
xsd

#xsd

Table of Contents

About 1

Chapter 1: Getting started with xsd 2

Remarks 2

Versions 2

Examples 2

Installation or Setup 2

Chapter 2: xs:complexType 4

Introduction 4

Parameters 4

Remarks 5

Examples 5

Global ComplexType with Sequence and attributes 5

Creating a global xs:complexType by extending an existing xs:complexType 6

Creating a global xs:complexType by restricting an existing xs:complexType 7

Chapter 3: xs:schema 10

Introduction 10

Parameters 10

Examples 11

Basic xs:schema 11

xs:schema elementFormDefault attribute 12

Credits 15

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: xsd

It is an unofficial and free xsd ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official xsd.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/xsd
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with xsd

Remarks

XML Schema is a language and framework for validating XML documents.

An XML document that is well-formed, in the sense that it is syntactically conformant to the XML
specification, can be tested for validity against a schema. The distinction between well-
formedness, which is absolute, and validity, which is relative to a schema, is paramount.

Validation encompasses:

Checking whether the XML document fulfils additional requirements such as the elements
having certain names, restrictions on the content of elements, consistency constraints
(primary keys, uniqueness, etc), attribute values or text matching certain types.

•

Upon success, conversion of the input data model instance (called XML Infoset) to an output
instance (PSVI: Post-Schema-Validation Infoset), where elements and attributes are
annotated with type information, where default values have been populated, etc.

•

XML Schema was introduced to address requirements that DTD validation failed to address,
among others a more complete type system including a rich set of builtin types, type restriction
and extension capabilities, and more control on the restriction of element layout.

Versions

Version Release Date

1.0 2001-05-02

1.0, Second Edition 2004-10-28

1.1 2012-04-05

XML Schema 1.0 was approved as a W3C Recommendation in May 2001, and the second edition
incorporating errata was published as a W3C Recommendation several years later.

XML Schema 1.1 became a W3C Recommendation in 2012, which fixed more bugs and added
other improvements, while being mostly compatible with earlier versions.

Examples

Installation or Setup

XSD, XML Schema Definition, is a language which describes the structure of XML documents.
XSD files can be used to validate an XML file. The process of doing this will depend on what you

https://riptutorial.com/ 2

https://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
https://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
https://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/

choose to implement it with. Care should be taken to ensure the validation engine you use is
compatible with the desired version of XSD.

Read Getting started with xsd online: https://riptutorial.com/xsd/topic/2907/getting-started-with-xsd

https://riptutorial.com/ 3

https://riptutorial.com/xsd/topic/2907/getting-started-with-xsd

Chapter 2: xs:complexType

Introduction

A xs:complexType provides a description of an XML element's content in the instance document.
The definition of the xs:complexType can be made globally in which case it has a name and can
be re-used within the schema, or it can be inplace and only used within the context it is declared.

Parameters

Attributes Description

abstract

When set to true the complex type can not be used directly in an
instance XML document via xsi:type. It can however be used as the
base type for an element definition. (default false) - Only valid for root
level xs:complexType's

block

Limits the types that can be used in an XML instance document
(defaults to the value of the xs:schemas blockDefault attribute if set,
otherwise defaults to empty, values '#all' | a list of ('extension', 'list',
'union') separated by whitespace).

final

Limits deriving types from using this type in certain ways within the
schema (defaults to the value of the xs:schemas finalDefault attribute if
set, otherwise defaults to empty, values '#all' | or a list of ('extension',
'list', 'union') separated by whitespace) - Only valid for root level
xs:complexType's

id The id of the schema item (optional)

mixed
Indicates the instance XML element may contain mixed content
(defaults to false)

name
The name of the xs:complexType - Only valid for root level
xs:complexType's

any
Any other attributes not in the 'http://www.w3.org/2001/XMLSchema'
namespace are allowed.

----------------- ------

Elements Description

----------------- ------

xs:annotation Provides the ability to add documentation and machine readable data.

https://riptutorial.com/ 4

http://www.w3.org/2001/XMLSchema

Attributes Description

xs:simpleContent Used when the xs:complexType derives from a xs:simpleType.

xs:complexContent Used when the xs:complexType derives from another xs:complexType.

xs:group Adds the elements from an xs:group to the xs:complexType definition

xs:all Adds the elements from an xs:all to the xs:complexType definition

xs:choice Adds the elements from an xs:choice to the xs:complexType definition

xs:sequence
Adds the elements from an xs:sequence to the xs:complexType
definition

xs:attribute Adds the xs:attribute to the xs:complexType definition

xs:attributeGroup Adds the xs:attributeGroup to the xs:complexType definition

xs:anyAttribute Adds the xs:anyAttribute to the xs:complexType definition

Remarks

Deriving from a xs:complexType

When a xs:complexType derives from another xs:complexType is can do it via extension or
restriction.

extension - the deriving type takes everything defined in the base type and adds to it.•
restriction - the deriving type takes only selected parts from the base type, only allowing the
parts it wants, no additional items can be added.

•

Deriving from a xs:simpleType

When a xs:complexType derives from a xs:simpleType is can do it via extension, in which case it
can add attributes to the resulting type, but not elements.

Content Type

Conceptually a xs:complexType either contains simple or complex content. If the xs:complexType
derives from a typed based on xs:anySimpleType (xs:int, xs:string etc) then it is simple. If it
derives from a xs:complexType which contains complex content, then it itself is complex (if the
xs:complexType does not derive from a type, then it is also complex).

Examples

Global ComplexType with Sequence and attributes

This example shows a simple global definition of a complexType. The definition is considered

https://riptutorial.com/ 5

global as it is a child of the xs:schema. Globally defined types can be used elsewhere in the
schema.

This is the most common form for declaring a global xs:complexType, it defines the child elements
using a xs:sequence, xs:choice or xs:all, and optionally has attributes as well.

Note : because it is a globally defined it must have a unique name within the schema set.

<?xml version="1.0" encoding="utf-8" ?>
<!--Created with Liquid Studio 2017 (https://www.liquid-technologies.com)-->
<xs:schema elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="PersonType">
 <xs:sequence>
 <xs:element name="Forename" type="xs:string" />
 <xs:element name="Surname" type="xs:string" />
 </xs:sequence>
 <xs:attribute name="Gender">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="male" />
 <xs:enumeration value="female" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
</xs:schema>

Creating a global xs:complexType by extending an existing xs:complexType

In this example we are creating a new xs:complexType (EmployeeType) based on an existing
xs:complexType (PersonType).

The construction of this is slightly more complicated. Because the base xs:complexType
(PersonType) is considered to be complex (more about this below) we add the
<xs:complexContent> element. Then because we are extending PersonType, we add the element
<xs:extension base="PersonType">. Within the xs:extension tag we can add a compositor
(xs:all/xs:choice/xs:sequence) and any additional attributes.

<?xml version="1.0" encoding="utf-8" ?>
<!--Created with Liquid Studio 2017 (https://www.liquid-technologies.com)-->
<xs:schema elementFormDefault="qualified"

https://riptutorial.com/ 6

https://i.stack.imgur.com/MownI.png

 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="PersonType">
 <xs:sequence>
 <xs:element name="Forename" type="xs:string" />
 <xs:element name="Surname" type="xs:string" />
 </xs:sequence>
 <xs:attribute name="Gender">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="male" />
 <xs:enumeration value="female" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 <xs:complexType name="EmployeeType">
 <xs:complexContent>
 <xs:extension base="PersonType">
 <xs:sequence>
 <xs:element name="Salary" type="xs:decimal" />
 </xs:sequence>
 <xs:attribute name="EmployeeID" type="xs:int" use="required" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

Creating a global xs:complexType by restricting an existing xs:complexType

This is where things get a little tricky. We are now restricting an existing xs:complexType. Our
SolidStateDriveType derives from HardDiskType but removes the spinUpTime attribute and the
RotationSpeed element.

https://riptutorial.com/ 7

https://i.stack.imgur.com/yVUGi.png

Notice the approach for dealing with attributes and elements is different. To remove an attribute
you need to re-declare it and set its use to prohibited. For elements simply not re-declaring them
will cause them to be excluded, in fact you need to re-declare any elements you want to keep in
the new type.

Key concept for restricted types : It must be possible to load an XML instance element resulting
from the restricted type into the base type, put another way the restricted type needs to be able to
'fit' into the base type. So you can not exclude a mandatory attribute or element, in order to
exclude it in the restricted type it must be optional in the base type. If you change the type/facet
rules of an element or attribute in the restricted type, the new type/facet rules must be compatible
with the base type, so if the base type was a short, the restricted type could be a byte, but not a
long.

<?xml version="1.0" encoding="utf-8" ?>
<!--Created with Liquid Studio 2017 - Developer Bundle Edition (Trial) 15.0.2.7192
(https://www.liquid-technologies.com)-->
<xs:schema elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="HardDiskType">
 <xs:sequence>
 <xs:element name="Capacity" type="xs:long" />
 <xs:element name="RotationSpeed" type="xs:int" minOccurs="0" />
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" />
 <xs:attribute name="spinUpTime" type="xs:time" />
 </xs:complexType>
 <xs:complexType name="SolidStateDrive">
 <xs:complexContent>
 <xs:restriction base="HardDiskType">
 <xs:sequence>
 <xs:element name="Capacity" type="xs:long" />
 </xs:sequence>
 <xs:attribute name="spinUpTime" use="prohibited" />
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

https://riptutorial.com/ 8

https://i.stack.imgur.com/oe6dc.png

Read xs:complexType online: https://riptutorial.com/xsd/topic/9047/xs-complextype

https://riptutorial.com/ 9

https://riptutorial.com/xsd/topic/9047/xs-complextype

Chapter 3: xs:schema

Introduction

Describes for elements, attributes and types that are valid in an XML instance document. An XML
Schema (XSD) must contain a single root level xs:schema element.

Parameters

Attributes Description

attributeFormDefault
Indicates whether attributes in the XML instance document have
to be qualified with a namespace (default unqualified)

blockDefault

The default value of the block attribute that is applied to
xs:complexType and xs:element. Defines the rules for blocking
derivation/substituion in the instance document (default empty, i.e.
block nothing)

defaultAttributes
(XSD 1.1) Specifies an xs:attributeGroup that will be associated
with all xs:complexType and xs:element within the schema
(optional).

elementFormDefault
Indicates whether element in the XML instance document have to
be qualified with a namespace (default unqualified). Note : almost
without exception all schemas set this to 'qualified'.

finalDefault
The default final attribute value used in xs:complexType and
xs:element. Defines the rules for blocking derivation/substituion in
the schema (default empty, i.e. block nothing)

id The id of the schema item (optional)

targetNamespace
Qualifies all the elements and attributes (and globally defined
components) defined within this schema.

version
The version of the schema, this is the version of the document,
not this XSD version (i.e. Soap 1.2, FpML 4.2 etc)

xpathDefaultNamespace

(XSD 1.1) The default value for the the attribute
xpathDefaultNamespace which is used in xs:selector, xs:field,
xs:alternative & xs:assert (specifies the default namespace to be
used in XPath expressions)

any
Any other attributes not in the '
http://www.w3.org/2001/XMLSchema' namespace are allowed.

https://riptutorial.com/ 10

http://www.riptutorial.com/xsd/topic/9047/xs-complextype
http://www.riptutorial.com/xsd/topic/9047/xs-complextype
http://www.riptutorial.com/xsd/topic/9047/xs-complextype
http://www.w3.org/2001/XMLSchema

Attributes Description

Elements Description

xs:annotation
Provides the ability to add documentation and machine readable
data.

xs:include
Used to include a schema with the same targetNamespace, or no
targetNamespace (see chameleon schemas).

xs:import
Used to include a schema with a targetNamespace different to the
parent.

xs:redefine

Used to include a schema with the same targetNamespace (or no
targetNamespace), and modify xs:simpleType, xs:complexType,
xs:group or xs:attributeGroup definitions contained within it (here
be dragons....)

xs:simpleType
Defines a global (named) simple type which can then be
referenced and re-used.

xs:complexType
Defines a global (named) complex type which can then be
referenced and re-used.

xs:group
Defines a global (named) group of elements which can then be
referenced and re-used.

xs:attributeGroup
Defines a global (named) group of attributes which can then be
referenced and re-used.

xs:attribute
Defines a global (named) attribute which can then be referenced
and re-used.

xs:element
Defines a global (named) element which can then be referenced
and re-used, or used as the basis of an XML instance document.

xs:notation -

xs:defaultOpenContent
(XSD 1.1) Specifies rules for allowing additional elements to be
permitted within every xs:complexType and xs:element within the
schema.

Examples

Basic xs:schema

Shows a very basic schema.

Note: by convention elementFormDefault is set to 'qualified', in the really world you will be hard

https://riptutorial.com/ 11

http://www.riptutorial.com/xsd/topic/9047/xs-complextype
http://www.riptutorial.com/xsd/topic/9047/xs-complextype

pressed to find a schema that does not set this (so just include it in your schemas!).

<?xml version="1.0" encoding="utf-8" ?>
<!--Created with Liquid Studio 2017 - (https://www.liquid-technologies.com)-->
<xs:schema elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Person">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Forename" type="xs:string" />
 <xs:element name="Surname" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

xs:schema elementFormDefault attribute

By convention elementFormDefault is always set to qualified, but lets look at what it actually does.

First with elementFormDefault set to qualified.

<?xml version="1.0" encoding="utf-8" ?>
<!--Created with Liquid Studio 2017 (https://www.liquid-technologies.com)-->
<xs:schema elementFormDefault="qualified"
 targetNamespace="http://base.com"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="MyBaseElement">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ChildA" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Sample XML Document

<?xml version="1.0" encoding="utf-8"?>
<!-- Created with Liquid Studio 2017 (https://www.liquid-technologies.com) -->
<b:MyBaseElement xmlns:b="http://base.com"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://base.com ElementFormDefault_qualified.xsd">
 <b:ChildA>string</b:ChildA>
</b:MyBaseElement>

Notice the element ChildA must also be qualified with the namespace 'b'.

Now lets look at it with elementFormDefault set to unqualified.

<?xml version="1.0" encoding="utf-8" ?>
<!--Created with Liquid Studio 2017 (https://www.liquid-technologies.com)-->
<xs:schema elementFormDefault="unqualified"

https://riptutorial.com/ 12

 targetNamespace="http://base.com"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="MyBaseElement">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ChildA" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Sample XML Document

<?xml version="1.0" encoding="utf-8"?>
<!-- Created with Liquid Studio 2017 (https://www.liquid-technologies.com) -->
<b:MyBaseElement xmlns:b="http://base.com"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://base.com ElementFormDefault_unqualified.xsd">
 <ChildA>string</ChildA>
</b:MyBaseElement>

Notice this time that only the globally defined element MyBaseElement is qualified with the
namespace 'b', the inner element ChildA (which is defined in place within the schema) is not
qualified.

In the last example we saw that the globally defined elements must be qualified in the XML
instance document, but elements defined inplace do not. But this does not just mean the root
element, if you have globally defined elements that are referenced, then they need qualifying as
well.

<?xml version="1.0" encoding="utf-8" ?>
<!--Created with Liquid Studio 2017 (https://www.liquid-technologies.com)-->
<xs:schema elementFormDefault="unqualified"
 targetNamespace="http://base.com"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="MyBaseElement">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ChildA" type="xs:string" />
 <xs:element xmlns:q1="http://base.com" ref="q1:MyElement" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="MyElement" type="xs:string" />
</xs:schema>

Sample XML Document

<?xml version="1.0" encoding="utf-8"?>
<!-- Created with Liquid Studio 2017 (https://www.liquid-technologies.com) -->
<b:MyBaseElement xmlns:b="http://base.com"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://base.com ElementFormDefault_unqualified.xsd">
 <ChildA>string</ChildA>

https://riptutorial.com/ 13

 <b:MyElement>string</b:MyElement>
</b:MyBaseElement>

Notice that MyElement also need qualifiying as it is globally defined.

In conclusion, if you have elementFormDefault set to qualified, then everything needs to be
qualified with a namespace (either via a namespace alias or by setting the default namesapce
xmlns="..."). However elementFormDefault is set to unqualified, things get complicated and you
need to do some quite indepth examination of the schemas to work out if things should be
qualified or not.

I assume that is why elementFormDefault is always set to qualified!

Read xs:schema online: https://riptutorial.com/xsd/topic/9052/xs-schema

https://riptutorial.com/ 14

https://riptutorial.com/xsd/topic/9052/xs-schema

Credits

S.
No

Chapters Contributors

1
Getting started with
xsd

Beth Whitezel, Community, Ghislain Fourny, whrrgarbl,
Wolfgang Schindler

2 xs:complexType Sprotty

3 xs:schema Sprotty

https://riptutorial.com/ 15

https://riptutorial.com/contributor/451736/beth-whitezel
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/284285/ghislain-fourny
https://riptutorial.com/contributor/812786/whrrgarbl
https://riptutorial.com/contributor/3891682/wolfgang-schindler
https://riptutorial.com/contributor/101719/sprotty
https://riptutorial.com/contributor/101719/sprotty

	About
	Chapter 1: Getting started with xsd
	Remarks
	Versions
	Examples
	Installation or Setup

	Chapter 2: xs:complexType
	Introduction
	Parameters
	Remarks
	Examples
	Global ComplexType with Sequence and attributes
	Creating a global xs:complexType by extending an existing xs:complexType
	Creating a global xs:complexType by restricting an existing xs:complexType

	Chapter 3: xs:schema
	Introduction
	Parameters
	Examples
	Basic xs:schema
	xs:schema elementFormDefault attribute

	Credits

