
zend-framework2

#zend-

framework2

Table of Contents

About 1

Chapter 1: Getting started with zend-framework2 2

Remarks 2

Examples 2

Installation or Setup 2

Using Composer - Recommended way 2

Using Git Submodules 3

HTTP Server Setup 3

OPTION 1 - PHP CLI Server 3

OPTION 2 - A custom HTTP Server 4

A simple Hello World 4

How to create a factory 5

Chapter 2: Installation 7

Examples 7

installing via composer (github) 7

Chapter 3: Introduction to Zend Expressive 8

Examples 8

A simple Hello World 8

Credits 11

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: zend-framework2

It is an unofficial and free zend-framework2 ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official zend-
framework2.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/zend-framework2
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with zend-
framework2

Remarks

Zend Framework 2 (ZF2) is a modern and flexible PHP framework that helps web developpers to
build web applications of different complexities. The major sponsor of company Zend Framework
is Zend Technologies, which makes it very strong and stable. There are two major improvments of
this second version over ZF1. First, a module-based architecture has been adopted by default
without any tweak. This comes handy when developping a big sized web application that requires
a decomposition to modules. Second, ZF2 implements all the features PHP5.3+ can offer
particularly the namespaces. In the previous versions, a controller class is named as follows:

class IndexController extends Zend_Controller_Action
{

}

This same class is rewritten in ZF2 as follows:

namespace Application\Controller;
use Zend\Mvc\Controller\AbstractActionController;

class IndexController extends AbstractActionController
{

}

The following are some other exciting features of ZF2:

Dependency Injection•
EventManager•
ServiceManager•

Examples

Installation or Setup

Detailed instructions on getting Zend Framework 2 set up or installed. There are various ways of
installing the framework. Below are some of them:

Using Composer - Recommended way

Assuming composer is installed on the target box.

https://riptutorial.com/ 2

http://www.zend.com/
https://getcomposer.org/download/

To install a skeleton MVC application, run in your terminal to create a new zend framework 2
project in specified location:

php composer.phar create-project -sdev \
 --repository-url="https://packages.zendframework.com" \
 zendframework/skeleton-application path/to/install

to manually install a minimal ZF2 (Zend MVC + its handful of dependencies), run in your
command line:

composer require zendframework/zend-mvc

or for a full-fledged ZF2 (+64 modules):

composer require zendframework/zendframework`

Please note that the first option runs an installer that will provide you with a fully-functionnal
application along with the usual application directories structure. Other options will let you build the
whole application from scratch as it simply provides ZF2 modules to build upon.

Using Git Submodules

Run the command below to clone zf2 and it's dependencies recursively from Github:

git clone git://github.com/zendframework/ZendSkeletonApplication.git --recursive

HTTP Server Setup

A typical web application requires a running a HTTP service listening a dedicated port (usually :80)
to pass incoming requests to application, process and serve the output (response) back.

Note: You can also write console-aware applications in Zend Framework 2 without a
need to a HTTP server.

OPTION 1 - PHP CLI Server

The simplest way to get started if you are using PHP 5.4 or above is to start the internal PHP cli-
server in the root directory.

Go to project directory and run:

php -S 0.0.0.0:8080 -t public/ public/index.php`.

This will start the builtin cli-server on port 8080, and bind it to all network interfaces.

https://riptutorial.com/ 3

OPTION 2 - A custom HTTP Server

Configure a virtualhost on Apache or Microsoft IIS Server or Nginx and pass incoming HTTP
requests to the application.

A simple Hello World

In your command line, get in the directory you want to create the project in, then type: composer
create-project zendframework/skeleton-application helloWorldTest. During installation, you will be
asked if you want a minimal install: Let's say yes for the moment, we are just testing.

For simplicity sake, we will use the built-in PHP CLI server. From the command line, get yourself in
the root directory of your project (helloWorldTest), then run : php -S 0.0.0.0:8080 -t public/
public/index.php. Now, open your web browser and go to http://localhost/, you should see the
welcome page of the ZF2 Skeleton Application.

If you do so, we will now setup a new page. In module/Application/config/module.config.php you
can see that a dynamic route is already setup for the application subfolder:

return [
 'router' => [
 'routes' => [
 'home' => [
 ...
],
 'application' => [
 'type' => Segment::class,
 'options' => [
 'route' => '/application[/:action]',
 'defaults' => [
 'controller' => Controller\IndexController::class,
 'action' => 'index',
],
],
],
],
],

Set a new action "helloWorldAction()" in module/Applicaiton/src/Controller/IndexController.php:

class IndexController extends AbstractActionController
{
 public function indexAction()
 {
 ...
 }

 public function helloWorldAction()
 {
 return new ViewModel();
 }
}

https://riptutorial.com/ 4

http://localhost/

Finally, create the view file module/Application/view/application/index/hello-world.phtml with the
following content:

<?php
echo "Hello World !";

Now, go to http://localhost/application/hello-world, and say hi to ZF2 !

How to create a factory

When a class needs to be provided with hard dependencies best practice is to use a constructor
injection pattern where those dependencies are injected using a factory.

Let's assume that MyClass is hard dependent on a value $dependency that needs to be resolved from
the application config.

<?php
namespace Application\Folder;

use Zend\ServiceManager\FactoryInterface;
use Zend\ServiceManager\ServiceLocatorInterface;

class MyClass
{
 protected $dependency;

 public function __construct($dependency)
 {
 $this->dependency = $dependency;
 }
}

To inject this dependency a factory class is created. This factory will resolve the dependency from
the config and inject the config value on construction of the class and return the result:

<?php
namespace Application\Factory;

use Zend\ServiceManager\FactoryInterface;
use Zend\ServiceManager\ServiceLocatorInterface;

class MyClassFactory implements FactoryInterface
{
 public function createService(ServiceLocatorInterface $serviceLocator)
 {
 $config = $servicelocator->get('Config');
 $dependency = $config['dependency'];
 $myClass = new MyClass($dependency);
 return $myClass;
 }
}

Now that the factory class has been created it has to be registered inside the service manager
config in the module config file module.config.php under the key factories. It is good practice to use

https://riptutorial.com/ 5

http://localhost/application/hello-world

the same names for both the class and the factory so it is easy to find them in the project folder
tree:

<?php

namespace Application;

return array(
 //...
 'service_manager' => [
 'factories' => [
 'Application\Folder\MyClass' => 'Application\Factory\MyClassFactory'
]
],
 //...
);

Alternatively the class name constants can be used to register them:

<?php

namespace Application;

use Application\Folder\MyClass;
use Application\Factory\MyClassFactory;

return array(
 //...
 'service_manager' => [
 'factories' => [
 MyClass::class => MyClassFactory::class'
]
],
 //...
);

Now the class can be collected at the service manager using the key that we used when
registering the factory for that class:

 $serviceManager->get('Application\Folder\MyClass');

or

 $serviceManager->get(MyClass::class);

The service manager will find, collect and run the factory and then it returns your class instance
with the dependency injected.

Read Getting started with zend-framework2 online: https://riptutorial.com/zend-
framework2/topic/1304/getting-started-with-zend-framework2

https://riptutorial.com/ 6

https://riptutorial.com/zend-framework2/topic/1304/getting-started-with-zend-framework2
https://riptutorial.com/zend-framework2/topic/1304/getting-started-with-zend-framework2

Chapter 2: Installation

Examples

installing via composer (github)

1 cd my/project/dir
2 git clone git://github.com/zendframework/ZendSkeletonApplication.git
3 cd ZendSkeletonApplication
4 php composer.phar self-update
5 php composer.phar install

Read Installation online: https://riptutorial.com/zend-framework2/topic/6458/installation

https://riptutorial.com/ 7

https://riptutorial.com/zend-framework2/topic/6458/installation

Chapter 3: Introduction to Zend Expressive

Examples

A simple Hello World

Using composer, execute the following command in the directory in which the application will be
installed: composer create-project zendframework/zend-expressive-skeleton expressive-skeleton.

During installation process, you will be asked to make various decisions.

For the default installation question, say no (n);1.
For the router, let's use Aura Router (#1);2.
For the container, let's use Zend ServiceManager (#3);3.
For the template, let's use Zend View (#3);4.
Finally, for the error handler, let's use Whoops (#1).5.

Once installed, get yourself in the root directory, expressive-skeleton, launch the built-in PHP CLI
server: php -S 0.0.0.0:8080 -t public public/index.php. Go to http://localhost:8080/ with your
browser, your application should now be up and running.

Let's configure a new path to a new middleware. First, open the router config file in
config/autoload/routes.global.php and add the lines as follow:

<?php

return [
 'dependencies' => [
 ...
],

 'routes' => [
 [
 'dependencies' => [
 'invokables' => [
 ...
],
 'factories' => [
 ...
 // Add the following line
 App\Action\HelloWorldAction::class => App\Action\HelloWorldFactory::class,
],
],
],
 // Following lines should be added
 [
 'name' => 'hello-world',
 'path' => '/hello-world',
 'middleware' => App\Action\HelloWorldAction::class,
 'allowed_methods' => ['GET'],
],
],

https://riptutorial.com/ 8

http://localhost:8080/

];

Put the following content in src/App/Action/HelloWorldFactory.php:

<?php

namespace App\Action;

use Interop\Container\ContainerInterface;
use Zend\Expressive\Template\TemplateRendererInterface;

class HelloWorldFactory
{
 public function __invoke(ContainerInterface $container)
 {
 $template = ($container->has(TemplateRendererInterface::class))
 ? $container->get(TemplateRendererInterface::class)
 : null;

 return new HelloWorldAction($template);
 }
}

Then, this content in src/App/Action/HelloWorldAction.php:

<?php

namespace App\Action;

use Psr\Http\Message\ResponseInterface;
use Psr\Http\Message\ServerRequestInterface;
use Zend\Diactoros\Response\HtmlResponse;
use Zend\Diactoros\Response\JsonResponse;
use Zend\Expressive\Template;
use Zend\Expressive\Plates\PlatesRenderer;
use Zend\Expressive\Twig\TwigRenderer;
use Zend\Expressive\ZendView\ZendViewRenderer;

class HelloWorldAction
{
 private $template;

 public function __construct(Template\TemplateRendererInterface $template = null)
 {
 $this->template = $template;
 }

 public function __invoke(ServerRequestInterface $request, ResponseInterface $response,
callable $next = null)
 {
 $data = [];

 return new HtmlResponse($this->template->render('app::hello-world'));
 }
}

Then, finally, simply put the following in templates/app/hello-world.phtml:

https://riptutorial.com/ 9

<?php echo 'Hello World'; ?>

We are done ! Navigate to http://localhost:8080/hello-world, and say "hi" to Zend Expressive !

Read Introduction to Zend Expressive online: https://riptutorial.com/zend-
framework2/topic/6109/introduction-to-zend-expressive

https://riptutorial.com/ 10

http://localhost:8080/hello-world
https://riptutorial.com/zend-framework2/topic/6109/introduction-to-zend-expressive
https://riptutorial.com/zend-framework2/topic/6109/introduction-to-zend-expressive

Credits

S.
No

Chapters Contributors

1
Getting started with
zend-framework2

Community, edigu, Hassan, Sanjeev kumar, Shirraz, Wilt

2 Installation edigu, Waqar Haider

3
Introduction to Zend
Expressive

Shirraz

https://riptutorial.com/ 11

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/199593/edigu
https://riptutorial.com/contributor/1676113/hassan
https://riptutorial.com/contributor/5164379/sanjeev-kumar
https://riptutorial.com/contributor/4593653/shirraz
https://riptutorial.com/contributor/1697459/wilt
https://riptutorial.com/contributor/199593/edigu
https://riptutorial.com/contributor/5279836/waqar-haider
https://riptutorial.com/contributor/4593653/shirraz

	About
	Chapter 1: Getting started with zend-framework2
	Remarks
	Examples
	Installation or Setup

	Using Composer - Recommended way
	Using Git Submodules

	HTTP Server Setup
	OPTION 1 - PHP CLI Server
	OPTION 2 - A custom HTTP Server
	A simple Hello World
	How to create a factory

	Chapter 2: Installation
	Examples
	installing via composer (github)

	Chapter 3: Introduction to Zend Expressive
	Examples
	A simple Hello World

	Credits

