

import org.jivesoftware.smack.ConnectionConfiguration.SecurityMode;
import org.jivesoftware.smack.SmackException;
import org.jivesoftware.smack.XMPPException;
import org.jivesoftware.smack.chat.Chat;
import org.jivesoftware.smack.chat.ChatManager;
import org.jivesoftware.smack.chat.ChatMessageListener;
import org.jivesoftware.smack.packet.Message;
import org.jivesoftware.smack.packet.Presence;
import org.jivesoftware.smack.tcp.XMPPTCPConnection;
import org.jivesoftware.smack.tcp.XMPPTCPConnectionConfiguration;

public void sendMessage() {

XMPPTCPConnectionConfiguration config =
 XMPPTCPConnectionConfiguration.builder()
 .setServiceName("mydomain.local")
 .setHost("127.0.0.1")
 .setPort(5222)
 .build();

XMPPTCPConnection connection = new XMPPTCPConnection(config);

connection.connect();
connection.login("test1", "test1pwd");

ChatManager chatManager = ChatManager.getInstanceFor(connection);
String test2JID = "test2@domain.example";
Chat chat = chatManager.createChat(test2JID);
chat.sendMessage("Hello, how are you?");

connection.disconnect();
}

Create Xmpp Client Connection Using agsxmpp library

public void OpenXmppConnection(int port, bool useSsl, string serverJid, string userName,

https://riptutorial.com/ 3

string password)
 {
 try
 {
 _xmppClientConnection.AutoResolveConnectServer = true;
 _xmppClientConnection.Port = port;
 _xmppClientConnection.UseSSL = useSsl;
 _xmppClientConnection.Server = serverJid;
 _xmppClientConnection.Username = userName;
 _xmppClientConnection.Password = password;
 _xmppClientConnection.Resource = "web";

 //authenticate and open connection with server
 _xmppClientConnection.Open();
 }
 catch (Exception ex)
 {
 }
 }

Send a message using agsxmpp library

 public class ConversationManager
 {
 #region ClassMemeber

 private XmppClientConnection _xmppClientConnection = null;

 public ConversationManager(XmppClientConnection con)
 {
 _xmppClientConnection = con;
 }

 public void SendMessage(string message, string to, string guid, string type)
 {
 try
 {
 if (_xmppClientConnection != null)
 {
 Jid jidTo = new Jid(to);
 agsXMPP.protocol.client.Message mesg = new
agsXMPP.protocol.client.Message(jidTo, _ConnectionWrapper.MyJid,
 agsXMPP.protocol.client.MessageType.chat,
 message);

 mesg.Id = guid;
 mesg.AddChild(new
agsXMPP.protocol.extensions.msgreceipts.Request());//request delievery
 _xmppClientConnection.Send(mesg);
 }
 }
 catch (Exception ex)
 {
 }
 }

https://riptutorial.com/ 4

}

Read Getting started with xmpp online: https://riptutorial.com/xmpp/topic/2451/getting-started-with-
xmpp

https://riptutorial.com/ 5

https://riptutorial.com/xmpp/topic/2451/getting-started-with-xmpp
https://riptutorial.com/xmpp/topic/2451/getting-started-with-xmpp

Chapter 2: Architecture

Remarks

XMPP allows for the full-duplex exchange of structured data and concurrent processing of
requests between globally addressable clients and servers on the network. Unlike HTTP and the
"Representational State Transfer" (REST) architecture widely deployed on the web, XMPP
connections are stateful and concurrent, and an unlimited number of transactions may occur in the
context of a single session. This architecture is sometimes refered too as "Availability for
Concurrent Transactions" (ACT).

Addressability

To faciliate routing across the network, all XMPP addresses are globally addressable. Like email,
this is acomplished with DNS and a federated client/server architecture. Addresses are of the form
localpart@domainpart/resourcepart where the localpart is optional and corresponds to a user of the
network, the domainpar is required and corresponds to a server, and resourcepart is optional and
refers to a specific connected client for that user (in XMPP users may be signed in from many
different locations, eg. a phone and a laptop in the case of instant messaging, or many sensors
using one account in the case of internet-of-things enabled devices). XMPP also provides facilities
for discovering the presence (availability) of other addresses on the network.

Stateful Streams

XMPP connections are long lived TCP connections that transport XML streams from a client to a
server (c2s) or from a server to a server (s2s). Having these sessions be long lived and stateful
allow nodes in the network to transmit data at any time and have it routed or delivered
immediately.

Routing

Streams form a direct link on the network between a client and a server or a server and a server. If
a client wishes to communicate with a remote client on the network, they first send the information
to their server which forms a server-to-server connection with the remote server which then
delivers the information to its client.

Servers

Servers in the XMPP network route data, but also have a number of other responsibilities including
maintaining session state, storing client data (chat history, files, messages sent when no client
was online to receive them, contact lists, etc.). They are where most of the business logic of
handling an XMPP connection lives. This allows clients to remain as "dumb" as possible
(containing very little logic).

https://riptutorial.com/ 6

Examples

Visualizing the XMPP Network as a Graph

The XMPP network can be thought of as a bidirected graph with servers (S) operating in a mesh,
clients (C) clustered about their local server, and streams represented by extraverted edges:

https://riptutorial.com/ 7

When a client wants to send data (eg. a message or presence information) across the network to
another client, the message is always routed along the shorted possible path (from a client to its

https://riptutorial.com/ 8

http://i.stack.imgur.com/rKQIi.png

server, then to the remote client if they are on the same server or to the remote clients server and
then to the client if the remote client is on a different server).

Read Architecture online: https://riptutorial.com/xmpp/topic/3038/architecture

https://riptutorial.com/ 9

https://riptutorial.com/xmpp/topic/3038/architecture

Chapter 3: Stream Negotiation

Remarks

XMPP connections comprise two XML streams: one for ingress and one for egress. These
streams are generally sent over the same TCP connection (although sometimes multiple
connections may be used, especially for server-to-server connections) and share certain features
for which negotiation is required (eg. authentication with SASL).

Examples

Closing a stream

A stream is closed by sending a closing </stream> tag. After the closing stream tag is sent, no
more data should be sent on the stream (even in response to data received from the other party).
Before closing the connection, the sending entity should wait for a response </stream> tag to give
the other party time to send any outstanding data and should time out (and terminate the
underlying TCP connection[s]) if a closing stream tag is not received within a chosen amount of
time.

</stream:stream>

If the stream is encrypted with TLS, the parties must cleanly terminate TLS by sending a TLS
close_notify alert and receiving one in response. Your TLS library probably does this for you.

Starting a stream

Once a TCP connection is established, the initial stream header is sent by the initiating entity.
Similarly, whenever a stream restart is required (eg. after negotiating a security layer such as TLS)
a stream header must also be sent:

<?xml version='1.0'?>
<stream:stream
 from='juliet@im.example.com'
 to='im.example.com'
 version='1.0'
 xml:lang='en'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'>

The XML header is optional, but if it exists it must not specify anything other than XML version 1.0
with UTF-8 encoding.

In response, the receiving entity will send its own opening stream tag containing a unique session
ID:

https://riptutorial.com/ 10

<?xml version='1.0'?>
<stream:stream
 from='im.example.com'
 id='++TR84Sm6A3hnt3Q065SnAbbk3Y='
 to='juliet@im.example.com'
 version='1.0'
 xml:lang='en'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'>

Close XMPP connection using agsxmpp library

 public class ConnectionManager
 {
 private XmppClientConnection _xmppClientConnection = null;

 public ConnectionManager()
 {
 if (_xmppClientConnection == null)
 {
 _xmppClientConnection = new XmppClientConnection();
 }
 }
 public void CloseXmppConnection()
 {
 try
 {
 if (_xmppClientConnection != null)
 {
 //Close xmpp Client Connection
 _xmppClientConnection.Close();
 }

 }
 catch (Exception ex)
 {
 }
 }
 }

Read Stream Negotiation online: https://riptutorial.com/xmpp/topic/4248/stream-negotiation

https://riptutorial.com/ 11

https://riptutorial.com/xmpp/topic/4248/stream-negotiation

Chapter 4: XMPP Addresses aka. JIDs
(Jabber Identifiers)

Syntax

[localpart "@"] domainpart ["/" resourcepart]•

Parameters

Part Common Usage

Localpart Identifies an XMPP entity (optional)

Domainpart Identifies the XMPP service

Resourcepart Identifies a session of an XMPP entity (optional)

Remarks

XMPP addresses, more commonly known as JIDs (Jabber Identifiers) are defined in RFC 7622
and act as addresses on the XMPP network. They look like an email address, but sometimes have
an optional "resourcepart" at the end that identifies a particular client logged in as the account
represented by the rest of the address (since XMPP may have multiple clients connected per
account). An example of an XMPP address with the resourcepart (a client) xyz is:

romeo@example.net/xyz

Examples

Splitting a JID (generic)

To split a JID into its component parts (the localpart, domainpart, and resourcepart), the following
algorithm should be used (where the localpart is represented by lp, the resourcepart by rp, and
the domainpart by dp and ∈ is used to check if the given character is included in the string):

https://riptutorial.com/ 12

https://tools.ietf.org/html/rfc7622

Note that the localpart and resourcepart are optional and may result in empty strings (you may ha

JID Types

A JID consists of three parts: localpart@domainpart/resourcepart.

Full JIDs (always have a resource part)

romeo@example.org/orchard

Bare JIDs (always without resource part)

 romeo@example.org

Validating a JID (generic)

Unlike emails, JIDs were defined with Internationalization (i18n) in mind using the Preparation, En
The algorithm for validating a JID that has already been split into its localpart, domainpart, and re

The Validations step should perform the following:

Check that the localpart is less than 1024 bytes (bytes, not glyphs)•

https://riptutorial.com/ 13

https://i.stack.imgur.com/tdvJY.png
https://i.stack.imgur.com/Ph9yK.png

Check that the localpart doesnot contain any of "&'/:<>@•
Check that the resourcepart is less than 1024 bytes•
Check that the domainpart is greater than zero bytes and less than 1024 bytes (and possibly
validate that the individual parts of the domain fit into DNS requirements)

•

If the domain is a valid IPv6 address, ensrue that it uses bracketed notation (eg. [::1]
instead of ::1)

•

instead of ::1)

Splitting a JID (Go)

The mellium.im/xmpp/jid package implements operations on JIDs. To split a JID string into its
component parts the SplitString function may be used:

lp, dp, rp, err := SplitString("romeo@example.net")

No validation is performed by the function and the parts are not guaranteed to be valid.

To manually split a string without depending on the jid package, the underlying code looks like
this:

// SplitString splits out the localpart, domainpart, and resourcepart from a
// string representation of a JID. The parts are not guaranteed to be valid, and
// each part must be 1023 bytes or less.
func SplitString(s string) (localpart, domainpart, resourcepart string, err error) {

 // RFC 7622 §3.1. Fundamentals:
 //
 // Implementation Note: When dividing a JID into its component parts,
 // an implementation needs to match the separator characters '@' and
 // '/' before applying any transformation algorithms, which might
 // decompose certain Unicode code points to the separator characters.
 //
 // so let's do that now. First we'll parse the domainpart using the rules
 // defined in §3.2:
 //
 // The domainpart of a JID is the portion that remains once the
 // following parsing steps are taken:
 //
 // 1. Remove any portion from the first '/' character to the end of the
 // string (if there is a '/' character present).
 sep := strings.Index(s, "/")

 if sep == -1 {
 sep = len(s)
 resourcepart = ""
 } else {
 // If the resource part exists, make sure it isn't empty.
 if sep == len(s)-1 {
 err = errors.New("The resourcepart must be larger than 0 bytes")
 return
 }
 resourcepart = s[sep+1:]
 s = s[:sep]
 }

https://riptutorial.com/ 14

https://godoc.org/mellium.im/xmpp/jid

 // 2. Remove any portion from the beginning of the string to the first
 // '@' character (if there is an '@' character present).

 sep = strings.Index(s, "@")

 switch sep {
 case -1:
 // There is no @ sign, and therefore no localpart.
 localpart = ""
 domainpart = s
 case 0:
 // The JID starts with an @ sign (invalid empty localpart)
 err = errors.New("The localpart must be larger than 0 bytes")
 return
 default:
 domainpart = s[sep+1:]
 localpart = s[:sep]
 }

 // We'll throw out any trailing dots on domainparts, since they're ignored:
 //
 // If the domainpart includes a final character considered to be a label
 // separator (dot) by [RFC1034], this character MUST be stripped from
 // the domainpart before the JID of which it is a part is used for the
 // purpose of routing an XML stanza, comparing against another JID, or
 // constructing an XMPP URI or IRI [RFC5122]. In particular, such a
 // character MUST be stripped before any other canonicalization steps
 // are taken.

 domainpart = strings.TrimSuffix(domainpart, ".")

 return
}

Splitting a JID (Rust)

In Rust the xmpp-addr (docs) crate can be used to manipulate JIDs. To split a JID into its
component parts (without validating that those parts are valid), the Jid::split function may be
used:

let (lp, dp, rp) = Jid::split("feste@example.net")?;
assert_eq!(lp, Some("feste"));
assert_eq!(dp, "example.net");
assert_eq!(rp, None);

Read XMPP Addresses aka. JIDs (Jabber Identifiers) online:
https://riptutorial.com/xmpp/topic/3036/xmpp-addresses-aka--jids--jabber-identifiers-

https://riptutorial.com/ 15

https://crates.io/crates/xmpp-addr
https://docs.rs/xmpp-addr
https://docs.rs/xmpp-addr/0.11.1/xmpp_addr/struct.Jid.html#method.split
https://riptutorial.com/xmpp/topic/3036/xmpp-addresses-aka--jids--jabber-identifiers-

Credits

S.
No

Chapters Contributors

1
Getting started with
xmpp

Afsheen126, bilal, Community, Flow, ge0rg, khan, Sam Whited

2 Architecture Sam Whited

3 Stream Negotiation khan, Sam Whited

4
XMPP Addresses
aka. JIDs (Jabber
Identifiers)

Flow, ge0rg, Sam Whited

https://riptutorial.com/ 16

https://riptutorial.com/contributor/6776123/afsheen126
https://riptutorial.com/contributor/4375301/bilal
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/194894/flow
https://riptutorial.com/contributor/539443/ge0rg
https://riptutorial.com/contributor/5594725/khan
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/5594725/khan
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/194894/flow
https://riptutorial.com/contributor/539443/ge0rg
https://riptutorial.com/contributor/1087001/sam-whited

	About
	Chapter 1: Getting started with xmpp
	Remarks
	Versions
	Examples
	Connecting and sending a message

	SleekXMPP (Python)
	Smack (Java / Android)
	Creating a Chat Session and sending a message
	Create Xmpp Client Connection Using agsxmpp library
	Send a message using agsxmpp library

	Chapter 2: Architecture
	Remarks
	Addressability
	Stateful Streams
	Routing
	Servers
	Examples
	Visualizing the XMPP Network as a Graph

	Chapter 3: Stream Negotiation
	Remarks
	Examples
	Closing a stream
	Starting a stream
	Close XMPP connection using agsxmpp library

	Chapter 4: XMPP Addresses aka. JIDs (Jabber Identifiers)
	Syntax
	Parameters
	Remarks
	Examples
	Splitting a JID (generic)
	JID Types
	Validating a JID (generic)
	Splitting a JID (Go)
	Splitting a JID (Rust)

	Credits

