Python Language Complex numbers and the cmath module


Example

The cmath module is similar to the math module, but defines functions appropriately for the complex plane.

First of all, complex numbers are a numeric type that is part of the Python language itself rather than being provided by a library class. Thus we don't need to import cmath for ordinary arithmetic expressions.

Note that we use j (or J) and not i.

z = 1 + 3j

We must use 1j since j would be the name of a variable rather than a numeric literal.

1j * 1j
Out: (-1+0j)

1j ** 1j
# Out: (0.20787957635076193+0j)     # "i to the i"  ==  math.e ** -(math.pi/2)

We have the real part and the imag (imaginary) part, as well as the complex conjugate:

# real part and imaginary part are both float type
z.real, z.imag
# Out: (1.0, 3.0)

z.conjugate()
# Out: (1-3j)    # z.conjugate() == z.real - z.imag * 1j

The built-in functions abs and complex are also part of the language itself and don't require any import:

abs(1 + 1j)
# Out: 1.4142135623730951     # square root of 2

complex(1)
# Out: (1+0j)

complex(imag=1)
# Out: (1j)

complex(1, 1)
# Out: (1+1j)

The complex function can take a string, but it can't have spaces:

complex('1+1j')
# Out: (1+1j)

complex('1 + 1j')
# Exception: ValueError: complex() arg is a malformed string

But for most functions we do need the module, for instance sqrt:

import cmath

cmath.sqrt(-1)
# Out: 1j

Naturally the behavior of sqrt is different for complex numbers and real numbers. In non-complex math the square root of a negative number raises an exception:

import math

math.sqrt(-1)
# Exception: ValueError: math domain error

Functions are provided to convert to and from polar coordinates:

cmath.polar(1 + 1j)
# Out: (1.4142135623730951, 0.7853981633974483)    # == (sqrt(1 + 1), atan2(1, 1))

abs(1 + 1j), cmath.phase(1 + 1j)
# Out: (1.4142135623730951, 0.7853981633974483)    # same as previous calculation

cmath.rect(math.sqrt(2), math.atan(1))
# Out: (1.0000000000000002+1.0000000000000002j)

The mathematical field of complex analysis is beyond the scope of this example, but many functions in the complex plane have a "branch cut", usually along the real axis or the imaginary axis. Most modern platforms support "signed zero" as specified in IEEE 754, which provides continuity of those functions on both sides of the branch cut. The following example is from the Python documentation:

cmath.phase(complex(-1.0, 0.0))
# Out: 3.141592653589793

cmath.phase(complex(-1.0, -0.0))
# Out: -3.141592653589793

The cmath module also provides many functions with direct counterparts from the math module.

In addition to sqrt, there are complex versions of exp, log, log10, the trigonometric functions and their inverses (sin, cos, tan, asin, acos, atan), and the hyperbolic functions and their inverses (sinh, cosh, tanh, asinh, acosh, atanh). Note however there is no complex counterpart of math.atan2, the two-argument form of arctangent.

cmath.log(1+1j)
# Out: (0.34657359027997264+0.7853981633974483j)

cmath.exp(1j * cmath.pi)
# Out: (-1+1.2246467991473532e-16j)   # e to the i pi == -1, within rounding error

The constants pi and e are provided. Note these are float and not complex.

type(cmath.pi)
# Out: <class 'float'>

The cmath module also provides complex versions of isinf, and (for Python 3.2+) isfinite. See "Infinity and NaN". A complex number is considered infinite if either its real part or its imaginary part is infinite.

cmath.isinf(complex(float('inf'), 0.0))
# Out: True

Likewise, the cmath module provides a complex version of isnan. See "Infinity and NaN". A complex number is considered "not a number" if either its real part or its imaginary part is "not a number".

cmath.isnan(0.0, float('nan'))
# Out: True 

Note there is no cmath counterpart of the math.inf and math.nan constants (from Python 3.5 and higher)

Python 3.x3.5
cmath.isinf(complex(0.0, math.inf))
# Out: True

cmath.isnan(complex(math.nan, 0.0))
# Out: True

cmath.inf
# Exception: AttributeError: module 'cmath' has no attribute 'inf'

In Python 3.5 and higher, there is an isclose method in both cmath and math modules.

Python 3.x3.5
z = cmath.rect(*cmath.polar(1+1j))

z
# Out: (1.0000000000000002+1.0000000000000002j)

cmath.isclose(z, 1+1j)
# True